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To Lee Peterson and Robert Davie





F O R E W O R D

David D. Clark
Massachusetts Institute of Technology

t is now ten years since this classic book first appeared. Looking back, it is amazingIwhat has happened in that time. We have seen the transformation of the Web from
a small experiment to a World Wide phenomenon. We have seen the emergence

of voice over IP and peer-to-peer content sharing. We have seen technology speed up
a hundred-fold, the emergence of broadband to the home, and the rise of botnets and
other horrid security problems. Many things have changed, technology has come and
gone, and (perhaps equally amazing) much of the basics of the Internet are still there.

This book, too, has changed much in ten years, with four editions to keep up. But
the basic value of the book remains the same as the first edition. This book gives you the
facts you need, and puts those facts into the larger context so that the knowledge you
gain will be of value even as the details change. Reading this book informs you about
today and prepares you for tomorrow. One new feature is a set of sidebars that illustrate
the context of ideas being presented in the text—the why of the ideas. Why did an idea
fail? Why did it succeed?

What has changed in the book? Some technologies have faded from sight, and get
less attention in this edition. We bid a fond farewell to FDDI and ATM LANs. Some
technologies have mutated and emerged in new forms. Remote Procedure Call is no
longer a LAN-based low-level invocation mechanism, but the foundation of Internet-
wide Web Services. We welcome gigabit Ethernet, an updated and expanded section on
wireless, and more on router implementation. The material on TCP is up to date, with
discussion of new acknowledgment schemes and extensions for high speed.

With the increasing concern with security, there is a completely revised chapter
with a new emphasis on a systems approach to security, and a discussion of threats and
how to counter them. And at the end, there is a chapter that helps you “put it all to-
gether,” using case studies at the application layer (VOIP, multimedia, and peer to peer)
to show how all the concepts from the previous chapters combine to provide the system
that supports these applications.
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The evolution of networks is not going to slow down. Soon we will be talking
about the impact of television over IP, the collision of the Internet and sensor networks,
and lots of other very new and exciting ideas. But relax—if you read this book today you
will have the insights you need for tomorrow.



F O R E W O R D T O T H E F I R S T E D I T I O N

David Clark
Massachusetts Institute of Technology

he term spaghetti code is universally understood as an insult. All good computerTscientists worship the god of modularity, since modularity brings many benefits,
including the all-powerful benefit of not having to understand all parts of a

problem at the same time in order to solve it. Modularity thus plays a role in presenting
ideas in a book, as well as in writing code. If a book’s material is organized effectively—
modularly—the reader can start at the beginning and actually make it to the end.

The field of network protocols is perhaps unique in that the “proper” modularity
has been handed down to us in the form of an international standard: the seven-layer
reference model of network protocols from the ISO. This model, which reflects a layered
approach to modularity, is almost universally used as a starting point for discussions of
protocol organization, whether the design in question conforms to the model or deviates
from it.

It seems obvious to organize a networking book around this layered model. How-
ever, there is a peril to doing so, because the OSI model is not really successful at organiz-
ing the core concepts of networking. Such basic requirements as reliability, flow control,
or security can be addressed at most, if not all, of the OSI layers. This fact has led to
great confusion in trying to understand the reference model. At times it even requires a
suspension of disbelief. Indeed, a book organized strictly according to a layered model
has some of the attributes of spaghetti code.

Which brings us to this book. Peterson and Davie follow the traditional layered
model, but they do not pretend that this model actually helps in the understanding
of the big issues in networking. Instead, the authors organize discussion of fundamen-
tal concepts in a way that is independent of layering. Thus, after reading the book,
readers will understand flow control, congestion control, reliability enhancement, data
representation, and synchronization, and will separately understand the implications of
addressing these issues in one or another of the traditional layers.

This is a timely book. It looks at the important protocols in use today—especially
the Internet protocols. Peterson and Davie have a long involvement in and much ex-
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perience with the Internet. Thus their book reflects not just the theoretical issues in
protocol design, but the real factors that matter in practice. The book looks at some of
the protocols that are just emerging now, so the reader can be assured of an up-to-date
perspective. But most importantly, the discussion of basic issues is presented in a way
that derives from the fundamental nature of the problem, not the constraints of the lay-
ered reference model or the details of today’s protocols. In this regard, what this book
presents is both timely and timeless. The combination of real-world relevance, current
examples, and careful explanation of fundamentals makes this book unique.



P R E F A C E

hen the first edition of this book was published in 1996, it was a novelty toWbe able to order merchandise on the Internet, and a company that advertised
its domain name was considered cutting edge. Today, Internet commerce

is a fact of life, and “.com” stocks have gone through an entire boom and bust cycle.
A host of new technologies ranging from optical switches to wireless networks are now
becoming mainstream. It seems the only predictable thing about the Internet is constant
change.

Despite these changes the question we asked in the first edition is just as valid
today: What are the underlying concepts and technologies that make the Internet work?
The answer is that much of the TCP/IP architecture continues to function just as was
envisioned by its creators more than 30 years ago. This isn’t to say that the Internet
architecture is uninteresting; quite the contrary. Understanding the design principles that
underly an architecture that has not only survived but fostered the kind of growth and
change that the Internet has seen over the past three decades is precisely the right place
to start. Like the previous editions, the third edition makes the “why” of the Internet
architecture its cornerstone.

Audience
Our intent is that the book should serve as the text for a comprehensive networking
class, at either the graduate or upper-division undergraduate level. We also believe that
the book’s focus on core concepts should be appealing to industry professionals who are
retraining for network-related assignments, as well as current network practitioners who
want to understand the “whys” behind the protocols they work with every day and to see
the big picture of networking.

It is our experience that both students and professionals learning about networks
for the first time often have the impression that network protocols are some sort of edict
handed down from on high, and that their job is to learn as many TLAs (three-letter
acronyms) as possible. In fact, protocols are the building blocks of a complex system
developed through the application of engineering design principles. Moreover, they are
constantly being refined, extended, and replaced based on real-world experience. With
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this in mind, our goal with this book is to do more than survey the protocols in use
today. Instead, we explain the underlying principles of sound network design. We feel
that this grasp of underlying principles is the best tool for handling the rate of change in
the networking field.

Changes in the Fourth Edition

Even though our focus is on the underlying principles of networking, we illustrate these
principles using examples from today’s working Internet. Therefore, we added a signifi-
cant amount of new material to track many of the important recent advances in network-
ing. We also deleted, reorganized, and changed the focus of existing material to reflect
changes that have taken place over the past decade.

Perhaps the most significant change we have noticed since writing the first edition
is that almost every reader now has some familiarity with networked applications such as
the World Wide Web and email. For this reason, we have increased the focus on applica-
tions, starting in the first chapter. We use applications as the motivation for the study of
networking, and to derive a set of requirements that a useful network must meet if it is
to support both current and future applications on a global scale. However, we retain the
problem-solving approach of previous editions that starts with the problem of intercon-
necting hosts and works its way up the layers to conclude with a detailed examination
of application layer issues. We believe it is important to make the topics covered in the
book relevant by starting with applications and their needs. At the same time, we feel
that higher-layer issues, such as application layer and transport layer protocols, are best
understood after the basic problems of connecting hosts and switching packets have been
explained.

As we did in the second and third editions, we have added or increased coverage of
important new topics, and brought other topics up to date. Major new or substantially
updated topics in this edition are:

■ Comprehensively revised and updated coverage of security, with a focus on
building secure systems, not just on cryptographic algorithms;

■ Expanded and updated coverage of XML (extensible markup language);

■ An updated section on overlay networks, including “peer-to-peer” networking
and “content distribution networks”;

■ A new section on web services, including the SOAP and REST (Representa-
tional State Transfer) architectures;
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■ Updated material on wireless technology, including the 802.11 (WiFi) and
802.16 (WiMAX) standards as well as cellular wireless technologies including
the 3G (third generation) standards;

■ Expanded coverage of interdomain routing;

■ Expanded coverage on protocols and quality of service for multimedia applica-
tions such as voiceover IP (VOIP) and video streaming;

■ Updated coverage of congestion control mechanisms, particularly for high
bandwidth-delay product networks.

In addition, we have added a new feature to this edition: “Where are they now?”
sidebars. These short discussions focus on the success and failure of protocols in the real
world. Sometimes they describe a protocol that most people have written off but which
is actually enjoying unheralded success; other times they trace the fate of a protocol
that failed to thrive over the long run. The goal of these sidebars is to make the material
relevant by showing how technologies have fared in the competitive world of networking.

Approach
For an area that’s as dynamic and changing as computer networks, the most important
thing a textbook can offer is perspective—to distinguish between what’s important and
what’s not, and between what’s lasting and what’s superficial. Based on our experience
over the past 20-plus years doing research that has led to new networking technology,
teaching undergraduate and graduate students about the latest trends in networking, and
delivering advanced networking products to market, we have developed a perspective—
which we call the systems approach—that forms the soul of this book. The systems ap-
proach has several implications:

■ Rather than accept existing artifacts as gospel, we start first with principles and
walk you through the thought process that led to today’s networks. This allows
us to explain why networks look like they do. It is our experience that once you
understand the underlying concepts, any new protocol that you are confronted
with will be relatively easy to digest.

■ Although the material is loosely organized around the traditional network lay-
ers, starting at the bottom and moving up the protocol stack, we do not adopt
a rigidly layerist approach. Many topics—congestion control and security are
good examples—have implications up and down the hierarchy, and so we dis-
cuss them outside the traditional layered model. In short, we believe layering
makes a good servant but a poor master; it’s more often useful to take an end-
to-end perspective.



xiv Preface

■ Rather than explain how protocols work in the abstract, we use the most im-
portant protocols in use today—many of them from the TCP/IP Internet—to
illustrate how networks work in practice. This allows us to include real-world
experiences in the discussion.

■ Although at the lowest levels networks are constructed from commodity hard-
ware that can be bought from computer vendors and communication services
that can be leased from the phone company, it is the software that allows net-
works to provide new services and adapt quickly to changing circumstances. It is
for this reason that we emphasize how network software is implemented, rather
than stopping with a description of the abstract algorithms involved. We also
include code segments taken from a working protocol stack to illustrate how
you might implement certain protocols and algorithms.

■ Networks are constructed from many building-block pieces, and while it is nec-
essary to be able to abstract away uninteresting elements when solving a particu-
lar problem, it is essential to understand how all the pieces fit together to form a
functioning network. We therefore spend considerable time explaining the over-
all end-to-end behavior of networks, not just the individual components, so that
it is possible to understand how a complete network operates, all the way from
the application to the hardware.

■ The systems approach implies doing experimental performance studies, and
then using the data you gather both to quantitatively analyze various design
options and to guide you in optimizing the implementation. This emphasis on
empirical analysis pervades the book.

■ Networks are like other computer systems—for example, operating systems,
processor architectures, distributed and parallel systems, and so on. They are all
large and complex. To help manage this complexity, system builders often draw
on a collection of design principles. We highlight these design principles as they
are introduced throughout the book, illustrated, of course, with examples from
computer networks.

Pedagogy and Features

The fourth edition retains several features from prior editions, and adds one more, that
we encourage you to take advantage of:

■ Problem statements. At the start of each chapter, we describe a problem that
identifies the next set of issues that must be addressed in the design of a network.
This statement introduces and motivates the issues to be explored in the chapter.
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■ Shaded sidebars. Throughout the text, shaded sidebars elaborate on the topic be-
ing discussed or introduce a related advanced topic. In many cases, these sidebars
relate real-world anecdotes about networking.

■ “Where are they now?” sidebars. These new elements trace the success and failure
of protocols in real-world deployment.

■ Highlighted paragraphs. These paragraphs summarize an important nugget of
information that we want you to take away from the discussion, such as a widely
applicable system design principle.

■ Real protocols. Even though the book’s focus is on core concepts rather than ex-
isting protocol specifications, real protocols are used to illustrate most of the
important ideas. As a result, the book can be used as a source of reference for
many protocols. To help you find the descriptions of the protocols, each ap-
plicable section heading parenthetically identifies the protocols described in that
section. For example, Section 5.2, which describes the principles of reliable end-
to-end protocols, provides a detailed description of TCP, the canonical example
of such a protocol.

■ Open issues. We conclude the main body of each chapter with an important
issue that is currently being debated in the research community, the commercial
world, or society as a whole. We have found that discussing these issues helps to
make the subject of networking more relevant and exciting.

■ Recommended reading. These highly selective lists appear at the end of each chap-
ter. Each list generally contains the seminal papers on the topics just discussed.
We strongly recommend that advanced readers (e.g., graduate students) study
the papers in this reading list to supplement the material covered in the chapter.

Road Map and Course Use
The book is organized as follows:

■ Chapter 1 introduces the set of core ideas that are used throughout the rest of the
text. Motivated by widespread applications, it discusses what goes into a network
architecture, provides an introduction to protocol implementation issues, and
defines the quantitative performance metrics that often drive network design.

■ Chapter 2 surveys a wide range of low-level network technologies, ranging from
Ethernet to token ring to wireless. It also describes many of the issues that
all data link protocols must address, including encoding, framing, and error
detection.
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■ Chapter 3 introduces the basic models of switched networks (datagrams versus
virtual circuits) and describes two prevalent switching technologies—switched
Ethernet and ATM—in some detail. It also discusses the design of hardware-
based switches.

■ Chapter 4 introduces internetworking and describes the key elements of the
Internet Protocol (IP). A central question addressed in this chapter is how net-
works that scale to the size of the Internet are able to route packets. Unicast,
multicast, and interdomain routing are covered.

■ Chapter 5 moves up to the transport level, describing both the Internet’s Trans-
mission Control Protocol (TCP) and Remote Procedure Call (RPC) used to
build client-server applications in detail. The Real-time Transport Protocol
(RTP), which supports multimedia applications, is also described.

■ Chapter 6 discusses congestion control and resource allocation. The issues in
this chapter cut across both the network level (Chapters 3 and 4) and the trans-
port level (Chapter 5). Of particular note, this chapter describes how congestion
control works in TCP, and it introduces the mechanisms used to provide quality
of service in IP.

■ Chapter 7 considers the data sent through a network. This includes both the
problems of presentation formatting and data compression. XML is covered
here, and the compression section includes explanations of how MPEG video
compression and MP3 audio compression work.

■ Chapter 8 discusses network security, beginning with an overview of crypto-
graphic tools, the problems of key distribution, and a discussion of several
authentication techniques using both public and private keys. The main fo-
cus of this chapter is the building of secure systems, using examples including
Pretty Good Privacy (PGP), Secure Shell (SSH), and the IP Security architecture
(IPSEC). Firewalls are also covered here.

■ Chapter 9 describes a representative sample of network applications and the
protocols they use, including traditional applications like email and the Web,
multimedia applications such as IP telephony and video streaming, and overlay
networks like peer-to-peer file sharing and content distribution networks. The
Web Services architectures for developing new application protocols are also
presented here.

For an undergraduate course, extra class time will most likely be needed to help
students digest the introductory material in the first chapter, probably at the expense
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of the more advanced topics covered in Chapters 6 through 8. Chapter 9 then returns
to the popular topic of network applications. In contrast, the instructor for a graduate
course should be able to cover the first chapter in only a lecture or two—with students
studying the material more carefully on their own—thereby freeing up additional class
time to cover the last four chapters in depth. Both graduate and undergraduate classes
will want to cover the core material contained in the middle four chapters (Chapters
2–5), although an undergraduate class might choose to skim the more advanced sections
(e.g., Sections 2.2, 4.4, and 4.5).

For those of you using the book in self-study, we believe that the topics we have
selected cover the core of computer networking, and so we recommend that the book
be read sequentially, from front to back. In addition, we have included a liberal supply
of references to help you locate supplementary material that is relevant to your specific
areas of interest, and we have included solutions to select exercises.

The book takes a unique approach to the topic of congestion control by pulling all
topics related to congestion control and resource allocation together in a single place—
Chapter 6. We do this because the problem of congestion control cannot be solved at
any one level, and we want you to consider the various design options at the same time.
(This is consistent with our view that strict layering often obscures important design
trade-offs.) A more traditional treatment of congestion control is possible, however, by
studying Section 6.2 in the context of Chapter 3 and Section 6.4 in the context of
Chapter 5.

Exercises

Significant effort has gone into improving the exercises with each new edition. In the
second edition we greatly increased the number of problems and, based on class testing,
dramatically improved their quality. In the third edition we made two other important
changes, which we retained here:

■ For those exercises that we felt are particularly challenging or require special
knowledge not provided in the book (e.g., probability expertise), we have added
an icon ★ to indicate the extra level of difficulty.

■ In each chapter we added some extra representative exercises for which worked
solutions are provided at the back of the book. These exercises, marked ✓, are
intended to provide some help in tackling the other exercises in the book.

In this edition we have added new exercises to reflect the updated content. The
current set of exercises are of several different styles:
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■ Analytical exercises that ask the student to do simple algebraic calculations that
demonstrate their understanding of fundamental relationships.

■ Design questions that ask the student to propose and evaluate protocols for
various circumstances.

■ Hands-on questions that ask the student to write a few lines of code to test an
idea or to experiment with an existing network utility.

■ Library research questions that ask the student to learn more about a particular
topic.

Also, as described in more detail below, socket-based programming assignments, as
well as simulation labs, are available online.

Supplemental Materials and Online Resources

To assist instructors, we have prepared an instructor’s manual that contains solutions to
selected exercises. The manual is available from the publisher.

Additional support materials, including lecture slides, figures from the text, socket-
based programming assignments, and sample exams and programming assignments are
available through the Morgan Kaufmann website at http://www.mkp.com/pd4e.
We suggest that you visit the page for this book every few weeks, as we will be adding
support materials and establishing links to networking-related sites on a regular basis.

And finally, as with the third edition, a set of laboratory experiments supplement
the book. These labs, developed by Professor Emad Aboelela from the University of
Massachusetts Dartmouth, use simulation to explore the behavior, scalability, and per-
formance of protocols covered in the book. Sections that discuss material covered by the
laboratory exercises are marked with the icon shown in the margin. The simulations use
the OPNET simulation toolset, which is available for free to any one using Computer
Networks in their course.
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Foundation

I must Create a System, or be enslav’d by another Man’s; I will not
Reason and Compare: my business is to Create.

—William Blake

uppose you want to build a computer network, one that has the potential toSgrow to global proportions and to support applications as diverse as telecon-
ferencing, video-on-demand, electronic commerce, distributed computing, and

digital libraries. What available technologies would serve as the underlying building
blocks, and what kind of software architecture would you design to integrate these

P R O B L E M

Building a Network

building blocks into an effective com-
munication service? Answering this
question is the overriding goal of
this book—to describe the available
building materials and then to show
how they can be used to construct
a network from the ground up.

Before we can understand how to design a computer network, we should
first agree on exactly what a computer network is. At one time, the term network
meant the set of serial lines used to attach dumb terminals to mainframe com-
puters. To some, the term implies the voice telephone network. To others, the
only interesting network is the cable network used to disseminate video signals.
The main thing these networks have in common is that they are specialized to
handle one particular kind of data (keystrokes, voice, or video) and they typically
connect to special-purpose devices (terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks? Prob-
ably the most important characteristic of a computer network is its generality. Com-
puter networks are built primarily from general-purpose programmable hardware, and
they are not optimized for a particular application like making phone calls or deliv-
ering television signals. Instead, they are able to carry many different types of data,
and they support a wide, and ever-growing, range of applications. This chapter looks

2
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at some typical applications of computer networks and discusses
the requirements that a network designer who wishes to support
such applications must be aware of.

Once we understand the requirements, how do we pro-
ceed? Fortunately, we will not be building the first network.
Others, most notably the community of researchers responsible
for the Internet, have gone before us. We will use the wealth
of experience generated from the Internet to guide our design.
This experience is embodied in a network architecture that iden-
tifies the available hardware and software components and shows
how they can be arranged to form a complete network system.

To start us on the road toward understanding how to build
a network, this chapter does four things. First, it explores the re-
quirements that different applications and different communities
of people (such as network users and network operators) place
on the network. Second, it introduces the idea of a network ar-
chitecture, which lays the foundation for the rest of the book.
Third, it introduces some of the key elements in the implemen-
tation of computer networks. Finally, it identifies the key metrics
that are used to evaluate the performance of computer networks.
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1.1 Applications
Most people know the Internet through its applications: the World Wide Web, email,
streaming audio and video, chat rooms, and music (file) sharing. The Web, for example,
presents an intuitively simple interface. Users view pages full of textual and graphical
objects, click on objects that they want to learn more about, and a corresponding new
page appears. Most people are also aware that just under the covers, each selectable object
on a page is bound to an identifier for the next page to be viewed. This identifier, called a
Uniform Resource Locator (URL), is used to provide a way of identifying all the possible
pages that can be viewed from your web browser. For example,

http://www.cs.princeton.edu/~llp/index.html

is the URL for a page providing information about one of this book’s authors: the string
http indicates that the HyperText Transfer Protocol (HTTP) should be used to down-
load the page, www.cs.princeton.edu is the name of the machine that serves the
page, and

/~llp/index.html

uniquely identifies Larry’s home page at this site.
What most Web users are not aware of, however, is that by clicking on just one such

URL, as many as 17 messages may be exchanged over the Internet, and this assumes
the page itself is small enough to fit in a single message. This number includes up to
six messages to translate the server name (www.cs.princeton.edu) into its Internet
address (128.112.136.35), three messages to set up a Transmission Control Protocol
(TCP) connection between your browser and this server, four messages for your browser
to send the HTTP “get” request and the server to respond with the requested page (and
for each side to acknowledge receipt of that message), and four messages to tear down the
TCP connection. Of course, this does not include the millions of messages exchanged
by Internet nodes throughout the day, just to let each other know that they exist and
are ready to serve web pages, translate names to addresses, and forward messages toward
their ultimate destination.

Another widespread application of the Internet is the delivery of “streaming” audio
and video. While an entire video file could first be fetched from a remote machine and
then played on the local machine, similar to the process of downloading and displaying
a web page, this would entail waiting for the last second of the video file to be delivered
before starting to look at it. Streaming video implies that the sender and the receiver
are, respectively, the source and the sink for the video stream. That is, the source gener-
ates a video stream (perhaps using a video capture card), sends it across the Internet in
messages, and the sink displays the stream as it arrives.
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There are a variety of different classes of video applications. One class of video ap-
plication is video-on-demand, which reads a preexisting movie from disk and transmits
it over the network. Another kind of application is videoconferencing, which is in some
ways the more challenging (and, for networking people, interesting) case because it has
very tight timing constraints. Just as when using the telephone, the interactions among
the participants must be timely. When a person at one end gestures, then that action
must be displayed at the other end as quickly as possible. Too much delay makes the
system unusable. Contrast this with video-on-demand where, if it takes several seconds
from the time the user starts the video until the first image is displayed, the service is still
deemed satisfactory. Also, interactive video usually implies that video is flowing in both
directions, while a video-on-demand application is most likely sending video in only one
direction.

One pioneering example of a videoconferencing tool, developed in the early and
mid-1990s, is vic. Figure 1.1 shows the control panel for a vic session. vic is actually

Figure 1.1 The vic video application. This shot is from a 1995 release of the tool.
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one of a suite of conferencing tools designed at Lawrence Berkeley Laboratory and UC
Berkeley. The others include a whiteboard application (wb) that allows users to send
sketches and slides to each other, a visual audio tool called vat, and a session directory
(sdr) that is used to create and advertise videoconferences. All these tools run on Unix—
hence their lowercase names—and are freely available on the Internet. Many similar tools
are available for other operating systems. It is interesting to note that while video over the
Internet is still considered to be in its relative infancy at the time of this writing (2006),
that the tools to support video over IP have existed for well over a decade.

Although they are just two examples, downloading pages from the Web and partic-
ipating in a videoconference demonstrate the diversity of applications that can be built
on top of the Internet, and hint at the complexity of the Internet’s design. Starting from
the beginning, and addressing one problem at time, the rest of this book explains how
to build a network that supports such a wide range of applications. Chapter 9 concludes
the book by revisiting these two specific applications, as well as several others that have
become popular on today’s Internet.

1.2 Requirements
We have just established an ambitious goal for ourselves: to understand how to build a
computer network from the ground up. Our approach to accomplishing this goal will
be to start from first principles, and then ask the kinds of questions we would naturally
ask if building an actual network. At each step, we will use today’s protocols to illustrate
various design choices available to us, but we will not accept these existing artifacts as
gospel. Instead, we will be asking (and answering) the question of why networks are
designed the way they are. While it is tempting to settle for just understanding the way
it’s done today, it is important to recognize the underlying concepts because networks are
constantly changing as the technology evolves and new applications are invented. It is
our experience that once you understand the fundamental ideas, any new protocol that
you are confronted with will be relatively easy to digest.

The first step is to identify the set of constraints and requirements that influence
network design. Before getting started, however, it is important to understand that the
expectations you have of a network depend on your perspective:

■ An application programmer would list the services that his application needs, for
example, a guarantee that each message the application sends will be delivered
without error within a certain amount of time.

■ A network designer would list the properties of a cost-effective design, for exam-
ple, that network resources are efficiently utilized and fairly allocated to different
users.
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■ A network provider would list the characteristics of a system that is easy to ad-
minister and manage, for example, in which faults can be easily isolated and
where it is easy to account for usage.

This section attempts to distill these different perspectives into a high-level intro-
duction to the major considerations that drive network design, and in doing so, identifies
the challenges addressed throughout the rest of this book.

1.2.1 Connectivity
Starting with the obvious, a network must provide connectivity among a set of comput-
ers. Sometimes it is enough to build a limited network that connects only a few select
machines. In fact, for reasons of privacy and security, many private (corporate) networks
have the explicit goal of limiting the set of machines that are connected. In contrast,
other networks (of which the Internet is the prime example) are designed to grow in a
way that allows them the potential to connect all the computers in the world. A system
that is designed to support growth to an arbitrarily large size is said to scale. Using the
Internet as a model, this book addresses the challenge of scalability.

Links, Nodes, and Clouds

Network connectivity occurs at many different levels. At the lowest level, a network can
consist of two or more computers directly connected by some physical medium, such as
a coaxial cable or an optical fiber. We call such a physical medium a link, and we often
refer to the computers it connects as nodes. (Sometimes a node is a more specialized piece
of hardware rather than a computer, but we overlook that distinction for the purposes
of this discussion.) As illustrated in Figure 1.2, physical links are sometimes limited to a
pair of nodes (such a link is said to be point-to-point), while in other cases, more than two
nodes may share a single physical link (such a link is said to be multiple-access). Whether

Figure 1.2 Direct links: (a) point-to-point; (b) multiple-access.
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a given link supports point-to-point or multiple-access connectivity depends on how the
node is attached to the link. It is also the case that multiple-access links are often limited
in size, in terms of both the geographical distance they can cover and the number of
nodes they can connect.

If computer networks were limited to situations in which all nodes are directly
connected to each other over a common physical medium, then networks would either
be very limited in the number of computers they could connect, or the number of wires
coming out of the back of each node would quickly become both unmanageable and
very expensive. Fortunately, connectivity between two nodes does not necessarily imply a
direct physical connection between them—indirect connectivity may be achieved among
a set of cooperating nodes. Consider the following two examples of how a collection of
computers can be indirectly connected.

Figure 1.3 shows a set of nodes, each of which is attached to one or more point-
to-point links. Those nodes that are attached to at least two links run software that
forwards data received on one link out on another. If organized in a systematic way,
these forwarding nodes form a switched network. There are numerous types of switched
networks, of which the two most common are circuit-switched and packet-switched. The
former is most notably employed by the telephone system, while the latter is used for the
overwhelming majority of computer networks and will be the focus of this book. The
important feature of packet-switched networks is that the nodes in such a network send

Figure 1.3 Switched network.
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discrete blocks of data to each other. Think of these blocks of data as corresponding to
some piece of application data such as a file, a piece of email, or an image. We call each
block of data either a packet or a message, and for now we use these terms interchangeably;
we discuss the reason they are not always the same in Section 1.2.2.

Packet-switched networks typically use a strategy called store-and-forward. As the
name suggests, each node in a store-and-forward network first receives a complete packet
over some link, stores the packet in its internal memory, and then forwards the com-
plete packet to the next node. In contrast, a circuit-switched network first establishes a
dedicated circuit across a sequence of links and then allows the source node to send a
stream of bits across this circuit to a destination node. The major reason for using packet
switching rather than circuit switching in a computer network is efficiency, discussed in
the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that imple-
ment the network (they are commonly called switches, and their primary function is to
store and forward packets) and the nodes on the outside of the cloud that use the network
(they are commonly called hosts, and they support users and run application programs).
Also note that the cloud in Figure 1.3 is one of the most important icons of computer
networking. In general, we use a cloud to denote any type of network, whether it is a
single point-to-point link, a multiple-access link, or a switched network. Thus, when-
ever you see a cloud used in a figure, you can think of it as a placeholder for any of the
networking technologies covered in this book.

A second way in which a set of computers can be indirectly connected is shown in
Figure 1.4. In this situation, a set of independent networks (clouds) are interconnected
to form an internetwork, or internet for short. We adopt the Internet’s convention of
referring to a generic internetwork of networks as a lowercase i internet, and the currently
operational TCP/IP Internet as the capital I Internet. A node that is connected to two or
more networks is commonly called a router or gateway, and it plays much the same role
as a switch—it forwards messages from one network to another. Note that an internet
can itself be viewed as another kind of network, which means that an internet can be
built from an interconnection of internets. Thus, we can recursively build arbitrarily
large networks by interconnecting clouds to form larger clouds.

Just because a set of hosts are directly or indirectly connected to each other does not
mean that we have succeeded in providing host-to-host connectivity. The final require-
ment is that each node must be able to state which of the other nodes on the network
it wants to communicate with. This is done by assigning an address to each node. An
address is a byte string that identifies a node; that is, the network can use a node’s ad-
dress to distinguish it from the other nodes connected to the network. When a source
node wants the network to deliver a message to a certain destination node, it specifies
the address of the destination node. If the sending and receiving nodes are not directly



10 1 Foundation

Figure 1.4 Interconnection of networks.

connected, then the switches and routers of the network use this address to decide how
to forward the message toward the destination. The process of determining systemati-
cally how to forward messages toward the destination node based on its address is called
routing.

This brief introduction to addressing and routing has presumed that the source
node wants to send a message to a single destination node (unicast). While this is the
most common scenario, it is also possible that the source node might want to broadcast a
message to all the nodes on the network. Or a source node might want to send a message
to some subset of the other nodes, but not all of them, a situation called multicast.
Thus, in addition to node-specific addresses, another requirement of a network is that it
supports multicast and broadcast addresses.▲

The main idea to take away from this discussion is that we can define a network
recursively as consisting of two or more nodes connected by a physical link, or as two
or more networks connected by a node. In other words, a network can be constructed
from a nesting of networks, where at the bottom level, the network is implemented by
some physical medium. One of the key challenges in providing network connectivity is
to define an address for each node that is reachable on the network (including support
for broadcast and multicast connectivity), and to be able to use this address to route
messages toward the appropriate destination node(s).
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1.2.2 Cost-Effective Resource Sharing
As stated above, this book focuses on packet-switched networks. This section explains the
key requirement of computer networks—efficiency—that leads us to packet switching as
the strategy of choice.

Given a collection of nodes indirectly connected by a nesting of networks, it is
possible for any pair of hosts to send messages to each other across a sequence of links
and nodes. Of course, we want to do more than support just one pair of communicating
hosts—we want to provide all pairs of hosts with the ability to exchange messages. The
question, then, is how do all the hosts that want to communicate share the network,
especially if they want to use it at the same time? And, as if that problem isn’t hard
enough, how do several hosts share the same link when they all want to use it at the same
time?

To understand how hosts share a network, we need to introduce a fundamental
concept, multiplexing, which means that a system resource is shared among multiple
users. At an intuitive level, multiplexing can be explained by analogy to a timesharing
computer system, where a single physical CPU is shared (multiplexed) among multiple
jobs, each of which believes it has its own private processor. Similarly, data being sent by
multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5,
where the three hosts on the left side of the network (senders S1–S3) are sending data to
the three hosts on the right (receivers R1–R3) by sharing a switched network that con-
tains only one physical link. (For simplicity, assume that host S1 is sending data to host
R1, and so on.) In this situation, three flows of data—corresponding to the three pairs
of hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed
back into separate flows by switch 2. Note that we are being intentionally vague about

Figure 1.5 Multiplexing multiple logical flows over a single physical link.
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exactly what a “flow of data” corresponds to. For the purposes of this discussion, assume
that each host on the left has a large supply of data that it wants to send to its counterpart
on the right.

There are several different methods for multiplexing multiple flows onto one phys-
ical link. One common method is synchronous time-division multiplexing (STDM). The
idea of STDM is to divide time into equal-sized quanta and, in a round-robin fashion,
give each flow a chance to send its data over the physical link. In other words, during
time quantum 1, data from S1 to R1 is transmitted; during time quantum 2, data from
S2 to R2 is transmitted; in quantum 3, S3 sends data to R3. At this point, the first flow
(S1 to R1) gets to go again, and the process repeats. Another method is frequency-division
multiplexing (FDM). The idea of FDM is to transmit each flow over the physical link at
a different frequency, much the same way that the signals for different TV stations are
transmitted at a different frequency on a physical cable TV link.

Although simple to understand, both STDM and FDM are limited in two ways.
First, if one of the flows (host pairs) does not have any data to send, its share of the phys-
ical link—that is, its time quantum or its frequency—remains idle, even if one of the
other flows has data to transmit. For example, S3 had to wait its turn behind S1 and S2
in the previous paragraph, even if S1 and S2 had nothing to send. For computer commu-
nication, the amount of time that a link is idle can be very large—for example, consider
the amount of time you spend reading a web page (leaving the link idle) compared to
the time you spend fetching the page. Second, both STDM and FDM are limited to
situations in which the maximum number of flows is fixed and known ahead of time. It
is not practical to resize the quantum or to add additional quanta in the case of STDM
or to add new frequencies in the case of FDM.

The form of multiplexing that we make most use of in this book is called statistical
multiplexing. Although the name is not all that helpful for understanding the concept,
statistical multiplexing is really quite simple, with two key ideas. First, it is like STDM
in that the physical link is shared over time—first data from one flow is transmitted
over the physical link, then data from another flow is transmitted, and so on. Unlike
STDM, however, data is transmitted from each flow on demand rather than during a
predetermined time slot. Thus, if only one flow has data to send, it gets to transmit that
data without waiting for its quantum to come around and thus without having to watch
the quanta assigned to the other flows go by unused. It is this avoidance of idle time that
gives packet switching its efficiency.

As defined so far, however, statistical multiplexing has no mechanism to ensure that
all the flows eventually get their turn to transmit over the physical link. That is, once a
flow begins sending data, we need some way to limit the transmission, so that the other
flows can have a turn. To account for this need, statistical multiplexing defines an upper
bound on the size of the block of data that each flow is permitted to transmit at a given
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time. This limited-size block of data is typically referred to as a packet, to distinguish it
from the arbitrarily large message that an application program might want to transmit.
Because a packet-switched network limits the maximum size of packets, a host may not
be able to send a complete message in one packet. The source may need to fragment
the message into several packets, with the receiver reassembling the packets back into the
original message.

In other words, each flow sends a sequence of packets over the physical link, with
a decision made on a packet-by-packet basis as to which flow’s packet to send next.
Notice that if only one flow has data to send, then it can send a sequence of packets
back-to-back. However, should more than one of the flows have data to send, then their
packets are interleaved on the link. Figure 1.6 depicts a switch multiplexing packets from
multiple sources onto a single shared link.

The decision as to which packet to send next on a shared link can be made in a
number of different ways. For example, in a network consisting of switches intercon-
nected by links such as the one in Figure 1.5, the decision would be made by the switch
that transmits packets onto the shared link. (As we will see later, not all packet-switched
networks actually involve switches, and they may use other mechanisms to determine
whose packet goes onto the link next.) Each switch in a packet-switched network makes
this decision independently, on a packet-by-packet basis. One of the issues that faces a
network designer is how to make this decision in a fair manner. For example, a switch
could be designed to service packets on a first-in-first-out (FIFO) basis. Another ap-
proach would be to transmit the packets from each of the different flows that are cur-
rently sending data through the switch in a round-robin manner. This might be done to

Figure 1.6 A switch multiplexing packets from multiple sources onto one shared link.
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ensure that certain flows receive a particular share of the link’s bandwidth, or that they
never have their packets delayed in the switch for more than a certain length of time.
A network that attempts to allocate bandwidth to particular flows is sometimes said to
support quality of service (QoS), a topic that we return to in Chapter 6.

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming
packet streams onto one outgoing link, it is possible that the switch will receive packets
faster than the shared link can accommodate. In this case, the switch is forced to buffer
these packets in its memory. Should a switch receive packets faster than it can send them
for an extended period of time, then the switch will eventually run out of buffer space,
and some packets will have to be dropped. When a switch is operating in this state, it is
said to be congested.▲

The bottom line is that statistical multiplexing defines a cost-effective way for mul-
tiple users (e.g., host-to-host flows of data) to share network resources (links and nodes)
in a fine-grained manner. It defines the packet as the granularity with which the links of
the network are allocated to different flows, with each switch able to schedule the use of
the physical links it is connected to on a per-packet basis. Fairly allocating link capacity
to different flows and dealing with congestion when it occurs are the key challenges of
statistical multiplexing.

1.2.3 Support for Common Services

While the previous section outlined the
challenges involved in providing cost-
effective connectivity among a group of
hosts, it is overly simplistic to view a com-
puter network as simply delivering pack-
ets among a collection of computers. It
is more accurate to think of a network
as providing the means for a set of appli-
cation processes that are distributed over
those computers to communicate. In other
words, the next requirement of a computer
network is that the application programs
running on the hosts connected to the net-
work must be able to communicate in a
meaningful way.

When two application programs
need to communicate with each other,

SANs, LANs, MANs, and WANs

One way to characterize networks
is according to their size. Two well-
known examples are local area net-
works (LANs) and wide area networks
(WANs); the former typically extend
less than 1 km, while the latter can be
worldwide. Other networks are clas-
sified as metropolitan area networks
(MANs), which usually span tens of
kilometers. The reason such classifi-
cations are interesting is that the size
of a network often has implications
for the underlying technology that can
be used, with a key factor being the
amount of time it takes for data to
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propagate from one end of the net-
work to the other; we discuss this is-
sue more in later chapters.

An interesting historical note
is that the term “wide area network”
was not applied to the first WANs
because there was no other sort of
network to differentiate them from.
When computers were incredibly rare
and expensive, there was no point in
thinking about how to connect all
the computers in the local area—there
was only one computer in that area.
Only as computers began to prolifer-
ate did LANs become necessary, and
the term “WAN” was then introduced
to describe the larger networks that
interconnected geographically distant
computers.

Another kind of network that
we need to be aware of is a storage
area network (SAN). SANs are usually
confined to a single room and con-
nect the various components of a large
computing system, such as disk arrays
and servers. For example, High Per-
formance Parallel Interface (HiPPI)
and Fiber Channel are two common
SAN technologies used to connect
massively parallel processors to scal-
able storage servers and data vaults.
Although this book does not describe
such networks in detail, they are
worth knowing about because they
are often at the leading edge in terms
of performance, and because it is in-
creasingly common to connect such
networks into LANs and WANs.

there are a lot of complicated things that
need to happen beyond simply sending a
message from one host to another. One
option would be for application design-
ers to build all that complicated func-
tionality into each application program.
However, since many applications need
common services, it is much more logical
to implement those common services once
and then to let the application designer
build the application using those services.
The challenge for a network designer is to
identify the right set of common services.
The goal is to hide the complexity of
the network from the application with-
out overly constraining the application
designer.

Intuitively, we view the network
as providing logical channels over which
application-level processes can communi-
cate with each other; each channel pro-
vides the set of services required by that
application. In other words, just as we use
a cloud to abstractly represent connectivity
among a set of computers, we now think
of a channel as connecting one process
to another. Figure 1.7 shows a pair of
application-level processes communicating
over a logical channel that is, in turn, im-
plemented on top of a cloud that connects
a set of hosts. We can think of the channel
as being like a pipe connecting two appli-
cations, so that a sending application can
put data in one end and expect that data
to be delivered by the network to the ap-
plication at the other end of the pipe.

The challenge is to recognize what
functionality the channels should pro-
vide to application programs. For example,
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Figure 1.7 Processes communicating over an abstract channel.

does the application require a guarantee that messages sent over the channel are delivered,
or is it acceptable if some messages fail to arrive? Is it necessary that messages arrive at the
recipient process in the same order in which they are sent, or does the recipient not care
about the order in which messages arrive? Does the network need to ensure that no third
parties are able to eavesdrop on the channel, or is privacy not a concern? In general, a
network provides a variety of different types of channels, with each application selecting
the type that best meets its needs. The rest of this section illustrates the thinking involved
in defining useful channels.

Identifying Common Communication Patterns

Designing abstract channels involves first understanding the communication needs of a
representative collection of applications, then extracting their common communication
requirements, and finally incorporating the functionality that meets these requirements
in the network.

One of the earliest applications supported on any network is a file access program
like FTP (File Transfer Protocol) or NFS (Network File System). Although many details
vary—for example, whether whole files are transferred across the network or only single
blocks of the file are read/written at a given time—the communication component of
remote file access is characterized by a pair of processes, one that requests that a file be
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read or written and a second process that honors this request. The process that requests
access to the file is called the client, and the process that supports access to the file is
called the server.

Reading a file involves the client sending a small request message to a server and the
server responding with a large message that contains the data in the file. Writing works
in the opposite way—the client sends a large message containing the data to be written
to the server, and the server responds with a small message confirming that the write to
disk has taken place. A digital library, as exemplified by the World Wide Web, is another
application that behaves in a similar way: a client process makes a request, and a server
process responds by returning the requested data.

Using file access, a digital library, and the two video applications described in the
Preface (videoconferencing and video-on-demand) as a representative sample, we might
decide to provide the following two types of channels: request/reply channels and message
stream channels. The request/reply channel would be used by the file transfer and digital
library applications. It would guarantee that every message sent by one side is received
by the other side and that only one copy of each message is delivered. The request/reply
channel might also protect the privacy and integrity of the data that flows over it, so that
unauthorized parties cannot read or modify the data being exchanged between the client
and server processes.

The message stream channel could be used by both the video-on-demand and
videoconferencing applications, provided it is parameterized to support both one-way
and two-way traffic and to support different delay properties. The message stream chan-
nel might not need to guarantee that all messages are delivered, since a video application
can operate adequately even if some video frames are not received. It would, however,
need to ensure that those messages that are delivered arrive in the same order in which
they were sent, to avoid displaying frames out of sequence. Like the request/reply chan-
nel, the message stream channel might want to ensure the privacy and integrity of the
video data. Finally, the message stream channel might need to support multicast, so that
multiple parties can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest number of
abstract channel types that can serve the largest number of applications, there is a danger
in trying to get away with too few channel abstractions. Simply stated, if you have a
hammer, then everything looks like a nail. For example, if all you have are message stream
and request/reply channels, then it is tempting to use them for the next application
that comes along, even if neither type provides exactly the semantics needed by the
application. Thus, network designers will probably be inventing new types of channels—
and adding options to existing channels—for as long as application programmers are
inventing new applications.
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Also note that independent of exactly what functionality a given channel provides,
there is the question of where that functionality is implemented. In many cases, it is eas-
iest to view the host-to-host connectivity of the underlying network as simply providing
a bit pipe, with any high-level communication semantics provided at the end hosts. The
advantage of this approach is it keeps the switches in the middle of the network as simple
as possible—they simply forward packets—but it requires the end hosts to take on much
of the burden of supporting semantically rich process-to-process channels. The alterna-
tive is to push additional functionality onto the switches, thereby allowing the end hosts
to be “dumb” devices (e.g., telephone handsets). We will see this question of how various
network services are partitioned between the packet switches and the end hosts (devices)
as a recurring issue in network design.

Reliability

As suggested by the examples just considered, reliable message delivery is one of the
most important functions that a network can provide. It is difficult to determine how
to provide this reliability, however, without first understanding how networks can fail.
The first thing to recognize is that computer networks do not exist in a perfect world.
Machines crash and later are rebooted, fibers are cut, electrical interference corrupts bits
in the data being transmitted, switches run out of buffer space, and if these sorts of
physical problems aren’t enough to worry about, the software that manages the hardware
sometimes forwards packets into oblivion. Thus, a major requirement of a network is
to recover from certain kinds of failures, so that application programs don’t have to deal
with them, or even be aware of them.

There are three general classes of failure that network designers have to worry
about. First, as a packet is transmitted over a physical link, bit errors may be introduced
into the data; that is, a 1 is turned into a 0 or vice versa. Sometimes single bits are
corrupted, but more often than not, a burst error occurs—several consecutive bits are
corrupted. Bit errors typically occur because outside forces, such as lightning strikes,
power surges, and microwave ovens, interfere with the transmission of data. The good
news is that such bit errors are fairly rare, affecting on average only one out of every 106

to 107 bits on a typical copper-based cable and one out of every 1012 to 1014 bits on a
typical optical fiber. As we will see, there are techniques that detect these bit errors with
high probability. Once detected, it is sometimes possible to correct for such errors—if
we know which bit or bits are corrupted, we can simply flip them—while in other cases
the damage is so bad that it is necessary to discard the entire packet. In such a case, the
sender may be expected to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level; that is, a
complete packet is lost by the network. One reason this can happen is that the packet
contains an uncorrectable bit error and therefore has to be discarded. A more likely
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reason, however, is that one of the nodes that has to handle the packet—for example,
a switch that is forwarding it from one link to another—is so overloaded that it has
no place to store the packet, and therefore is forced to drop it. This is the problem of
congestion mentioned in Section 1.2.2. Less commonly, the software running on one
of the nodes that handles the packet makes a mistake. For example, it might incorrectly
forward a packet out on the wrong link, so that the packet never finds its way to the
ultimate destination. As we will see, one of the main difficulties in dealing with lost
packets is distinguishing between a packet that is indeed lost and one that is merely late
in arriving at the destination.

The third class of failure is at the node and link level; that is, a physical link is cut,
or the computer it is connected to crashes. This can be caused by software that crashes,
a power failure, or a reckless backhoe operator. Failures due to misconfiguration of a
network device are also common. While any of these failures can eventually be corrected,
they can have a dramatic effect on the network for an extended period of time. However,
they need not totally disable the network. In a packet-switched network, for example,
it is sometimes possible to route around a failed node or link. One of the difficulties in
dealing with this third class of failure is distinguishing between a failed computer and
one that is merely slow, or in the case of a link, between one that has been cut and one
that is very flaky and therefore introducing a high number of bit errors.▲

The key idea to take away from this discussion is that defining useful channels
involves both understanding the applications’ requirements and recognizing the limita-
tions of the underlying technology. The challenge is to fill in the gap between what the
application expects and what the underlying technology can provide. This is sometimes
called the semantic gap.

1.3 Network Architecture
In case you hadn’t noticed, the previous section established a pretty substantial set of
requirements for network design—a computer network must provide general, cost-
effective, fair, and robust connectivity among a large number of computers. As if this
weren’t enough, networks do not remain fixed at any single point in time, but must
evolve to accommodate changes in both the underlying technologies upon which they
are based as well as changes in the demands placed on them by application programs.
Designing a network to meet these requirements is no small task.

To help deal with this complexity, network designers have developed general
blueprints—usually called network architectures—that guide the design and implemen-
tation of networks. This section defines more carefully what we mean by a network ar-
chitecture by introducing the central ideas that are common to all network architectures.
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It also introduces two of the most widely referenced architectures—the OSI architecture
and the Internet architecture.

1.3.1 Layering and Protocols
When a system gets complex, the system designer introduces another level of abstraction.
The idea of an abstraction is to define a unifying model that can capture some important
aspect of the system, encapsulate this model in an object that provides an interface that
can be manipulated by other components of the system, and hide the details of how
the object is implemented from the users of the object. The challenge is to identify
abstractions that simultaneously provide a service that proves useful in a large number
of situations and that can be efficiently implemented in the underlying system. This is
exactly what we were doing when we introduced the idea of a channel in the previous
section: We were providing an abstraction for applications that hides the complexity of
the network from application writers.

Abstractions naturally lead to layering, especially in network systems. The general
idea is that you start with the services offered by the underlying hardware, and then
add a sequence of layers, each providing a higher (more abstract) level of service. The
services provided at the high layers are implemented in terms of the services provided by
the low layers. Drawing on the discussion of requirements given in the previous section,
for example, we might imagine a simple network as having two layers of abstraction
sandwiched between the application program and the underlying hardware, as illustrated
in Figure 1.8. The layer immediately above the hardware in this case might provide host-
to-host connectivity, abstracting away the fact that there may be an arbitrarily complex
network topology between any two hosts. The next layer up builds on the available host-
to-host communication service and provides support for process-to-process channels,
abstracting away the fact that the network occasionally loses messages, for example.

Layering provides two nice features. First, it decomposes the problem of building
a network into more manageable components. Rather than implementing a monolithic
piece of software that does everything you will ever want, you can implement several

Figure 1.8 Example of a layered network system.
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Figure 1.9 Layered system with alternative abstractions available at a given layer.

layers, each of which solves one part of the problem. Second, it provides a more modular
design. If you decide that you want to add some new service, you may only need to
modify the functionality at one layer, reusing the functions provided at all the other
layers.

Thinking of a system as a linear sequence of layers is an oversimplification, however.
Many times there are multiple abstractions provided at any given level of the system,
each providing a different service to the higher layers but building on the same low-level
abstractions. To see this, consider the two types of channels discussed in Section 1.2.3:
One provides a request/reply service and one supports a message stream service. These
two channels might be alternative offerings at some level of a multilevel networking
system, as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready to discuss the
architecture of a network more precisely. For starters, the abstract objects that make up
the layers of a network system are called protocols. That is, a protocol provides a com-
munication service that higher-level objects (such as application processes, or perhaps
higher-level protocols) use to exchange messages. For example, we could imagine a net-
work that supports a request/reply protocol and a message stream protocol, correspond-
ing to the request/reply and message stream channels discussed above.

Each protocol defines two different interfaces. First, it defines a service interface to
the other objects on the same computer that want to use its communication services. This
service interface defines the operations that local objects can perform on the protocol.
For example, a request/reply protocol would support operations by which an application
can send and receive messages. An implementation of the HTTP protocol could support
an operation to fetch a page of hypertext from a remote server. An application such as
a web browser would invoke such an operation whenever the browser needs to obtain a
new page, for example, when the user clicks on a link in the currently displayed page.

Second, a protocol defines a peer interface to its counterpart (peer) on another
machine. This second interface defines the form and meaning of messages exchanged
between protocol peers to implement the communication service. This would determine
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Figure 1.10 Service and peer interfaces.

the way in which a request/reply protocol on one machine communicates with its peer on
another machine. In the case of HTTP, for example, the protocol specification defines
in detail how a “GET” command is formatted, what arguments can be used with the
command, and how a web server should respond when it receives such a command. (We
will look more closely at this particular protocol in Section 9.1.2.)

To summarize, a protocol defines a communication service that it exports locally
(the service interface), along with a set of rules governing the messages that the protocol
exchanges with its peer(s) to implement this service (the peer interface). This situation is
illustrated in Figure 1.10.

Except at the hardware level where peers directly communicate with each other
over a link, peer-to-peer communication is indirect—each protocol communicates with
its peer by passing messages to some lower-level protocol, which in turn delivers the
message to its peer. In addition, there are potentially multiple protocols at any given
level, each providing a different communication service. We therefore represent the suite
of protocols that make up a network system with a protocol graph. The nodes of the graph
correspond to protocols, and the edges represent a depends on relation. For example,
Figure 1.11 illustrates a protocol graph for the hypothetical layered system we have been
discussing—the protocols Request/Reply Protocol (RRP) and Message Stream Protocol
(MSP) implement two different types of process-to-process channels, and both depend
on Host-to-Host Protocol (HHP), which provides a host-to-host connectivity service.

In this example, suppose that the file access program on host 1 wants to send a
message to its peer on host 2 using the communication service offered by protocol RRP.
In this case, the file application asks RRP to send the message on its behalf. To commu-
nicate with its peer, RRP then invokes the services of HHP, which in turn transmits the
message to its peer on the other machine. Once the message has arrived at protocol HHP
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Figure 1.11 Example of a protocol graph.

on host 2, HHP passes the message up to RRP, which in turn delivers the message to the
file application. In this particular case, the application is said to employ the services of
the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it refers to
the abstract interfaces—that is, the operations defined by the service interface and the
form and meaning of messages exchanged between peers—and sometimes it refers to
the module that actually implements these two interfaces. To distinguish between the
interfaces and the module that implements these interfaces, we generally refer to the for-
mer as a protocol specification. Specifications are generally expressed using a combination
of prose, pseudocode, state transition diagrams, pictures of packet formats, and other
abstract notations. It should be the case that a given protocol can be implemented in
different ways by different programmers, as long as each adheres to the specification.
The challenge is ensuring that two different implementations of the same specification
can successfully exchange messages. Two or more protocol modules that do accurately
implement a protocol specification are said to interoperate with each other.



24 1 Foundation

We can imagine many different protocols and protocol graphs that satisfy the com-
munication requirements of a collection of applications. Fortunately, there exist stan-
dardization bodies, such as the International Standards Organization (ISO) and the In-
ternet Engineering Task Force (IETF), that establish policies for a particular protocol
graph. We call the set of rules governing the form and content of a protocol graph a
network architecture. Although beyond the scope of this book, standardization bodies
such as the ISO and the IETF have established well-defined procedures for introducing,
validating, and finally approving protocols in their respective architectures. We briefly
describe the architectures defined by the ISO and the IETF shortly, but first there are
two additional things we need to explain about the mechanics of a protocol graph.

Encapsulation

Consider what happens in Figure 1.11 when one of the application programs sends a
message to its peer by passing the message to protocol RRP. From RRP’s perspective, the
message it is given by the application is an uninterpreted string of bytes. RRP does not
care that these bytes represent an array of integers, an email message, a digital image, or
whatever; it is simply charged with sending them to its peer. However, RRP must com-
municate control information to its peer, instructing it how to handle the message when
it is received. RRP does this by attaching a header to the message. Generally speaking,
a header is a small data structure—from a few bytes to a few dozen bytes—that is used
among peers to communicate with each other. As the name suggests, headers are usu-
ally attached to the front of a message. In some cases, however, this peer-to-peer control
information is sent at the end of the message, in which case it is called a trailer. The
exact format for the header attached by RRP is defined by its protocol specification. The
rest of the message—that is, the data being transmitted on behalf of the application—is
called the message’s body or payload. We say that the application’s data is encapsulated in
the new message created by protocol RRP.

This process of encapsulation is then repeated at each level of the protocol graph;
for example, HHP encapsulates RRP’s message by attaching a header of its own. If we
now assume that HHP sends the message to its peer over some network, then when
the message arrives at the destination host, it is processed in the opposite order: HHP
first interprets the HHP header at the front of the message (i.e., takes whatever action
is appropriate given the contents of the header), and passes the body of the message
(but not the HHP header) up to RRP, which takes whatever action is indicated by the
RRP header that its peer attached, and passes the body of the message (but not the
RRP header) up to the application program. The message passed up from RRP to the
application on host 2 is exactly the same message as the application passed down to RRP
on host 1; the application does not see any of the headers that have been attached to it to
implement the lower-level communication services. This whole process is illustrated in
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Figure 1.12 High-level messages are encapsulated inside of low-level messages.

Figure 1.12. Note that in this example, nodes in the network (e.g., switches and routers)
may inspect the HHP header at the front of the message.

Note that when we say a low-level protocol does not interpret the message it is
given by some high-level protocol, we mean that it does not know how to extract any
meaning from the data contained in the message. It is sometimes the case, however, that
the low-level protocol applies some simple transformation to the data it is given, such as
to compress or encrypt it. In this case, the protocol is transforming the entire body of
the message, including both the original application’s data and all the headers attached
to that data by higher-level protocols.

Multiplexing and Demultiplexing

Recall from Section 1.2.2 that a fundamental idea of packet switching is to multiplex
multiple flows of data over a single physical link. This same idea applies up and down
the protocol graph, not just to switching nodes. In Figure 1.11, for example, we can
think of RRP as implementing a logical communication channel, with messages from
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two different applications multiplexed over this channel at the source host and then
demultiplexed back to the appropriate application at the destination host.

Practically speaking, all this means is that the header that RRP attaches to its mes-
sages contains an identifier that records the application to which the message belongs.
We call this identifier RRP’s demultiplexing key, or demux key for short. At the source
host, RRP includes the appropriate demux key in its header. When the message is deliv-
ered to RRP on the destination host, it strips its header, examines the demux key, and
demultiplexes the message to the correct application.

RRP is not unique in its support for multiplexing; nearly every protocol imple-
ments this mechanism. For example, HHP has its own demux key to determine which
messages to pass up to RRP and which to pass up to MSP. However, there is no uniform
agreement among protocols—even those within a single network architecture—on ex-
actly what constitutes a demux key. Some protocols use an 8-bit field (meaning they can
support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some
protocols have a single demultiplexing field in their header, while others have a pair of
demultiplexing fields. In the former case, the same demux key is used on both sides of
the communication, while in the latter case, each side uses a different key to identify the
high-level protocol (or application program) to which the message is to be delivered.

1.3.2 OSI Architecture
The ISO was one of the first organizations to formally define a common way to connect
computers. Their architecture, called the Open Systems Interconnection (OSI) architecture
and illustrated in Figure 1.13, defines a partitioning of network functionality into seven
layers, where one or more protocols implement the functionality assigned to a given
layer. In this sense, the schematic given in Figure 1.13 is not a protocol graph, per se,
but rather a reference model for a protocol graph. The ISO, usually in conjunction with
a second standards organization known as the International Telecommunications Union
(ITU),1 publishes a series of protocol specifications based on the OSI architecture. This
series is sometimes called the “X dot” series since the protocols are given names like X.25,
X.400, X.500, and so on.

Starting at the bottom and working up, the physical layer handles the transmission
of raw bits over a communications link. The data link layer then collects a stream of bits
into a larger aggregate called a frame. Network adaptors, along with device drivers run-
ning in the node’s OS, typically implement the data link level. This means that frames,
not raw bits, are actually delivered to hosts. The network layer handles routing among
nodes within a packet-switched network. At this layer, the unit of data exchanged among
nodes is typically called a packet rather than a frame, although they are fundamentally

1A subcommittee of the ITU on telecommunications (ITU-T) replaces an earlier subcommittee of the ITU, which was
known by its French name, Comité Consultatif International de Télégraphique et Téléphonique (CCITT).
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Figure 1.13 OSI network architecture.

the same thing. The lower three layers are implemented on all network nodes, including
switches within the network and hosts connected along the exterior of the network. The
transport layer then implements what we have up to this point been calling a process-to-
process channel. Here, the unit of data exchanged is commonly called a message rather
than a packet or a frame. The transport layer and higher layers typically run only on the
end hosts and not on the intermediate switches or routers.

There is less agreement about the definition of the top three layers. Skipping ahead
to the top (seventh) layer, we find the application layer. Application layer protocols in-
clude things like the File Transfer Protocol (FTP), which defines a protocol by which
file transfer applications can interoperate. Below that, the presentation layer is concerned
with the format of data exchanged between peers, for example, whether an integer is 16,
32, or 64 bits long and whether the most significant byte is transmitted first or last, or
how a video stream is formatted. Finally, the session layer provides a name space that is
used to tie together the potentially different transport streams that are part of a single
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application. For example, it might manage an audio stream and a video stream that are
being combined in a teleconferencing application.

1.3.3 Internet Architecture
The Internet architecture, which is also sometimes called the TCP/IP architecture af-
ter its two main protocols, is depicted in Figure 1.14. An alternative representation is
given in Figure 1.15. The Internet architecture evolved out of experiences with an earlier
packet-switched network called the ARPANET. Both the Internet and the ARPANET
were funded by the Advanced Research Projects Agency (ARPA), one of the R&D fund-
ing agencies of the U.S. Department of Defense. The Internet and ARPANET were
around before the OSI architecture, and the experience gained from building them was
a major influence on the OSI reference model.

While the seven-layer OSI model can, with some imagination, be applied to the
Internet, a four-layer model is often used instead. At the lowest level are a wide variety
of network protocols, denoted NET1, NET2, and so on. In practice, these protocols are
implemented by a combination of hardware (e.g., a network adaptor) and software (e.g.,
a network device driver). For example, you might find Ethernet or Fiber Distributed

Figure 1.14 Internet protocol graph.

Figure 1.15 Alternative view of the Internet architecture. The “Network” layer shown

here is sometimes referred to as the “subnetwork” or “link” layer.
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Data Interface (FDDI) protocols at this layer. (These protocols in turn may actually in-
volve several sublayers, but the Internet architecture does not presume anything about
them.) The second layer consists of a single protocol—the Internet Protocol (IP). This
is the protocol that supports the interconnection of multiple networking technologies
into a single, logical internetwork. The third layer contains two main protocols—the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP and
UDP provide alternative logical channels to application programs: TCP provides a re-
liable byte-stream channel, and UDP provides an unreliable datagram delivery channel
(datagram may be thought of as a synonym for message). In the language of the Internet,
TCP and UDP are sometimes called end-to-end protocols, although it is equally correct
to refer to them as transport protocols.

Running above the transport layer are a range of application protocols, such as
FTP, TFTP (Trivial File Transport Protocol), Telnet (remote login), and SMTP (Sim-
ple Mail Transfer Protocol, or electronic mail), that enable the interoperation of popular
applications. To understand the difference between an application layer protocol and
an application, think of all the different World Wide Web browsers that are available
(Firefox, Safari, Internet Explorer, Lynx, etc.). There is a similarly large number of dif-
ferent implementations of web servers. The reason that you can use any one of these
application programs to access a particular site on the Web is because they all conform
to the same application layer protocol: HTTP (HyperText Transport Protocol). Confus-
ingly, the same word sometimes applies to both an application and the application layer
protocol that it uses (e.g., FTP).

The Internet architecture has three features that are worth highlighting. First, as
best illustrated by Figure 1.15, the Internet architecture does not imply strict layering.
The application is free to bypass the defined transport layers and to directly use IP or
one of the underlying networks. In fact, programmers are free to define new channel
abstractions or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will notice an
hourglass shape—wide at the top, narrow in the middle, and wide at the bottom. This
shape actually reflects the central philosophy of the architecture. That is, IP serves as
the focal point for the architecture—it defines a common method for exchanging pack-
ets among a wide collection of networks. Above IP can be arbitrarily many transport
protocols, each offering a different channel abstraction to application programs. Thus,
the issue of delivering messages from host to host is completely separated from the issue
of providing a useful process-to-process communication service. Below IP, the architec-
ture allows for arbitrarily many different network technologies, ranging from Ethernet
to wireless to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the IETF cul-
ture) is that in order for a new protocol to be officially included in the architecture, there
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needs to be both a protocol specification and at least one (and preferably two) represen-
tative implementations of the specification. The existence of working implementations
is required for standards to be adopted by the IETF. This cultural assumption of the
design community helps to ensure that the architecture’s protocols can be efficiently im-
plemented. Perhaps the value the Internet culture places on working software is best
exemplified by a quote on T-shirts commonly worn at IETF meetings:

We reject kings, presidents, and voting. We believe in rough consensus and running code.
(Dave Clark)

▲

Of these three attributes of the Internet architecture, the hourglass design philos-
ophy is important enough to bear repeating. The hourglass’s narrow waist represents
a minimal and carefully chosen set of global capabilities that allows both higher-level
applications and lower-level communication technologies to coexist, share capabilities,
and evolve rapidly. The narrow-waisted model is critical to the Internet’s ability to adapt
rapidly to new user demands and changing technologies.

1.4 Implementing Network Software
Network architectures and protocol specifications are essential things, but a good blue-
print is not enough to explain the phenomenal success of the Internet: The number of
computers connected to the Internet has roughly doubled every 12 to 18 months since
1981, and is now estimated at 350 million; the number of people that use the Internet
is estimated at 1 billion; and it is believed that the number of bits transmitted over the
Internet, which has also grown exponentially, surpassed the corresponding figure for the
voice phone system sometime in 2001.

What explains the success of the Internet? There are certainly many contributing
factors (including a good architecture), but one thing that has made the Internet such
a runaway success is the fact that so much of its functionality is provided by software
running in general-purpose computers. The significance of this is that new functionality
can be added readily with “just a small matter of programming.” As a result, new appli-
cations and services—electronic commerce, videoconferencing, and packet telephony, to
name a few—have been showing up at a phenomenal pace.

A related factor is the massive increase in computing power available in commodity
machines. Although computer networks have always been capable in principle of trans-
porting any kind of information, such as digital voice samples, digitized images, and so
on, this potential was not particularly interesting if the computers sending and receiving
that data were too slow to do anything useful with the information. Virtually all of to-
day’s computers are capable of playing back digitized voice at full speed and can display
video at a speed and resolution that is useful for some (but by no means all) applications.
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Thus, today’s networks have begun to support multimedia, and their support for it will
only improve as computing hardware becomes faster.

The point to take away from this is that knowing how to implement network soft-
ware is an essential part of understanding computer networks. With this in mind, this
section first introduces some of the issues involved in implementing an application pro-
gram on top of a network, and then goes on to identify the issues involved in implement-
ing the protocols running within the network. In many respects, network applications
and network protocols are very similar—the way an application engages the services of
the network is pretty much the same as the way a high-level protocol invokes the services
of a low-level protocol. As we will see later in the section, however, there are a couple of
important differences.

1.4.1 Application Programming Interface (Sockets)
The place to start when implementing a network application is the interface exported by
the network. Since most network protocols are implemented in software (especially those
high in the protocol stack), and nearly all computer systems implement their network
protocols as part of the operating system, when we refer to the interface “exported by
the network,” we are generally referring to the interface that the OS provides to its
networking subsystem. This interface is often called the network application programming
interface (API).

Although each operating system is free to define its own network API (and most
have), over time certain of these APIs have become widely supported; that is, they have
been ported to operating systems other than their native system. This is what has hap-
pened with the socket interface originally provided by the Berkeley distribution of Unix,
which is now supported in virtually all popular operating systems. The advantage of
industry-wide support for a single API is that applications can be easily ported from one
OS to another, and that developers can easily write applications for multiple OSs. It is
important to keep in mind, however, that application programs typically interact with
many parts of the OS other than the network; for example, they read and write files,
fork concurrent processes, and output to the graphical display. Just because two systems
support the same network API does not mean that their file system, process, or graphic
interfaces are the same. Still, understanding a widely adopted API like Unix sockets gives
us a good place to start.

Before describing the socket interface, it is important to keep two concerns separate
in your mind. Each protocol provides a certain set of services, and the API provides a
syntax by which those services can be invoked in this particular OS. The implementation
is then responsible for mapping the tangible set of operations and objects defined by the
API onto the abstract set of services defined by the protocol. If you have done a good
job of defining the interface, then it will be possible to use the syntax of the interface to
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invoke the services of many different protocols. Such generality was certainly a goal of
the socket interface, although it’s far from perfect.

The main abstraction of the socket interface, not surprisingly, is the socket. A good
way to think of a socket is as the point where a local application process attaches to the
network. The interface defines operations for creating a socket, attaching the socket to
the network, sending/receiving messages through the socket, and closing the socket. To
simplify the discussion, we will limit ourselves to showing how sockets are used with
TCP.

The first step is to create a socket, which is done with the following operation:

int socket(int domain, int type, int protocol)

The reason that this operation takes three arguments is that the socket interface was
designed to be general enough to support any underlying protocol suite. Specifi-
cally, the domain argument specifies the protocol family that is going to be used:
PF_INET denotes the Internet family; PF_UNIX denotes the Unix pipe facility; and
PF_PACKET denotes direct access to the network interface (i.e., it bypasses the TCP/IP
protocol stack). The type argument indicates the semantics of the communication.
SOCK_STREAM is used to denote a byte stream. SOCK_DGRAM is an alternative
that denotes a message-oriented service, such as that provided by UDP. The protocol
argument identifies the specific protocol that is going to be used. In our case, this ar-
gument is UNSPEC because the combination of PF_INET and SOCK_STREAM
implies TCP. Finally, the return value from socket is a handle for the newly created
socket, that is, an identifier by which we can refer to the socket in the future. It is given
as an argument to subsequent operations on this socket.

The next step depends on whether you are a client or a server. On a server machine,
the application process performs a passive open—the server says that it is prepared to
accept connections, but it does not actually establish a connection. The server does this
by invoking the following three operations:

int bind(int socket, struct sockaddr *address, int addr_len)
int listen(int socket, int backlog)
int accept(int socket, struct sockaddr *address, int *addr_len)

The bind operation, as its name suggests, binds the newly created socket to the
specified address. This is the network address of the local participant—the server. Note
that, when used with the Internet protocols, address is a data structure that includes
both the IP address of the server and a TCP port number. (As we will see in Chapter 5,
ports are used to indirectly identify processes. They are a form of demux keys as defined
in Section 1.3.1.) The port number is usually some well-known number specific to the
service being offered; for example, web servers commonly accept connections on port 80.
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The listen operation then defines how many connections can be pending on the
specified socket. Finally, the accept operation carries out the passive open. It is a
blocking operation that does not return until a remote participant has established a con-
nection, and when it does complete, it returns a new socket that corresponds to this just-
established connection, and the address argument contains the remote participant’s
address. Note that when accept returns, the original socket that was given as an argu-
ment still exists and still corresponds to the passive open; it is used in future invocations
of accept.

On the client machine, the application process performs an active open; that is, it
says who it wants to communicate with by invoking the following single operation:

int connect(int socket, struct sockaddr *address, intaddr_len)

This operation does not return until TCP has successfully established a connection, at
which time the application is free to begin sending data. In this case, address contains
the remote participant’s address. In practice, the client usually specifies only the remote
participant’s address and lets the system fill in the local information. Whereas a server
usually listens for messages on a well-known port, a client typically does not care which
port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the following
two operations to send and receive data:

int send(int socket, char *message, int msg_len, int flags)
int recv(int socket, char *buffer, int buf_len, int flags)

The first operation sends the given message over the specified socket, while the sec-
ond operation receives a message from the specified socket into the given buffer. Both
operations take a set of flags that control certain details of the operation.

1.4.2 Example Application
We now show the implementation of a simple client/server program that uses the socket
interface to send messages over a TCP connection. The program also uses other Unix
networking utilities, which we introduce as we go. Our application allows a user on one
machine to type in and send text to a user on another machine. It is a simplified version
of the Unix talk program, which is similar to the program at the core of a web chat
room.

Client

We start with the client side, which takes the name of the remote machine as an argu-
ment. It calls the Unix utility gethostbyname to translate this name into the remote



34 1 Foundation

host’s IP address. The next step is to construct the address data structure (sin) expected
by the socket interface. Notice that this data structure specifies that we’ll be using the
socket to connect to the Internet (AF_INET). In our example, we use TCP port 5432 as
the well-known server port; this happens to be a port that has not been assigned to any
other Internet service. The final step in setting up the connection is to call socket and
connect. Once the connect operation returns, the connection is established and the
client program enters its main loop, which reads text from standard input and sends it
over the socket.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_LINE 256

int

main(int argc, char * argv[])

{

FILE *fp;

struct hostent *hp;

struct sockaddr_in sin;

char *host;

char buf[MAX_LINE];

int s;

int len;

if (argc==2) {

host = argv[1];

}

else {

fprintf(stderr, "usage: simplex-talk host\n");

exit(1);

}

/* translate host name into peer’s IP address */

hp = gethostbyname(host);

if (!hp) {

fprintf(stderr, "simplex-talk: unknown host: %s\n", host);

exit(1);
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}

/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_family = AF_INET;

bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);

sin.sin_port = htons(SERVER_PORT);

/* active open */

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");

exit(1);

}

if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) {

perror("simplex-talk: connect");

close(s);

exit(1);

}

/* main loop: get and send lines of text */

while (fgets(buf, sizeof(buf), stdin)) {

buf[MAX_LINE-1] = ’\0’;

len = strlen(buf) + 1;

send(s, buf, len, 0);

}

}

Server
The server is equally simple. It first constructs the address data structure by filling in
its own port number (SERVER_PORT). By not specifying an IP address, the appli-
cation program is willing to accept connections on any of the local host’s IP addresses.
Next, the server performs the preliminary steps involved in a passive open: creates the
socket, binds it to the local address, and sets the maximum number of pending connec-
tions to be allowed. Finally, the main loop waits for a remote host to try to connect,
and when one does, receives and prints out the characters that arrive on the connec-
tion.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>
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#define SERVER_PORT 5432

#define MAX_PENDING 5

#define MAX_LINE 256

int

main()

{

struct sockaddr_in sin;

char buf[MAX_LINE];

int len;

int s, new_s;

/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;

sin.sin_port = htons(SERVER_PORT);

/* setup passive open */

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");

exit(1);

}

if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {

perror("simplex-talk: bind");

exit(1);

}

listen(s, MAX_PENDING);

/* wait for connection, then receive and print text */

while(1) {

if ((new_s = accept(s, (struct sockaddr *)&sin, &len)) < 0) {

perror("simplex-talk: accept");

exit(1);

}

while (len = recv(new_s, buf, sizeof(buf), 0))

fputs(buf, stdout);

close(new_s);

}

}
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1.4.3 Protocol Implementation Issues
As mentioned at the beginning of this section, the way application programs interact
with the underlying network is similar to the way a high-level protocol interacts with a
low-level protocol. For example, TCP needs an interface to send outgoing messages to IP,
and IP needs to be able to deliver incoming messages to TCP. This is exactly the service
interface introduced in Section 1.3.1.

Since we already have a network API (e.g., sockets), we might be tempted to use
this same interface between every pair of protocols in the protocol stack. Although cer-
tainly an option, in practice the socket interface is not used in this way. The reason is
that there are inefficiencies built into the socket interface that protocol implementers
are not willing to tolerate. Application programmers tolerate them because they simplify
their programming task, and because the inefficiency only has to be tolerated once, but
protocol implementers are often obsessed with performance and must worry about get-
ting a message through several layers of protocols. The rest of this section discusses the
two primary differences between the network API and the protocol-to-protocol interface
found lower in the protocol graph.

Process Model

Most operating systems provide an abstraction called a process, or alternatively, a thread.
Each process runs largely independently of other processes, and the OS is responsible
for making sure that resources, such as address space and CPU cycles, are allocated to all
the current processes. The process abstraction makes it fairly straightforward to have a
lot of things executing concurrently on one machine; for example, each user application
might execute in its own process, and various things inside the OS might execute as
other processes. When the OS stops one process from executing on the CPU and starts
up another one, we call the change a context switch.

When designing the network subsystem, one of the first questions to answer is,
“Where are the processes?” There are essentially two choices, as illustrated in Figure 1.16.
In the first, which we call the process-per-protocol model, each protocol is implemented
by a separate process. This means that as a message moves up or down the protocol
stack, it is passed from one process/protocol to another—the process that implements
protocol i processes the message, then passes it to protocol i − 1, and so on. How
one process/protocol passes a message to the next process/protocol depends on the sup-
port the host OS provides for interprocess communication. Typically, there is a simple
mechanism for enqueuing a message with a process. The important point, however, is
that a context switch is required at each level of the protocol graph—typically a time-
consuming operation.

The alternative, which we call the process-per-message model, treats each protocol
as a static piece of code and associates the processes with the messages. That is, when a
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Figure 1.16 Alternative process models: (a) process-per-protocol;

(b) process-per-message.

message arrives from the network, the OS dispatches a process that it makes responsible
for the message as it moves up the protocol graph. At each level, the procedure that
implements that protocol is invoked, which eventually results in the procedure for the
next protocol being invoked, and so on. For outbound messages, the application’s process
invokes the necessary procedure calls until the message is delivered. In both directions,
the protocol graph is traversed in a sequence of procedure calls.

Although the process-per-protocol model is sometimes easier to think about—
I implement my protocol in my process, and you implement your protocol in your
process—the process-per-message model is generally more efficient for a simple reason:
A procedure call is an order of magnitude more efficient than a context switch on most



1.4 Implementing Network Software 39

computers. The former model requires the expense of a context switch at each level,
while the latter model costs only a procedure call per level.

Message Buffers

A second inefficiency of the socket interface is that the application process provides the
buffer that contains the outbound message when calling send, and similarly it provides
the buffer into which an incoming message is copied when invoking the receive opera-
tion. This forces the topmost protocol to copy the message from the application’s buffer
into a network buffer, and vice versa, as shown in Figure 1.17. It turns out that copying
data from one buffer to another is one of the most expensive things a protocol imple-
mentation can do. This is because while processors are becoming faster at an incredible
pace, memory is not getting faster as quickly as processors are. Relative to processors,
memory is getting slower.

Instead of copying message data from one buffer to another at each layer in the
protocol stack, most network subsystems define an abstract data type for messages that
is shared by all protocols in the protocol graph. Not only does this abstraction permit
messages to be passed up and down the protocol graph without copying, but it usu-
ally provides copy-free ways of manipulating messages in other ways, such as adding
and stripping headers, fragmenting large messages into a set of small messages, and re-
assembling a collection of small messages into a single large message. The exact form of
this message abstraction differs from OS to OS, but it generally involves a linked-list of
pointers to message buffers, similar to the one shown in Figure 1.18. We leave it as an
exercise for the reader to define a general copy-free message abstraction.

Figure 1.17 Copying incoming/outgoing messages between application buffer and

network buffer.
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Figure 1.18 Example message data structure.

1.5 Performance
Up to this point, we have focused primarily on the functional aspects of a network. Like
any computer system, however, computer networks are also expected to perform well.
This is because the effectiveness of computations distributed over the network often
depends directly on the efficiency with which the network delivers the computation’s
data. While the old programming adage “first get it right and then make it fast” is valid
in many settings, in networking it is usually necessary to “design for performance.” It is,
therefore, important to understand the various factors that impact network performance.

1.5.1 Bandwidth and Latency
Network performance is measured in two fundamental ways: bandwidth (also called
throughput) and latency (also called delay). The bandwidth of a network is given by the
number of bits that can be transmitted
over the network in a certain period of
time. For example, a network might have
a bandwidth of 10 million bits/second
(Mbps), meaning that it is able to de-
liver 10 million bits every second. It is
sometimes useful to think of bandwidth
in terms of how long it takes to transmit
each bit of data. On a 10-Mbps network,
for example, it takes 0.1 microsecond (µs)
to transmit each bit.

While you can talk about the band-
width of the network as a whole, some-
times you want to be more precise,
focusing, for example, on the bandwidth

Bandwidth and Throughput

Bandwidth and throughput are two
of the most confusing terms used in
networking. While we could try to
give you a precise definition of each
term, it is important that you know
how other people might use them and
for you to be aware that they are of-
ten used interchangeably. First of all,
bandwidth is literally a measure of the
width of a frequency band. For exam-
ple, a voice-grade telephone line sup-
ports a frequency band ranging from
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300 to 3,300 Hz; it is said to have a
bandwidth of 3,300 Hz − 300 Hz =
3,000 Hz. If you see the word “band-
width” used in a situation in which
it is being measured in hertz, then it
probably refers to the range of signals
that can be accommodated.

When we talk about the band-
width of a communication link, we
normally refer to the number of bits
per second that can be transmitted
on the link. We might say that the
bandwidth of an Ethernet is 10 Mbps.
A useful distinction might be made,
however, between the bandwidth that
is available on the link and the num-
ber of bits per second that we can ac-
tually transmit over the link in prac-
tice. We tend to use the word “through-
put” to refer to the measured perfor-
mance of a system. Thus, because of

of a single physical link or a logical process-
to-process channel. At the physical level,
bandwidth is constantly improving, with
no end in sight. Intuitively, if you think
of a second of time as a distance you
could measure with a ruler, and band-
width as how many bits fit in that dis-
tance, then you can think of each bit
as a pulse of some width. For exam-
ple, each bit on a 1-Mbps link is 1 µs
wide, while each bit on a 2-Mbps link
is 0.5 µs wide, as illustrated in Fig-
ure 1.19. The more sophisticated the
transmitting and receiving technology, the
narrower each bit can become, and thus,
the higher the bandwidth. For logical
process-to-process channels, bandwidth
is also influenced by other factors, in-
cluding how many times the software
that implements the channel has to han-
dle, and possibly transform, each bit of
data.

The second performance metric, latency, corresponds to how long it takes a mes-
sage to travel from one end of a network to the other. (As with bandwidth, we could be
focused on the latency of a single link or an end-to-end channel.) Latency is measured
strictly in terms of time. For example, a transcontinental network might have a latency of

Figure 1.19 Bits transmitted at a particular bandwidth can be regarded as having

some width: (a) bits transmitted at 1 Mbps (each bit 1 µs wide); (b) bits transmitted at

2 Mbps (each bit 0.5 µs wide).
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24 milliseconds (ms); that is, it takes a
message 24 ms to travel from one end
of North America to the other. There are
many situations in which it is more impor-
tant to know how long it takes to send a
message from one end of a network to the
other and back, rather than the one-way
latency. We call this the round-trip time
(RTT) of the network.

We often think of latency as having
three components. First, there is the speed-
of-light propagation delay. This delay oc-
curs because nothing, including a bit on
a wire, can travel faster than the speed of
light. If you know the distance between
two points, you can calculate the speed-
of-light latency, although you have to be
careful because light travels across different
mediums at different speeds: It travels at
3.0 × 108 m/s in a vacuum, 2.3 × 108 m/s
in a cable, and 2.0 × 108 m/s in a fiber.
Second, there is the amount of time it

various inefficiencies of implementa-
tion, a pair of nodes connected by a
link with a bandwidth of 10 Mbps
might achieve a throughput of only
2 Mbps. This would mean that an ap-
plication on one host could send data
to the other host at 2 Mbps.

Finally, we often talk about the
bandwidth requirements of an appli-
cation. This is the number of bits
per second that it needs to transmit
over the network to perform accept-
ably. For some applications, this might
be “whatever I can get”; for others, it
might be some fixed number (prefer-
ably no more than the available link
bandwidth); and for others, it might
be a number that varies with time. We
will provide more on this topic later in
this section.

takes to transmit a unit of data. This is a function of the network bandwidth and the
size of the packet in which the data is carried. Third, there may be queuing delays inside
the network, since packet switches generally need to store packets for some time before
forwarding them on an outbound link, as discussed in Section 1.2.2. So, we could define
the total latency as

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight

Transmit = Size/Bandwidth

where Distance is the length of the wire over which the data will travel, Speed-
OfLight is the effective speed of light over that wire, Size is the size of the packet,
and Bandwidth is the bandwidth at which the packet is transmitted. Note that if the
message contains only one bit and we are talking about a single link (as opposed to a
whole network), then the Transmit and Queue terms are not relevant, and latency
corresponds to the propagation delay only.

Bandwidth and latency combine to define the performance characteristics of a
given link or channel. Their relative importance, however, depends on the application.
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For some applications, latency dominates bandwidth. For example, a client that sends
a 1-byte message to a server and receives a 1-byte message in return is latency bound.
Assuming that no serious computation is involved in preparing the response, the appli-
cation will perform much differently on a transcontinental channel with a 100-ms RTT
than it will on an across-the-room channel with a 1-ms RTT. Whether the channel is
1 Mbps or 100 Mbps is relatively insignificant, however, since the former implies that the
time to transmit a byte (Transmit) is 8 µs and the latter implies Transmit = 0.08 µs.

In contrast, consider a digital library program that is being asked to fetch a 25-
megabyte (MB) image—the more bandwidth that is available, the faster it will be able to
return the image to the user. Here, the bandwidth of the channel dominates performance.
To see this, suppose that the channel has a bandwidth of 10 Mbps. It will take 20 seconds
to transmit the image, making it relatively unimportant if the image is on the other side
of a 1-ms channel or a 100-ms channel; the difference between a 20.001-second response
time and a 20.1-second response time is negligible.

Figure 1.20 gives you a sense of how latency or bandwidth can dominate perfor-
mance in different circumstances. The graph shows how long it takes to move objects of

Figure 1.20 Perceived latency (response time) versus round-trip time for various

object sizes and link speeds.
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various sizes (1 byte, 2 KB, 1 MB) across networks with RTTs ranging from 1 to 100 ms
and link speeds of either 1.5 or 10 Mbps. We use logarithmic scales to show relative
performance. For a 1-byte object (say, a keystroke), latency remains almost exactly equal
to the RTT, so that you cannot distinguish between a 1.5-Mbps network and a 10-Mbps
network. For a 2-KB object (say, an email message), the link speed makes quite a dif-
ference on a 1-ms-RTT network but a negligible difference on a 100-ms-RTT network.
And for a 1-MB object (say, a digital image), the RTT makes no difference—it is the
link speed that dominates performance across the full range of RTT.

Note that throughout this book we use the terms latency and delay in a generic way,
that is, to denote how long it takes to perform a particular function such as delivering
a message or moving an object. When we are referring to the specific amount of time it
takes a signal to propagate from one end of a link to another, we use the term propagation
delay. Also, we make it clear in the context of the discussion whether we are referring to
the one-way latency or the round-trip time.

As an aside, computers are becoming so fast that when we connect them to net-
works, it is sometimes useful to think, at least figuratively, in terms of instructions per
mile. Consider what happens when a computer that is able to execute 1 billion instruc-
tions per second sends a message out on a channel with a 100-ms RTT. (To make the
math easier, assume that the message covers a distance of 5,000 miles.) If that computer
sits idle the full 100 ms waiting for a reply message, then it has forfeited the ability to
execute 100 million instructions, or 20,000 instructions per mile. It had better have been
worth going over the network to justify this waste.

1.5.2 Delay × Bandwidth Product
It is also useful to talk about the product of these two metrics, often called the delay ×
bandwidth product . Intuitively, if we think of a channel between a pair of processes as a
hollow pipe (see Figure 1.21), where the latency corresponds to the length of the pipe
and the bandwidth gives the diameter of the pipe, then the delay × bandwidth product
gives the volume of the pipe—the maximum number of bits that could be in transit
through the pipe at any given instant. Said another way, if latency (measured in time)
corresponds to the length of the pipe, then given the width of each bit (also measured in
time), you can calculate how many bits fit in the pipe. For example, a transcontinental
channel with a one-way latency of 50 ms and a bandwidth of 45 Mbps is able to hold

50 × 10−3 sec × 45 × 106 bits/sec

= 2.25 × 106 bits

or approximately 280 KB of data. In other words, this example channel (pipe) holds as
many bytes as the memory of a personal computer from the early 1980s could hold.
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Figure 1.21 Network as a pipe.

How Big Is a Mega?

There are several pitfalls you need to
be aware of when working with the
common units of networking—MB,
Mbps, KB, and Kbps. The first is to
distinguish carefully between bits and
bytes. Throughout this book, we al-
ways use a lowercase b for bits and a
capital B for bytes. The second is to
be sure you are using the appropriate
definition of mega (M) and kilo (K).
Mega, for example, can mean either
220 or 106. Similarly, kilo can be either
210 or 103. What is worse, in net-
working we typically use both defini-
tions. Here’s why.

Network bandwidth, which is
often specified in terms of Mbps, is
typically governed by the speed of the
clock that paces the transmission of
the bits. A clock that is running at
10 MHz is used to transmit bits at
10 Mbps. Because the mega in MHz
means 106 hertz, Mbps is usually also
defined as 106 bits per second. (Sim-
ilarly, Kbps is 103 bits per second.)
On the other hand, when we talk
about a message that we want to trans-
mit, we often give its size in kilobytes.

The delay × bandwidth product is
important to know when constructing
high-performance networks because it cor-
responds to how many bits the sender
must transmit before the first bit arrives
at the receiver. If the sender is expecting
the receiver to somehow signal that bits
are starting to arrive, and it takes another
channel latency for this signal to propa-
gate back to the sender (i.e., we are in-
terested in the channel’s RTT rather than
just its one-way latency), then the sender
can send up to two delay × bandwidths
worth of data before hearing from the re-
ceiver that all is well. The bits in the pipe
are said to be “in flight,” which means
that if the receiver tells the sender to stop
transmitting, it might receive up to a de-
lay × bandwidth’s worth of data before
the sender manages to respond. In our
example above, that amount corresponds
to 5.5 × 106 bits (671 KB) of data. On
the other hand, if the sender does not fill
the pipe—send a whole delay×bandwidth
product’s worth of data before it stops to
wait for a signal—the sender will not fully
utilize the network.

Note that most of the time we are
interested in the RTT scenario, which we
simply refer to as the delay × bandwidth
product, without explicitly saying that this
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Bandwidth Distance

Link Type (Typical) (Typical) Round-trip Delay Delay × BW

Dial-up 56 Kbps 10 km 87 µs 5 bits

Wireless LAN 54 Mbps 50 m 0.33 µs 18 bits

Satellite 45 Mbps 35,000 km 230 ms 10 Mb

Cross-country fiber 10 Gbps 4,000 km 40 ms 400 Mb

Table 1.1 Sample delay × bandwidth products.

product is multiplied by two. Again,
whether the “delay” in “delay × band-
width” means one-way latency or RTT is
made clear by the context. Table 1.1 shows
some examples of delay × bandwidth
products for some typical network links.

1.5.3 High-Speed Networks
The bandwidths available on today’s net-
works are increasing at a dramatic rate,
and there is eternal optimism that network
bandwidth will continue to improve. This
causes network designers to start thinking
about what happens in the limit, or stated
another way, what is the impact on net-
work design of having infinite bandwidth
available.

Although high-speed networks bring
a dramatic change in the bandwidth avail-
able to applications, in many respects their
impact on how we think about network-
ing comes in what does not change as
bandwidth increases: the speed of light.
To quote Scotty from Star Trek, “You can-
nae change the laws of physics.” In other
words, “high speed” does not mean that
latency improves at the same rate as band-

Because messages are stored in the
computer’s memory, and memory is
typically measured in powers of two,
the K in KB is usually taken to mean
210. (Similarly, MB usually means
220.) When you put the two together,
it is not uncommon to talk about
sending a 32-KB message over a 10-
Mbps channel, which should be inter-
preted to mean 32 × 210 × 8 bits are
being transmitted at a rate of 10×106

bits per second. This is the interpreta-
tion we use throughout the book, un-
less explicitly stated otherwise.

The good news is that many
times we are satisfied with a back-
of-the-envelope calculation, in which
case it is perfectly reasonable to pre-
tend that a byte has 10 bits in it (mak-
ing it easy to convert between bits
and bytes) and that 106 is really equal
to 220 (making it easy to convert be-
tween the two definitions of mega).
Notice that the first approximation
introduces a 20% error, while the lat-
ter introduces only a 5% error.
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To help you in your quick-and-
dirty calculations, 100 ms is a reason-
able number to use for a cross-country
round-trip time—at least when the
country in question is the United
States—and 1 ms is a good approxi-
mation of an RTT across a local area
network. In the case of the former, we
increase the 48-ms round-trip time
implied by the speed of light over
a fiber to 100 ms because there are,
as we have said, other sources of de-
lay, such as the queueing time in the
switches inside the network. You can
also be sure that the path taken by the
fiber between two points will not be a
straight line.

width; the transcontinental RTT of a
1-Gbps link is the same 100 ms as it is
for a 1-Mbps link.

To appreciate the significance of
ever-increasing bandwidth in the face of
fixed latency, consider what is required to
transmit a 1-MB file over a 1-Mbps net-
work versus over a 1-Gbps network, both
of which have an RTT of 100 ms. In the
case of the 1-Mbps network, it takes 80
round-trip times to transmit the file; dur-
ing each RTT, 1.25% of the file is sent. In
contrast, the same 1-MB file doesn’t even
come close to filling 1 RTT’s worth of the
1-Gbps link, which has a delay × band-
width product of 12.5 MB.

Figure 1.22 illustrates the difference
between the two networks. In effect, the
1-MB file looks like a stream of data that

needs to be transmitted across a 1-Mbps network, while it looks like a single packet on a
1-Gbps network. To help drive this point home, consider that a 1-MB file is to a 1-Gbps
network what a 1-KB packet is to a 1-Mbps network.▲

Another way to think about the situation is that more data can be transmitted
during each RTT on a high-speed network, so much so that a single RTT becomes a
significant amount of time. Thus, while you wouldn’t think twice about the difference
between a file transfer taking 101 RTTs rather than 100 RTTs (a relative difference of
only 1%), suddenly the difference between 1 RTT and 2 RTTs is significant—a 100%
increase. In other words, latency, rather than throughput, starts to dominate our thinking
about network design.

Perhaps the best way to understand the relationship between throughput and la-
tency is to return to basics. The effective end-to-end throughput that can be achieved
over a network is given by the simple relationship

Throughput = TransferSize/TransferTime

where TransferTime includes not only the elements of one-way Latency identified
earlier in this section, but also any additional time spent requesting or setting up the
transfer. Generally, we represent this relationship as

TransferTime = RTT + 1/Bandwidth x TransferSize
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Figure 1.22 Relationship between bandwidth and latency. A 1-MB file would fill the

1-Mbps link 80 times, but only fill the 1-Gbps link 1/12 of one time.

We use RTT in this calculation to account for a request message being sent across the
network and the data being sent back. For example, consider a situation where a user
wants to fetch a 1-MB file across a 1-Gbps network with a round-trip time of 100 ms.
The TransferTime includes both the transmit time for 1 MB (1/1 Gbps × 1 MB =
8 ms), and the 100-ms RTT, for a total transfer time of 108 ms. This means that the
effective throughput will be

1 MB/108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve the effective
throughput, where in the limit, an infinitely large transfer size will cause the effective
throughput to approach the network bandwidth. On the other hand, having to endure
more than 1 RTT—for example, to retransmit missing packets—will hurt the effective
throughput for any transfer of finite size and will be most noticeable for small transfers.

1.5.4 Application Performance Needs
The discussion in this section has taken a network-centric view of performance; that
is, we have talked in terms of what a given link or channel will support. The unstated
assumption has been that application programs have simple needs—they want as much
bandwidth as the network can provide. This is certainly true of the aforementioned
digital library program that is retrieving a 25-MB image; the more bandwidth that is
available, the faster the program will be able to return the image to the user.
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However, some applications are able to state an upper limit on how much band-
width they need. Video applications are a prime example. Suppose one wants to stream
a video image; that is one-quarter the size of a standard TV image; that is, it has a res-
olution of 352 by 240 pixels. If each pixel is represented by 24 bits of information, as
would be the case for 24-bit color, then the size of each frame would be

(352 × 240 × 24)/8 = 247.5 KB

If the application needs to support a frame rate of 30 frames per second, then it might
request a throughput rate of 75 Mbps. The ability of the network to provide more band-
width is of no interest to such an application because it has only so much data to transmit
in a given period of time.

Unfortunately, the situation is not as simple as this example suggests. Because the
difference between any two adjacent frames in a video stream is often small, it is possible
to compress the video by transmitting only the differences between adjacent frames. This
compressed video does not flow at a constant rate, but varies with time according to fac-
tors such as the amount of action and detail in the picture and the compression algorithm
being used. Therefore, it is possible to say what the average bandwidth requirement will
be, but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed. Suppose
that this example video application can be compressed down to the point that it needs
only 2 Mbps, on average. If it transmits 1 Mb in a 1-second interval and 3 Mb in
the following 1-second interval, then over the 2-second interval it is transmitting at an
average rate of 2 Mbps; however, this will be of little consolation to a channel that was
engineered to support no more than 2 Mb in any one second. Clearly, just knowing the
average bandwidth needs of an application will not always suffice.

Generally, however, it is possible to put an upper bound on how large a burst an
application like this is likely to transmit. A burst might be described by some peak rate
that is maintained for some period of time. Alternatively, it could be described as the
number of bytes that can be sent at the peak rate before reverting to the average rate or
some lower rate. If this peak rate is higher than the available channel capacity, then the
excess data will have to be buffered somewhere, to be transmitted later. Knowing how big
of a burst might be sent allows the network designer to allocate sufficient buffer capacity
to hold the burst. We will return to the subject of describing bursty traffic accurately in
Chapter 6.

Analogous to the way an application’s bandwidth needs can be something other
than “all it can get,” an application’s delay requirements may be more complex than
simply “as little delay as possible.” In the case of delay, it sometimes doesn’t matter so
much whether the one-way latency of the network is 100 ms or 500 ms as how much
the latency varies from packet to packet. The variation in latency is called jitter.
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Figure 1.23 Network-induced jitter.

Consider the situation in which the source sends a packet once every 33 ms, as
would be the case for a video application transmitting frames 30 times a second. If the
packets arrive at the destination spaced out exactly 33 ms apart, then we can deduce that
the delay experienced by each packet in the network was exactly the same. If the spacing
between when packets arrive at the destination—sometimes called the interpacket gap—
is variable, however, then the delay experienced by the sequence of packets must have also
been variable, and the network is said to have introduced jitter into the packet stream,
as shown in Figure 1.23. Such variation is generally not introduced in a single physical
link, but it can happen when packets experience different queuing delays in a multihop
packet-switched network. This queuing delay corresponds to the Queue component of
latency defined earlier in this section, which varies with time.

To understand the relevance of jitter, suppose that the packets being transmitted
over the network contain video frames, and in order to display these frames on the screen
the receiver needs to receive a new one every 33 ms. If a frame arrives early, then it can
simply be saved by the receiver until it is time to display it. Unfortunately, if a frame
arrives late, then the receiver will not have the frame it needs in time to update the screen,
and the video quality will suffer; it will not be smooth. Note that it is not necessary to
eliminate jitter, only to know how bad it is. The reason for this is that if the receiver
knows the upper and lower bounds on the latency that a packet can experience, it can
delay the time at which it starts playing back the video (i.e., displays the first frame) long
enough to ensure that in the future it will always have a frame to display when it needs
it. The receiver delays the frame, effectively smoothing out the jitter, by storing it in a
buffer. We return to the topic of jitter in Chapter 6.

1.6 Summary
Computer networks like the Internet have experienced enormous growth over the past
decade and are now positioned to provide a wide range of services—remote file ac-
cess, digital libraries, videoconferencing—to hundreds of millions of users. Much of this
growth can be attributed to the general-purpose nature of computer networks, and in
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particular to the ability to add new functionality to the network by writing software that
runs on affordable, high-performance computers. With this in mind, the overriding goal
of this book is to describe computer networks in such a way that when you finish reading
it, you should feel that if you had an army of programmers at your disposal, you could
actually build a fully-functional computer network from the ground up. This chapter
lays the foundation for realizing this goal.

The first step we have taken toward this goal is to carefully identify exactly what we
expect from a network. For example, a network must first provide cost-effective connec-
tivity among a set of computers. This is accomplished through a nested interconnection
of nodes and links, and by sharing this hardware base through the use of statistical mul-
tiplexing. This results in a packet-switched network, on top of which we then define a
collection of process-to-process communication services.

The second step is to define a layered architecture that will serve as a blueprint
for our design. The central objects of this architecture are network protocols. Protocols
both provide a communication service to higher-level protocols and define the form and
meaning of messages exchanged with their peers running on other machines. We have
briefly surveyed two of the most widely used architectures: the OSI architecture and the
Internet architecture. This book most closely follows the Internet architecture, both in
its organization and as a source of examples.

The third step is to implement the network’s protocols and application programs,
usually in software. Both protocols and applications need an interface by which they in-
voke the services of other protocols in the network subsystem. The socket interface is the
most widely used interface between application programs and the network subsystem,
but a slightly different interface is typically used within the network subsystem.

Finally, the network as a whole must offer high performance, where the two per-
formance metrics we are most interested in are latency and throughput. As we will see in
later chapters, it is the product of these two metrics—the so-called delay × bandwidth
product—that often plays a critical role in protocol design.

There is little doubt that com-
puter networks are becoming an in-
tegral part of the everyday lives of
vast numbers of people. What began
over 35 years ago as experimental sys-
tems like the ARPANET—connecting
mainframe computers over long-

O P E N I S S U E

Ubiquitous Networking

distance telephone lines—has turned into big business. And where there is big business,
there are lots of players. In this case, there is the computing industry, which has become
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increasingly involved in supporting packet-switched networking products; the telephone
carriers, which recognize the market for carrying all sorts of data, not just voice; and the
cable TV industry, which in parts of the world involved in both the delivery of “content”
(e.g. video-on-demand) and the provision of high-speed residential connections to the
Internet. And this list does not even include the many players involved in delivery of
services over the Internet such as voiceover IP (VoIP) and electronic commerce.

Assuming that the goal is ubiquitous networking—to bring the network into every
household—the first problem that must be addressed is how to establish the necessary
physical links. The most widely discussed options in most parts of the world make use of
either the existing cable TV facilities or the copper pairs used to deliver telephone service.
Fiber to the home, or to the apartment building, which not long ago looked like a pipe
dream, is gathering momentum in some areas. There have also been developments in the
technology to deliver network connectivity over power lines, and, as we will see in the
next chapter, there is now an abundance of wireless networking technologies. Increas-
ingly this is leading to an expectation that access to the Internet is available everywhere,
not just in the workplace or at home.

How the struggle between the computer companies, the telephone companies, the
cable industry, and other stakeholders in the networking business will play out in the
marketplace is anyone’s guess. (If we knew the answer, we’d be charging a lot more for
this book.) All we know is that there are many technical obstacles—issues of connectivity,
levels of service, performance, reliability, security, and fairness—that stand between the
current state-of-the-art and the sort of global, ubiquitous, heterogeneous network that
we believe is possible and desirable. It is these challenges that are the focus of this book.

F U R T H E R R E A D I N G
Computer networks are not the first communication-oriented technology to have found
their way into the everyday fabric of our society. For example, the early part of this
century saw the introduction of the telephone, and then during the 1950s television
became widespread. When considering the future of networking—how widely it will
spread and how we will use it—it is instructive to study this history. Our first reference
is a good starting point for doing this (the entire issue is devoted to the first 100 years of
telecommunications).

The second and third papers are the seminal papers on the OSI and Internet ar-
chitectures, respectively. The Zimmerman paper introduces the OSI architecture, and
the Clark paper is a retrospective. The final two papers are not specific to networking,
but present viewpoints that capture the “systems approach” of this book. The Saltzer
et al. paper motivates and describes one of the most widely applied rules of network
architecture—the end-to-end argument. The paper by Mashey describes the thinking be-
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hind RISC architectures; as we will soon discover, making good judgments about where
to place functionality in a complex system is what system design is all about.

■ Pierce, J. “Telephony—A Personal View.” IEEE Communications 22(5):116–
120, May 1984.

■ Zimmerman, H. “OSI Reference Model—The ISO Model of Architecture for
Open Systems Interconnection.” IEEE Transactions on Communications COM-
28(4):425–432, April 1980.

■ Clark, D. “The Design Philosophy of the DARPA Internet Protocols.” Proceed-
ings of the SIGCOMM ’88 Symposium, pp. 106–114, August 1988.

■ Saltzer, J., D. Reed, and D. Clark. “End-to-End Arguments in System Design.”
ACM Transactions on Computer Systems 2(4):277–288, November 1984.

■ Mashey, J. “RISC, MIPS, and the Motion of Complexity.” UniForum 1986
Conference Proceedings, pp. 116–124, 1986.

Several texts offer an introduction to computer networking: Stallings gives an ency-
clopedic treatment of the subject, with an emphasis on the lower levels of the OSI hierar-
chy [Sta07]; Tanenbaum uses the OSI architecture as an organizational model [Tan03];
Comer gives an overview of the Internet architecture [Com00]; and Bertsekas and Gal-
lager discuss networking from a performance modeling perspective [BG92].

To put computer networking into a larger context, two books—one dealing with
the past and the other looking toward the future—are must reading. The first is Holz-
mann and Pehrson’s The Early History of Data Networks [HP95]. Surprisingly, many of
the ideas covered in the book you are now reading were invented during the 1700s. The
second is Realizing the Information Future: The Internet and Beyond, a book prepared by
the Computer Science and Telecommunications Board of the National Research Council
[NRC94].

To follow the history of the Internet from its beginning, the reader is encouraged to
peruse the Internet’s Request for Comments (RFC) series of documents. These documents,
which include everything from the TCP specification to April Fools’ jokes, are retrievable
at http://www.ietf.org/rfc.html. For example, the protocol specifications for TCP,
UDP, and IP are available in RFC 793, 768, and 791, respectively.

To gain a better appreciation for the Internet philosophy and culture, two refer-
ences are recommended; both are also quite entertaining. Padlipsky gives a good de-
scription of the early days, including a pointed comparison of the Internet and OSI
architectures [Pad85]. For an account of what really happens behind the scenes at the
Internet Engineering Task Force, we recommend Boorsook’s article [Boo95].



54 1 Foundation

There are a wealth of articles discussing various aspects of protocol implementa-
tions. A good starting point is to understand two complete protocol implementation
environments: the Stream mechanism from System V Unix [Rit84] and the x-kernel
[HP91]. In addition, [LMKQ89] and [SW95] describe the widely used Berkeley Unix
implementation of TCP/IP.

More generally, there is a large body of work addressing the issue of structuring and
optimizing protocol implementations. Clark was one of the first to discuss the relation-
ship between modular design and protocol performance [Cla82]. Later papers then in-
troduce the use of upcalls in structuring protocol code [Cla85] and study the processing
overheads in TCP [CJRS89]. Finally, [WM87] describes how to gain efficiency through
appropriate design and implementation choices.

Several papers have introduced specific techniques and mechanisms that can be
used to improve protocol performance. For example, [HMPT89] describes some of the
mechanisms used in the x-kernel, [MD93] discusses various implementations of demul-
tiplexing tables, [VL87] introduces the timing-wheel mechanism used to manage pro-
tocol events, and [DP93] describes an efficient buffer management strategy. Also, the
performance of protocols running on parallel processors—locking is a key issue in such
environments—is discussed in [BG93] and [NYKT94].

Because many aspects of protocol implementation depend on an understanding of
the basics of operating systems, we recommend Finkel [Fin88], Bic and Shaw [BS88],
and Tanenbaum [Tan01] for an introduction to OS concepts.

Finally, we conclude the Further Reading section of each chapter with a set of live
references; that is, URLs for locations on the World Wide Web where you can learn more
about the topics discussed in that chapter. Since these references are live, it is possible that
they will not remain active for an indefinite period of time. For this reason, we limit the
set of live references at the end of each chapter to sites that either export software, provide
a service, or report on the activities of an ongoing working group or standardization
body. In other words, we only give URLs for the kinds of material that cannot easily be
referenced using standard citations. For this chapter, we include four live references:

■ http://www.mkp.com/pd4e: Information about this book, including sup-
plements, addenda, and so on.

■ http://www.acm.org/sigcomm/sos.html: Status of various networking
standards, including those of the IETF, ISO, and IEEE.

■ http://www.ietf.org/: Information about the IETF and its working groups.

■ http://edas.info/S.cgi?search=1: Searchable bibliography of network-
related research papers.
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E X E R C I S E S
1 Use anonymous FTP to connect to ftp.isi.edu (directory in-notes), and

retrieve the RFC index. Also retrieve the protocol specifications for TCP, IP,
and UDP.

2 Look up the website

http://www.cs.princeton.edu/nsg

Here you can read about current network research underway at Princeton Uni-
versity and see a picture of author Larry Peterson. Follow links to find a biog-
raphy of author Bruce Davie.

3 Use a Web search tool to locate useful, general, and noncommercial informa-
tion about the following topics: MBone, ATM, MPEG, IPv6, and Ethernet.

4 The Unix utility whois can be used to find the domain name correspond-
ing to an organization, or vice versa. Read the man page documentation for
whois and experiment with it. Try whois princeton.edu and whois
princeton, for starters. As an alternative, explore the whois interface at
http://www.internic.net/whois.html.

5 Calculate the total time required to transfer a 1,000-KB file in the following
cases, assuming an RTT of 100 ms, a packet size of 1-KB data, and an initial
2 × RTT of “handshaking” before data is sent.

(a) The bandwidth is 1.5 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 1.5 Mbps, but after we finish sending each data packet
we must wait one RTT before sending the next.

(c) The bandwidth is “infinite,” meaning that we take transmit time to be
zero, and up to 20 packets can be sent per RTT.

(d) The bandwidth is infinite, and during the first RTT we can send one
packet (21−1), during the second RTT we can send two packets (22−1),
during the third we can send four (23−1), and so on. (A justification for
such an exponential increase will be given in Chapter 6.)

✓ 6 Calculate the total time required to transfer a 1.5 MB file in the following cases,
assuming a RTT of 80 ms, a packet size of 1 KB data, and an initial 2×RTT of
“handshaking” before data is sent.
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(a) The bandwidth is 10 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 10 Mbps, but after we finish sending each data packet
we must wait one RTT before sending the next.

(c) The link allows infinitely fast transmit, but limits bandwidth such that
only 20 packets can be sent per RTT.

(d) Zero transmit time as in (c), but during the first RTT we can send one
packet, during the second RTT we can send two packets, during the third
we can send four = 23−1, and so on. (A justification for such an exponen-
tial increase will be given in Chapter 6.)

7 Consider a point-to-point link 2 km in length. At what bandwidth would prop-
agation delay (at a speed of 2 × 108m/sec) equal transmit delay for 100-byte
packets? What about 512-byte packets?

✓ 8 Consider a point-to-point link 50 km in length. At what bandwidth would
propagation delay (at a speed of 2 × 108 m/sec) equal transmit delay for 100-
byte packets? What about 512-byte packets?

9 What properties of postal addresses would be likely to be shared by a network
addressing scheme? What differences might you expect to find? What proper-
ties of telephone numbering might be shared by a network addressing scheme?

10 One property of addresses is that they are unique; if two nodes had the same
address it would be impossible to distinguish between them. What other prop-
erties might be useful for network addresses to have? Can you think of any
situations in which network (or postal or telephone) addresses might not be
unique?

11 Give an example of a situation in which multicast addresses might be beneficial.

12 What differences in traffic patterns account for the fact that STDM is a cost-
effective form of multiplexing for a voice telephone network and FDM is a
cost-effective form of multiplexing for television and radio networks, yet we
reject both as not being cost-effective for a general-purpose computer network?

13 How “wide” is a bit on a 1-Gbps link? How long is a bit in copper wire, where
the speed of propagation is 2.3 × 108 m/s?

14 How long does it take to transmit x KB over a y-Mbps link? Give your answer
as a ratio of x and y.
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15 Suppose a 100-Mbps point-to-point link is being set up between Earth and
a new lunar colony. The distance from the moon to Earth is approximately
385,000 km, and data travels over the link at the speed of light—3 × 108 m/s.

(a) Calculate the minimum RTT for the link.

(b) Using the RTT as the delay, calculate the delay × bandwidth product for
the link.

(c) What is the significance of the delay × bandwidth product computed
in (b)?

(d) A camera on the lunar base takes pictures of Earth and saves them in digital
format to disk. Suppose Mission Control on Earth wishes to download the
most current image, which is 25 MB. What is the minimum amount of
time that will elapse between when the request for the data goes out and
the transfer is finished?

✓ 16 Suppose a 128-Kbps point-to-point link is set up between Earth and a rover
on Mars. The distance from Earth to Mars (when they are closest together) is
approximately 55 Gm, and data travels over the link at the speed of light—
3 × 108 m/sec.

(a) Calculate the minimum RTT for the link.

(b) Calculate the delay × bandwidth product for the link.

(c) A camera on the rover takes pictures of its surroundings and sends these to
Earth. How quickly after a picture is taken can it reach Mission Control
on Earth? Assume that each image is 5 MB in size.

17 For each of the following operations on a remote file server, discuss whether
they are more likely to be delay sensitive or bandwidth sensitive.

(a) Open a file.

(b) Read the contents of a file.

(c) List the contents of a directory.

(d) Display the attributes of a file.
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18 Calculate the latency (from first bit sent to last bit received) for the following:

(a) A 10-Mbps Ethernet with a single store-and-forward switch in the path,
and a packet size of 5,000 bits. Assume that each link introduces a propaga-
tion delay of 10 µs, and that the switch begins retransmitting immediately
after it has finished receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (a) but assume the switch implements “cut-through” switching: it
is able to begin retransmitting the packet after the first 200 bits have been
received.

✓ 19 Calculate the latency (from first bit sent to last bit received) for:

(a) A 1-Gbps Ethernet with a single store-and-forward switch in the path, and
a packet size of 5,000 bits. Assume that each link introduces a propagation
delay of 10 µs and that the switch begins retransmitting immediately after
it has finished receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (b) but assume the switch implements cut-through switching: it
is able to begin retransmitting the packet after the first 128 bits have been
received.

20 Calculate the effective bandwidth for the following cases. For (a) and (b) as-
sume there is a steady supply of data to send; for (c) simply calculate the average
over 12 hours.

(a) A 10-Mbps Ethernet through three store-and-forward switches as in Exer-
cise 18(b). Switches can send on one link while receiving on the other.

(b) Same as (a) but with the sender having to wait for a 50-byte acknowledg-
ment packet after sending each 5,000-bit data packet.

(c) Overnight (12-hour) shipment of 100 compact discs (650 MB each).

21 Calculate the bandwidth × delay product for the following links. Use one-way
delay, measured from first bit sent to first bit received.

(a) A 10-Mbps Ethernet with a delay of 10 µs.
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Figure 1.24 Diagram for Exercise 22.

(b) A 10-Mbps Ethernet with a single store-and-forward switch like that of
Exercise 18(a), packet size 5,000 bits, and 10 µs per link propagation delay.

(c) A 1.5-Mbps T1 link, with a transcontinental one-way delay of 50 ms.

(d) A 1.5-Mbps T1 link through a satellite in geosynchronous orbit, 35,900-
km high. The only delay is speed-of-light propagation delay.

22 Hosts A and B are each connected to a switch S via 10-Mbps links as in Fig-
ure 1.24. The propagation delay on each link is 20 µs. S is a store-and-forward
device; it begins retransmitting a received packet 35 µs after it has finished
receiving it. Calculate the total time required to transmit 10,000 bits from
A to B.

(a) As a single packet.

(b) As two 5,000-bit packets sent one right after the other.

23 Suppose a host has a 1-MB file that is to be sent to another host. The file takes
1 second of CPU time to compress 50%, or 2 seconds to compress 60%.

(a) Calculate the bandwidth at which each compression option takes the same
total compression + transmission time.

(b) Explain why latency does not affect your answer.

24 Suppose that a certain communications protocol involves a per-packet over-
head of 100 bytes for headers and framing. We send 1 million bytes of data
using this protocol; however, one data byte is corrupted and the entire packet
containing it is thus lost. Give the total number of overhead + loss bytes for
packet data sizes of 1,000, 5,000, 10,000, and 20,000 bytes. Which size is
optimal?

25 Assume you wish to transfer an n B file along a path composed of the source,
destination, seven point-to-point links, and five switches. Suppose each link
has a propagation delay of 2 ms, bandwidth of 4 Mbps, and that the switches
support both circuit and packet switching. Thus, you can either break the file
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up into 1-KB packets, or set up a circuit through the switches and send the file
as one contiguous bitstream. Suppose that packets have 24 B of packet header
information and 1,000 B of payload, that store-and-forward packet processing
at each switch incurs a 1-ms delay after the packet had been completely re-
ceived, that packets may be sent continuously without waiting for acknowledg-
ments, and that circuit setup requires a 1-KB message to make one round-trip
on the path incurring a 1-ms delay at each switch after the message has been
completely received. Assume switches introduce no delay to data traversing a
circuit. You may also assume that file size is a multiple of 1,000 B.

(a) For what file size n B is the total number of bytes sent across the network
less for circuits than for packets?

(b) For what file size n B is the total latency incurred before the entire file
arrives at the destination less for circuits than for packets?

(c) How sensitive are these results to the number of switches along the path?
To the bandwidth of the links? To the ratio of packet size to packet header
size?

(d) How accurate do you think this model of the relative merits of circuits and
packets is? Does it ignore important considerations that discredit one or
the other approach? If so, what are they?

26 Consider a network with a ring topology, link bandwidths of 100 Mbps, and
propagation speed 2 × 108 m/s. What would the circumference of the loop
be to exactly contain one 250-byte packet, assuming nodes do not introduce
delay? What would the circumference be if there was a node every 100 m, and
each node introduced 10 bits of delay?

27 Compare the channel requirements for voice traffic with the requirements for
the real-time transmission of music, in terms of bandwidth, delay, and jitter.
What would have to improve? By approximately how much? Could any chan-
nel requirements be relaxed?

28 For the following, assume that no data compression is done; this would in
practice almost never be the case. For (a)–(c), calculate the bandwidth necessary
for transmitting in real time:

(a) Video at a resolution of 640 × 480, 3 bytes/pixel, 30 frames/second.

(b) 160 × 120 video, 1 byte/pixel, 5 frames/second.
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(c) CD-ROM music, assuming one CD holds 75 minutes’ worth and takes
650 MB.

(d) Assume a fax transmits an 8 × 10-inch black-and-white image at a reso-
lution of 72 pixels per inch. How long would this take over a 14.4-Kbps
modem?

✓ 29 For the following, as in the previous problem, assume that no data compression
is done. Calculate the bandwidth necessary for transmitting in real time:

(a) HDTV high-definition video at a resolution of 1,920 × 1,080, 24
bits/pixel, 30 frames/sec.

(b) Plain old telephone service (POTS) voice audio of 8-bit samples at 8 KHz.

(c) GSM mobile voice audio of 260-bit samples at 50 Hz.

(d) HDCD high-definition audio of 24-bit samples at 88.2 kHz.

30 Discuss the relative performance needs of the following applications, in terms
of average bandwidth, peak bandwidth, latency, jitter, and loss tolerance:

(a) File server.

(b) Print server.

(c) Digital library.

(d) Routine monitoring of remote weather instruments.

(e) Voice.

(f ) Video monitoring of a waiting room.

(g) Television broadcasting.

31 Suppose a shared medium M offers to hosts A1,A2, . . . ,AN in round-robin
fashion an opportunity to transmit one packet; hosts that have nothing to send
immediately relinquish M. How does this differ from STDM? How does net-
work utilization of this scheme compare with STDM?

★ 32 Consider a simple protocol for transferring files over a link. After some initial
negotiation, A sends data packets of size 1 KB to B; B then replies with an
acknowledgment. A always waits for each ACK before sending the next data
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packet; this is known as stop-and-wait. Packets that are overdue are presumed
lost and are retransmitted.

(a) In the absence of any packet losses or duplications, explain why it is not
necessary to include any “sequence number” data in the packet headers.

(b) Suppose that the link can lose occasional packets, but that packets that do
always arrive in the order sent. Is a 2-bit sequence number (that is, N mod
4) enough for A and B to detect and resend any lost packets? Is a 1-bit
sequence number enough?

(c) Now suppose that the link can deliver out of order, and that sometimes
a packet can be delivered as much as 1 minute after subsequent packets.
How does this change the sequence number requirements?

★ 33 Suppose hosts A and B are connected by a link. Host A continuously transmits
the current time from a high-precision clock, at a regular rate, fast enough to
consume all the available bandwidth. Host B reads these time values and writes
them each paired with its own time from a local clock synchronized with A’s.
Give qualitative examples of B’s output assuming the link has

(a) High bandwidth, high latency, low jitter.

(b) Low bandwidth, high latency, high jitter.

(c) High bandwidth, low latency, low jitter, occasional lost data.

For example, a link with zero jitter, a bandwidth high enough to write on
every other clock tick, and a latency of 1 tick might yield something like
(0000,0001), (0002,0003), (0004,0005).

34 Obtain and build the simplex-talk sample socket program shown in the text.
Start one server and one client in separate windows. While the first client is run-
ning, start 10 other clients that connect to the same server; these other clients
should most likely be started in the background with their input redirected
from a file. What happens to these 10 clients? Do their connect()s fail, or
time out, or succeed? Do any other calls block? Now let the first client exit.
What happens? Try this with the server value MAX_PENDING set to 1 as
well.

35 Modify the simplex-talk socket program so that each time the client sends a
line to the server, the server sends the line back to the client. The client (and
server) will now have to make alternating calls to recv() and send().
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36 Modify the simplex-talk socket program so that it uses UDP as the trans-
port protocol, rather than TCP. You will have to change SOCK_STREAM to
SOCK_DGRAM in both client and server. Then, in the server, remove the
calls to listen() and accept(), and replace the two nested loops at the end
with a single loop that calls recv() with socket s. Finally, see what happens
when two such UDP clients simultaneously connect to the same UDP server,
and compare this to the TCP behavior.

37 Investigate the different options and parameters one can set for a TCP connec-
tion. (Do “man tcp” on Unix.) Experiment with various parameter settings
to see how they effect TCP performance.

38 The Unix utility ping can be used to find the RTT to various Inter-
net hosts. Read the man page for ping, and use it to find the RTT to
www.cs.princeton.edu in New Jersey and www.cisco.com in Califor-
nia. Measure the RTT values at different times of day, and compare the results.
What do you think accounts for the differences?

39 The Unix utility traceroute, or its Windows equivalent tracert, can be used
to find the sequence of routers through which a message is routed. Use this to
find the path from your site to some others. How well does the number of hops
correlate with the RTT times from ping? How well does the number of hops
correlate with geographical distance?

40 Use traceroute, above, to map out some of the routers within your organiza-
tion (or to verify none are used).
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It is a mistake to look too far ahead. Only one link in the chain of
destiny can be handled at a time.

—Winston Churchill

he simplest network possible is one in which two hosts are directly connectedTby some physical medium. The medium be a length of wire, a piece of optical
fiber, or a medium (such as air or even free space) through which electromagnetic

radiation (e.g., radio waves) can be transmitted. It may cover a small area (e.g., an office
building) or a wide area (e.g., transcontinental). Connecting two or more nodes with a
suitable medium is only the first step, however. There are five additional problems that
must be addressed before the nodes can successfully exchange packets.

P R O B L E M

Physically Connecting
Hosts

The first is encoding bits onto
the transmission medium so that they
can be understood by a receiving host.
Second is the matter of delineating the
sequence of bits transmitted over the
link into complete messages that can
be delivered to the end node. This is

called the framing problem, and the messages delivered to the end hosts are often called
frames. Third, because frames are sometimes corrupted during transmission, it is nec-
essary to detect these errors and take the appropriate action; this is the error detection
problem. The fourth issue is making a link appear reliable in spite of the fact that it
corrupts frames from time to time. Finally, in those cases where the link is shared by
multiple hosts—as opposed to a simple point-to-point link—it is necessary to mediate
access to this link. This is the media access control problem.

Although these five issues—encoding, framing, error detection, reliable delivery,
and access mediation—can be discussed in the abstract, they are very real problems that
are addressed in different ways by different networking technologies. This chapter con-
siders these issues in the context of four specific network technologies: point-to-point
links, carrier sense multiple access (CSMA) networks (of which Ethernet is the most
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famous example), token rings (of which IEEE Standard 802.5 and
FDDI are the most famous examples), and wireless networks (for
which 802.11 is the most widespread standard1). The goal of this
chapter is simultaneously to survey the available network technol-
ogy and to explore these five fundamental issues.

Before tackling the specific issues of connecting hosts, this
chapter begins by examining the building blocks that will be used:
nodes and links. We then explore the first three issues—encoding,
framing, and error detection—in the context of a simple point-to-
point link. The techniques introduced in these three sections are
general and therefore apply equally well to multiple-access net-
works. The problem of reliable delivery is considered next. Since
link-level reliability is usually not implemented in shared-access
networks, this discussion focuses on point-to-point links only.
Finally, we address the media access problem in the context of
CSMA, token rings, and wireless.

1Strictly speaking, 802.11 is a set of standards.
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2.1 Hardware Building Blocks
As we saw in Chapter 1, networks are constructed from two classes of hardware building
blocks: nodes and links. This statement is just as true for the simplest possible network—
one in which a single point-to-point link connects a pair of nodes—as it is for a world-
wide internet. This section gives a brief overview of what we mean by nodes and links
and, in so doing, defines the underlying technology that we will assume throughout the
rest of this book.

2.1.1 Nodes
Nodes are often general-purpose computers, like a desktop workstation, a multiprocessor,
or a PC. For our purposes, let’s assume it’s a workstation-class machine. This workstation
can serve as a host that users run application programs on, it might be used inside the
network as a switch that forwards messages from one link to another, or it might be
configured as a router that forwards internet packets from one network to another. In
some cases, a network node—most commonly a switch or router inside the network,
rather than a host—is implemented by special-purpose hardware. This is usually done
for reasons of performance and cost: It is generally possible to build custom hardware that
performs a particular function faster and cheaper than a general-purpose processor can
perform it. When this happens, we will first describe the basic function being performed
by the node as though this function is being implemented in software on a general-
purpose workstation, and then explain why and how this functionality might instead be
implemented by special hardware.

Although we could leave it at that, it is useful to know a little bit about what a
workstation looks like on the inside. This information becomes particularly important
when we become concerned about how well the network performs. Figure 2.1 gives a
simple block diagram of the workstation-class machine we assume throughout this book.

Two aspects of the memory component are important to note. First, the memory
on any given machine is finite. It may be 64 MB or it may be 1 GB, but it is not infinite.
As pointed out in Section 1.2.2, this is important because memory turns out to be one
of the two scarce resources in the network (the other is link bandwidth) that must be
carefully managed if we are to provide a fair amount of network capacity to each user.
Memory is a scarce resource because, on any node that forwards packets, those packets
must be buffered in memory while waiting their turn to be transmitted over an outgoing
link.

Second, while CPUs are becoming faster at an unbelievable pace, the same is
not true of memory. Recent performance trends show processor speeds doubling every
18 months, but memory latency improving at a rate of only 7% each year. The relevance
of this difference is that as a network node, a workstation runs at memory speeds, not
processor speeds, to a first approximation. This means that the network software needs
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Figure 2.1 Example workstation architecture.

to be careful about how it uses memory and, in particular, about how many times it
accesses memory as it processes each message. We do not have the luxury of being sloppy
just because processors are becoming infinitely fast.

The workstation’s network adaptor component connects the rest of the workstation
to the link. More than just a physical connection, it is an active intermediary between
node and link, with its own internal processor. Its role is to transmit data from the
workstation onto the link, and receive data from the link, storing it for the workstation.
The adaptor implements nearly all the networking functionality, to be discussed in the
course of this chapter, that makes it possible to convey data over a dumb wire (or radio
airwaves) between adaptors. For example, adaptors break data into frames that the link
can transport, detect errors introduced as a frame travels over the link, and follow fairness
rules that allow a link to be shared by multiple workstations.

A network adaptor can be thought of as having two main components: a bus inter-
face that understands how to communicate with the host and a link interface that under-
stands how to use the link. There must also be a communication path between these two
components, over which incoming and outgoing data is passed. A simple block diagram
of a network adaptor is depicted in Figure 2.2.

Different kinds of links require network adaptors with very different link interfaces.
In this chapter we will see the tasks performed by the link interface for a variety of link
technologies. Different I/O buses likewise require different adaptors. From the perspec-
tive of the host, however, bus interfaces tend to be similar to each other. Typically, the
adaptor exports a control status register (CSR) that is readable and writable from the CPU.
The CSR is typically located at some address in the memory, thereby making it possible
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Figure 2.2 Block diagram of a typical network adaptor.

for the CPU to read and write just like any other memory location. Software on the
host—a device driver—writes to the CSR to instruct it to transmit and/or receive data
and reads from the CSR to learn the current state of the adaptor. To notify the host of
an asynchronous event such as the reception of a frame, the adaptor interrupts the host.

One of the most important issues in network adaptor design is how bytes of data are
transferred between the adaptor and the host memory. There are two basic mechanisms:
direct memory access (DMA) and programmed I/O (PIO). With DMA, the adaptor directly
reads and writes the host’s memory without any CPU involvement; the host simply gives
the adaptor a memory address and the adaptor reads from (or writes to) it. With PIO, the
CPU is directly responsible for moving data between the adaptor and the host memory:
To send a frame, the CPU executes a tight loop that first reads a word from host memory
and then writes it to the adaptor; to re-
ceive a frame, the CPU reads words from
the adaptor and writes them to memory.

As noted earlier, host memory per-
formance is often the limiting factor in
network performance. Nowhere is this
possibility more critical than at the host/
adaptor interface. To help drive this point
home, consider Figure 2.3. This diagram
shows the bandwidth available between
various components of a modern PC.
While the I/O bus is fast enough to trans-
fer frames between the network adaptor
and host memory at gigabit rates, there are
two potential problems.

Frames, Buffers, and Messages

As this section has suggested, the net-
work adaptor is the place where the
network comes in physical contact
with the host. It also happens to be
the place where three different worlds
intersect: the network, the host archi-
tecture, and the host operating sys-
tem. It turns out that each of these
has a different terminology for talking
about the same thing. It is important
to recognize when this is happening.

From the network’s perspective,
the adaptor transmits frames from the
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Figure 2.3 Memory bandwidth on a modern PC-class machine.

The first is that the advertised I/O bus speed corresponds to its peak bandwidth;
it is the product of the bus’s width and clock speed (e.g., a 64-bit-wide bus running at
133 MHz has a peak transfer rate of 8,512 Mbps). The real limitation is the size of the
data block that is being transferred across the I/O bus, since there is a certain amount
of overhead involved in each bus transfer. On some architectures, for example, it takes
8 clock cycles to acquire the bus for the purpose of transferring data from the adaptor
to host memory. This overhead is independent of the number of data bytes transferred.
Thus, if you want to transfer a 64-byte payload across the I/O bus—this happens to
be the size of a minimum Ethernet packet—then the whole transfer takes 16 cycles:
8 cycles to acquire the bus and 8 cycles to transfer the data. (The bus is 64 bits wide,

host and receives frames into the host.
From the perspective of the host ar-
chitecture, each frame is received into
or transmitted from a buffer, which
is simply a region of main mem-
ory of some length and starting at
some address. Finally, from the op-
erating system’s perspective, a mes-
sage is an abstract object that holds
network frames. Messages are imple-
mented by a data structure that in-
cludes pointers to different memory
locations (buffers). We saw an ex-
ample of a message data structure in
Chapter 1.

which means that it can transfer 8 bytes
during each clock cycle; 64 bytes divided
by 8 bytes per cycle equals 8 cycles.) This
means that the maximum sustained band-
width you can achieve for such packets is
only half the peak (i.e., 4,256 Mbps).

The second problem is that the
memory/CPU bandwidth, which in this
example is 3,200 MBps (25.6 Gbps), is
the same order of magnitude as the band-
width of the I/O bus. Fortunately, this is
a measured number rather than an adver-
tised peak rate. The ramification is that
while it is possible to deliver frames across
the I/O bus and into memory and then to
load the data from memory into the CPU’s
registers at network bandwidths, it is im-
practical for the device driver, operating
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system, and application to go to memory multiple times for each word of data in a net-
work packet, possibly because it needs to copy the data from one buffer to another. In
particular, if the memory/CPU path is crossed n times, then it might be the case that the
bandwidth your application sees is 3,200/n MBps. (The performance might be better
if the data is cached, but often caches don’t help with data arriving from the network.)
For example, if the various software layers need to copy the message from one buffer
to another four times—not an uncommon situation—then the application might see a
throughput of 800 MBps (6,400 Mbps), less than the 8,512 Mbps that the I/O bus can
support.▲

As an aside, it is important to recognize that there are many parallels between
moving a message to and from memory and moving a message across a network. In
particular, the effective throughput of the memory system is defined by the same two
formulas given in Section 1.5.

Throughput = TransferSize/TransferTime

TransferTime = RTT + 1/Bandwidth × TransferSize

In the case of the memory system, however, the transfer size corresponds to how big
a unit of data we can move across the bus in one transfer (i.e., cache line versus small
cells versus large message), and the RTT corresponds to the memory latency, that is,
whether the memory is on-chip cache, off-chip cache, or main memory. Just as in the
case of the network, the larger the transfer size and the smaller the latency, the better
the effective throughput. Also similar to a network, the effective memory throughput
does not necessarily equal the peak memory bandwidth (i.e., the bandwidth that can be
achieved with an infinitely large transfer).

The main point of this discussion is that we must be aware of the limits memory
bandwidth places on network performance. If carefully designed, the system can work
around these limits. For example, it is possible to integrate the buffers used by the device
driver, the operating system, and the application in a way that minimizes data copies.
The system also needs to be aware of when data is brought into cache, so it can perform
all necessary operations on the data before it gets bumped from the cache. The details of
how this is accomplished are beyond the scope of this book, but can be found in papers
referenced at the end of the chapter.

Finally, there is a second important lesson lurking in this discussion: when the
network isn’t performing as well as you think it should, it’s not always the network’s fault.
In many cases, the actual bottleneck in the system is one of the machines connected to
the network. For example, when it takes a long time for a web page to appear on your
browser, it might be network congestion, but it’s just as likely the case that the server at
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the other end of the network—which may be trying to serve many users at the same time
as you—can’t keep up with the workload.

2.1.2 Links
Network links are implemented on a variety of different physical media, including
twisted pair (the wire that your phone connects to), coaxial cable (the wire that your
TV connects to), optical fiber (the medium most commonly used for high-bandwidth,
long-distance links), and space (the stuff that radio waves, microwaves, and infrared
beams propagate through). Whatever the physical medium, it is used to propagate sig-
nals. These signals are actually electromagnetic waves traveling at the speed of light. (The
speed of light is, however, medium dependent—electromagnetic waves traveling through
copper and fiber do so at about two-thirds the speed of light in a vacuum.)

One important property of an electromagnetic wave is the frequency, measured in
hertz, with which the wave oscillates. The distance between a pair of adjacent maxima
or minima of a wave, typically measured in meters, is called the wave’s wavelength. Since
all electromagnetic waves travel at the speed of light, that speed divided by the wave’s
frequency is equal to its wavelength. We have already seen the example of a voice-grade
telephone line, which carries continuous electromagnetic signals ranging between 300
and 3,300 Hz; a 300-Hz wave traveling through copper would have a wavelength of

SpeedOfLightInCopper ÷ Frequency

= 2/3 × 3 × 108 ÷ 300

= 667 × 103 meters

Generally, electromagnetic waves span a much wider range of frequencies, ranging from
radio waves, to infrared light, to visible light, to X-rays and gamma rays. Figure 2.4
depicts the electromagnetic spectrum and shows which media are commonly used to
carry which frequency bands.

So far we understand a link to be a physical medium carrying signals in the form
of electromagnetic waves. Such links provide the foundation for transmitting all sorts of
information, including the kind of data we are interested in transmitting—binary data
(1s and 0s). We say that the binary data is encoded in the signal. The problem of encoding
binary data onto electromagnetic signals is a complex topic. To help make the topic
more manageable, we can think of it as being divided into two layers. The lower layer
is concerned with modulation—varying the frequency, amplitude, or phase of the signal
to effect the transmission of information. A simple example of modulation is to vary the
power (amplitude) of a single wavelength. Intuitively, this is equivalent to turning a light
on and off. Because the issue of modulation is secondary to our discussion of links as a
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Figure 2.4 Electromagnetic spectrum.

building block for computer networks, we simply assume that it is possible to transmit a
pair of distinguishable signals—think of them as a “high” signal and a “low” signal—and
we consider only the upper layer, which is concerned with the much simpler problem of
encoding binary data onto these two signals. Section 2.2 discusses such encodings.

Another attribute of a link is how many bitstreams can be encoded on it at a
given time. If the answer is only one, then the nodes connected to the link must share
access to the link. This is the case for the multiple-access links described in Sections 2.6
and 2.7. For point-to-point links, however, it is often the case that two bitstreams can be
simultaneously transmitted over the link at the same time, one going in each direction.
Such a link is said to be full-duplex. A point-to-point link that supports data flowing in
only one direction at a time—such a link is called half-duplex—requires that the two
nodes connected to the link alternate using it. For the purposes of this book, we assume
that all point-to-point links are full-duplex.

The only other property of a link that we are interested in at this stage is a very
pragmatic one—how do you go about getting one? The answer depends on how far the
link needs to reach, how much money you have to spend, and whether or not you know
how to operate earth-moving equipment. The following is a survey of different link types
you might use to build a computer network.

Cables
If the nodes you want to connect are in the same room, in the same building, or even
on the same site (e.g., a campus), then you can buy a piece of cable and physically string
it between the nodes. Exactly what type of cable you choose to install depends on the
technology you plan to use to transmit data over the link; we’ll see several examples later
in this chapter. For now, a list of the common cable (fiber) types is given in Table 2.1.
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Cable Typical Bandwidths Distances

Category 5 twisted pair 10–100 Mbps 100m

Thin-net coax 10–100 Mbps 200m

Thick-net coax 10–100 Mbps 500m

Multimode fiber 100 Mbps 2 km

Single-mode fiber 0.1–10 Gbps 40 km

Table 2.1 Common types of cables and fibers available for local links.

Service Bandwidth

DS1 1.544 Mbps

DS3 44.736 Mbps

STS-1 51.840 Mbps

STS-3 155.250 Mbps

STS-12 622.080 Mbps

STS-24 1.244160 Gbps

STS-48 2.488320 Gbps

Table 2.2 Common bandwidths available from the carriers.

Of these, Category 5 (Cat-5) twisted pair—it uses a thicker gauge than the twisted
pair you find in your home—is quickly becoming the within-building norm. Because
of the difficulty and cost in pulling new cable through a building, every effort is made
to make new technologies use existing cable; Gigabit Ethernet, for example, has been
designed to run over Cat-5 wiring. Fiber is typically used to connect buildings at a site.

Leased Lines

If the two nodes you want to connect are on opposite sides of the country, or even across
town, then it is not practical to install the link yourself. Until recently, your only option
was to lease a dedicated link from the telephone company. Table 2.2 gives the common
“leased line” services that can be obtained from the average phone company. Again, more
details are given throughout this chapter.

While these bandwidths appear somewhat arbitrary, there is actually some method
to the madness. DS1 and DS3 (they are also sometimes called T1 and T3, respectively)
are relatively old technologies that were originally defined for copper-based transmission
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media. DS1 is equal to the aggregation of 24 digital voice circuits of 64 Kbps each, and
DS3 is equal to 28 DS1 links. All the STS-N links are for optical fiber (STS stands
for Synchronous Transport Signal). STS-1 is the base link speed, and each STS-N has
N times the bandwidth of STS-1. An STS-N link is also sometimes called an OC-N
link (OC stands for optical carrier). The difference between STS and OC is subtle: The
former refers to the electrical transmission on the devices connected to the link, and the
latter refers to the actual optical signal that is propagated over the fiber.

More recently, many providers, both traditional telephone companies and some
upstart competitors, have started to offer a range of alternatives to leased lines based on
Ethernet, a technology we will discuss in detail in Section 2.6. One consequence of this
development is a proliferation of different access speeds beyond those in Table 2.2.

Keep in mind that the phone company does not implement the “link” we just
ordered as a single, unbroken piece of cable or fiber. Instead, it implements the link on
its own network. Although the telephone network has historically looked much different
from the kind of network described in this book—it was built primarily to provide a
voice service and used circuit-switching technology—the current trend is toward the
style of packet-switched networking described in this book. This is not surprising—the
potential market for carrying data, voice, and video on one packet-switched network is
huge.

In any case, whether the link is physical or a logical connection through the tele-
phone network, the problem of building a computer network on top of a collection of
such links remains the same. So, we will proceed as though each link is implemented by
a single cable/fiber, and only when we are done will we worry about whether we have just
built a computer network on top of the underlying telephone network, or the computer
network we have just built could itself serve as the backbone for the telephone network.

Last-Mile Links

If you can’t afford a dedicated leased line—they range in price from several hundred dol-
lars a month for a DS1 link across the United States to “if you have to ask, you can’t
afford it”—then there are less expensive options available. We call these “last-mile” links
because they often span the last mile from the home to a network service provider. These
services, which are summarized in Table 2.3, typically connect a home to an existing net-
work. This means they are probably not suitable for use in building a complete network
from scratch, but if you’ve already succeeded in building a network—and “you” happen
to be either the telephone company or the cable company—then you can use these links
to reach millions of customers.

The first option is a conventional modem over POTS. Today it is possible to buy
a modem that transmits data at 56 Kbps over a standard voice-grade line for less than
a hundred dollars. The technology is already at its bandwidth limit, however, which
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Service Bandwidth

POTS 28.8–56 Kbps

ISDN 64–128 Kbps

xDSL 128 Kbps–100 Mbps

CATV 1–40 Mbps

Table 2.3 Common services available to connect your home.

led to the development of the second option: Integrated Services Digital Network
(ISDN). An ISDN connection includes two 64-Kbps channels, one that can be used
to transmit data and another that can be used for digitized voice. (A device that en-
codes analog voice into a digital ISDN link is called a CODEC, for coder/decoder.)
When the voice channel is not in use, it can be combined with the data channel to

Shannon’s Theorem Meets

Your Modem

There has been an enormous body of
work done in the related areas of sig-
nal processing and information the-
ory, studying everything from how
signals degrade over distance to how
much data a given signal can effec-
tively carry. The most notable piece of
work in this area is a formula known
as Shannon’s theorem. Simply stated,
Shannon’s theorem gives an upper
bound to the capacity of a link, in
terms of bits per second (bps), as a
function of the signal-to-noise ratio of
the link, measured in decibels (dB).

Shannon’s theorem can be used
to determine the data rate at which a
modem can be expected to transmit
binary data over a voice-grade phone
line without suffering from too high
an error rate. For example, we assume
that a voice-grade phone connection

support up to 128 Kbps of data band-
width.

For many years ISDN was viewed
as the future for modest bandwidth into
the home. ISDN, however, has now been
largely overtaken by two newer tech-
nologies: digital subscriber line (xDSL)
and cable modems. The former is ac-
tually a collection of technologies that
are able to transmit data at high speeds
over the standard twisted pair lines that
currently come into most homes in the
United States (and many other places).
The one in most widespread use to-
day is asymmetric digital subscriber line
(ADSL). As its name implies, ADSL pro-
vides a different bandwidth from the
subscriber to the telephone company’s
central office (upstream) than it does
from the central office to the subscriber
(downstream). The exact bandwidth de-
pends on the length of the line running
from the subscriber to the central office.
This line is called the local loop, as il-
lustrated in Figure 2.5, and runs over
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existing copper. Downstream bandwidths
range from 1.544 Mbps (18,000 feet) to
8.448 Mbps (9,000 feet), while upstream
bandwidths range from 16 to 640 Kbps.

An alternative technology that has
yet to be widely deployed—very high
data rate digital subscriber line (VDSL)—
is symmetric, with data rates ranging
from 12.96 to 55.2 Mbps. VDSL runs
over much shorter distances—1,000 to
4,500 feet—which means that it will not
typically reach from the home to the cen-
tral office. Instead, the telephone company
would have to put VDSL transmission
hardware in neighborhoods, with some
other technology (e.g., STS-N running
over fiber) connecting the neighborhood
to the central office, as illustrated in Fig-
ure 2.6. This is sometimes called “fiber to
the neighborhood” (contrasting with more
ambitious schemes such as “fiber to the
home” and “fiber to the curb”).

Cable modems are an alternative to
the various types of DSL. As the name sug-
gests, this technology uses the cable TV
(CATV) infrastructure, which currently
reaches 95% of the households in the
United States. (Only 65% of U.S. homes
actually subscribe.) In this approach, some
subset of the available CATV channels
are made available for transmitting dig-
ital data, where a single CATV channel
has a bandwidth of 6 MHz. CATV, like
ADSL, is used in an asymmetric way, with
downstream rates much greater than up-
stream rates. The technology is currently
able to achieve 40 Mbps downstream on a
single CATV channel, with 100 Mbps as
the theoretical capacity. The upstream rate

supports a frequency range of 300 to
3,300 Hz.

Shannon’s theorem is typically
given by the following formula:

C = B log2(1 + S/N )

where C is the achievable channel ca-
pacity measured in hertz, B is the
bandwidth of the line (3,300 Hz −
300 Hz = 3,000 Hz), S is the aver-
age signal power, and N is the average
noise power. The signal-to-noise ratio
(S/N ) is usually expressed in decibels,
related as follows:

dB = 10 × log10(S/N )

Assuming a typical decibel ratio of
30 dB, this means that S/N = 1,000.
Thus, we have

C = 3,000 × log2(1001)

which equals approximately 30 Kbps,
roughly the limit of a 28.8-Kbps
modem.

Given this fundamental limit,
why is it possible to buy 56-Kbps
modems at any electronics store? One
reason is that such rates depend on im-
proved line quality, that is, a higher
signal-to-noise ratio than 30 dB. An-
other reason is that changes within the
phone system have largely eliminated
analog lines that are bandwidth lim-
ited to 3,300 Hz.
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Figure 2.5 ADSL connects the subscriber to the central office via the local loop.

Figure 2.6 VDSL connects the subscriber to the optical network that reaches the

neighborhood.

is roughly half the downstream rate (i.e., 20 Mbps) due to a 1,000-fold decrease in the
signal-to-noise ratio. It is also the case that fewer CATV channels are dedicated to up-
stream traffic than to downstream traffic. Unlike DSL, the bandwidth is shared among
all subscribers in a neighborhood (a fact that led to some amusing advertising from DSL
providers). This means that some method for arbitrating access to the shared medium—
similar to the 802 standards described later in this chapter—needs to be used. Finally,
like DSL, it is unlikely that cable modems will be used to connect arbitrary node A at
one site to arbitrary node B at some other site. Instead, cable modems are seen as a means
to connect node A in your home to the cable company, with the cable company then
defining what the rest of the network looks like.

Wireless Links

Up to this point we have discussed links that channel signals through a physical medium
like a wire or optical fiber. Wireless links transmit electromagnetic signals—radio, mi-
crowave, infrared, or even visible light—through space, even through vacuum. Wireless
communication is used not only by computer networks, of course. The ability to ex-
change signals without physical connectivity is what makes mobile communication de-
vices possible. The further ability to broadcast that signal, and the fact that the hardware
and power burden is primarily on the transmitting end, makes wireless communication
well-suited to television and radio broadcasting.

Because wireless links all share the same wire, so to speak, the challenge is to share
it efficiently, without unduly interfering with each other. Most of this sharing is accom-
plished by dividing the “wire” along the dimensions of frequency and space. Exclusive use
of a particular frequency in a particular geographic area may be allocated to an individual
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entity such as a corporation. It is feasible to limit the area covered by an electromagnetic
signal because such signals weaken, or attenuate, with the distance from their origin. To
reduce the area covered by your signal, reduce the power of your transmitter.

These allocations are determined by government agencies, such as the Federal
Communications Commission (FCC) in the United States. Specific bands (frequency
ranges) are allocated to certain uses. Some bands are reserved for government use. Other
bands are reserved for uses such as AM radio, FM radio, television, satellite commu-
nication, and cell phones. Specific frequencies within these bands are then licensed to
individual organizations for use within certain geographical areas. Finally, there are sev-
eral frequency bands set aside for “license-exempt” usage—bands in which a license is
not needed.

Devices that use license-exempt frequencies are still subject to certain restrictions
to make that otherwise unconstrained sharing work. The first is a limit on transmission
power. This limits the range of a signal, making it less likely to interfere with another
signal. For example, a cordless phone might have a range of about 100 feet.

The second restriction requires the use of spread spectrum techniques. The idea
behind spread spectrum is to spread the signal over a wider frequency band than nor-
mal in such a way as to minimize the impact of interference from other devices. (Spread
spectrum was originally designed for military use, so these “other devices” were often
attempting to jam the signal.) For example, frequency hopping is a spread spectrum tech-
nique that involves transmitting the signal over a random sequence of frequencies, that
is, first transmitting at one frequency, then a second, then a third, and so on. The se-
quence of frequencies is not truly random, but is instead computed algorithmically by a
pseudorandom number generator. The receiver uses the same algorithm as the sender—
and initializes it with the same seed—and hence is able to hop frequencies in sync with
the transmitter to correctly receive the frame. This scheme reduces interference by mak-
ing it unlikely that two signals would be using the same frequency for more than the
infrequent isolated bit.

A second spread spectrum technique, called direct sequence, adds redundancy for
greater tolerance of interference. Each bit of data is represented by multiple bits in the
transmitted signal so that, if some of the transmitted bits are damaged by interference,
there is usually enough redundancy to recover the original bit. For each bit the sender
wants to transmit, it actually sends the exclusive-OR of that bit and n random bits. As
with frequency hopping, the sequence of random bits is generated by a pseudorandom
number generator known to both the sender and the receiver. The transmitted values,
known as an n-bit chipping code, spread the signal across a frequency band that is n times
wider than the frame would have otherwise required. Figure 2.7 gives an example of a
4-bit chipping sequence.
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Figure 2.7 Example 4-bit chipping sequence.

It is these license-exempt frequencies, with their spread spectrum techniques and
limited range, that are used by 802.11 (Wi-Fi), 802.15.1 (Bluetooth), and some flavors
of 802.16 (WiMAX). These technologies are discussed further in Section 2.8.

Different parts of the electromagnetic spectrum have different properties, making
some better suited to communication, and some less so. For example, some can penetrate
buildings and some cannot. Governments regulate only the prime communication por-
tion: the radio and microwave ranges. As demand for prime spectrum increases, there is
great interest in the spectrum that will become available when analog television is phased
out in favor of digital. There is also an effort to devise a wireless network technology that
could squeeze into the currently unused frequencies that separate television channels
without interfering with them.

Among the unregulated spectra are the infrared and visual light ranges, which can-
not penetrate walls. Infrared is widely used in remote controls for television and the like.
Increasingly, it is also used in a variety of short-range data exchange applications, based
on standards established by the Infrared Data Association (IrDA). For example, IrDA has
defined a standard for “Point & Pay,” using infrared to conduct a financial transaction
between a handheld device, such as a mobile phone or PDA, and a stationary financial
terminal such as a cash register. Visual light or infrared can also be focused by a laser to
provide a high-bandwidth link between two stationary points—even though no mobility
is involved—in situations where a wired link is less practical for some reason. For exam-
ple, two buildings belonging to the same organization but separated by a busy highway
could communicate using lasers.

2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B)
The first step in turning nodes and links into usable building blocks is to understand how
to connect them in such a way that bits can be transmitted from one node to another.
As mentioned in the preceding section, signals propagate over physical links. The task,
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therefore, is to encode the binary data that the source node wants to send into the signals
that the links are able to carry, and then to decode the signal back into the corresponding
binary data at the receiving node. We ignore the details of modulation and assume we
are working with two discrete signals: high and low. In practice, these signals might
correspond to two different voltages on a copper-based link, or two different power
levels on an optical link.

As we have said, most of the functions discussed in this chapter are performed by
a network adaptor—a piece of hardware that connects a node to a link. The network
adaptor contains a signalling component that actually encodes bits into signals at the
sending node and decodes signals into bits at the receiving node. Thus, as illustrated in
Figure 2.8, signals travel over a link between two signalling components, and bits flow
between network adaptors.

Let’s return to the problem of encoding bits onto signals. The obvious thing to do is
to map the data value 1 onto the high signal and the data value 0 onto the low signal. This
is exactly the mapping used by an encoding scheme called, cryptically enough, nonreturn
to zero (NRZ). For example, Figure 2.9 schematically depicts the NRZ-encoded signal
(bottom) that corresponds to the transmission of a particular sequence of bits (top).

The problem with NRZ is that a sequence of several consecutive 1s means that the
signal stays high on the link for an extended period of time, and similarly, several con-
secutive 0s means that the signal stays low for a long time. There are two fundamental
problems caused by long strings of 1s or 0s. The first is that it leads to a situation known
as baseline wander. Specifically, the receiver keeps an average of the signal it has seen so
far, and then uses this average to distinguish between low and high signals. Whenever the
signal is significantly lower than this aver-
age, the receiver concludes that it has just
seen a 0, and likewise, a signal that is sig-
nificantly higher than the average is inter-
preted to be a 1. The problem, of course,
is that too many consecutive 1s or 0s cause
this average to change, making it more dif-
ficult to detect a significant change in the
signal.

The second problem is that frequent
transitions from high to low and vice versa
are necessary to enable clock recovery. In-
tuitively, the clock recovery problem is
that both the encoding and the decod-
ing processes are driven by a clock—every
clock cycle the sender transmits a bit and

Bit Rates and Baud Rates

Many people use the terms bit rate
and baud rate interchangeably, even
though as we see with the Manchester
encoding, they are not the same thing.
While the Manchester encoding is an
example of a case in which a link’s
baud rate is greater than its bit rate, it
is also possible to have a bit rate that is
greater than the baud rate. This would
imply that more than one bit is en-
coded on each pulse sent over the link.

To see how this might happen,
suppose you could transmit four



2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B) 81

Figure 2.8 Signals travel between signalling components; bits flow between adaptors.

Figure 2.9 NRZ encoding of a bitstream.

the receiver recovers a bit. The sender’s and the receiver’s clocks have to be precisely
synchronized in order for the receiver to recover the same bits the sender transmits.
If the receiver’s clock is even slightly faster or slower than the sender’s clock, then it
does not correctly decode the signal. You could imagine sending the clock to the re-
ceiver over a separate wire, but this is typically avoided because it makes the cost of

distinguished signals over a link rather
than just two. On an analog link, for
example, these four signals might cor-
respond to four different frequencies.
Given four different signals, it is possi-
ble to encode two bits of information
on each signal. That is, the first signal
means 00, the second signal means
01, and so on. Now, a sender (re-
ceiver) that is able to transmit (detect)
1,000 pulses per second would be able
to send (receive) 2,000 bits of infor-
mation per second. That is, it would
be a 1,000-baud/2,000-bps link.

cabling twice as high. So instead, the re-
ceiver derives the clock from the received
signal—the clock recovery process. When-
ever the signal changes, such as on a tran-
sition from 1 to 0 or from 0 to 1, then the
receiver knows it is at a clock cycle bound-
ary, and it can resynchronize itself. How-
ever, a long period of time without such a
transition leads to clock drift. Thus, clock
recovery depends on having lots of transi-
tions in the signal, no matter what data is
being sent.

One approach that addresses this
problem, called nonreturn to zero inverted
(NRZI), has the sender make a transition
from the current signal to encode a 1 and
stay at the current signal to encode a 0.



82 2 Direct Link Networks

Figure 2.10 Different encoding strategies.

This solves the problem of consecutive 1s, but obviously does nothing for consecutive
0s. NRZI is illustrated in Figure 2.10. An alternative, called Manchester encoding, does
a more explicit job of merging the clock with the signal by transmitting the exclusive-
OR of the NRZ-encoded data and the clock. (Think of the local clock as an internal
signal that alternates from low to high; a low/high pair is considered one clock cycle.)
The Manchester encoding is also illustrated in Figure 2.10. Observe that the Manchester
encoding results in 0 being encoded as a low-to-high transition and 1 being encoded
as a high-to-low transition. Because both 0s and 1s result in a transition to the sig-
nal, the clock can be effectively recovered at the receiver. (There is also a variant of
the Manchester encoding, called differential Manchester, in which a 1 is encoded with
the first half of the signal equal to the last half of the previous bit’s signal and a 0 is
encoded with the first half of the signal opposite to the last half of the previous bit’s
signal.)

The problem with the Manchester encoding scheme is that it doubles the rate at
which signal transitions are made on the link, which means that the receiver has half the
time to detect each pulse of the signal. The rate at which the signal changes is called the
link’s baud rate. In the case of the Manchester encoding, the bit rate is half the baud rate,
so the encoding is considered only 50% efficient. Keep in mind that if the receiver had
been able to keep up with the faster baud rate required by the Manchester encoding in
Figure 2.10, then both NRZ and NRZI could have been able to transmit twice as many
bits in the same time period.

A final encoding that we consider, called 4B/5B, attempts to address the inefficiency
of the Manchester encoding without suffering from the problem of having extended du-
rations of high or low signals. The idea of 4B/5B is to insert extra bits into the bitstream
so as to break up long sequences of 0s or 1s. Specifically, every 4 bits of actual data are
encoded in a 5-bit code that is then transmitted to the receiver; hence the name 4B/5B.
The 5-bit codes are selected in such a way that each one has no more than one leading 0
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4-Bit Data Symbol 5-Bit Code

0000 11110

0001 01001

0010 10100

0011 10101

0100 01010

0101 01011

0110 01110

0111 01111

1000 10010

1001 10011

1010 10110

1011 10111

1100 11010

1101 11011

1110 11100

1111 11101

Table 2.4 4B/5B encoding.

and no more than two trailing 0s. Thus, when sent back-to-back, no pair of 5-bit codes
results in more than three consecutive 0s being transmitted. The resulting 5-bit codes are
then transmitted using the NRZI encoding, which explains why the code is only con-
cerned about consecutive 0s—NRZI already solves the problem of consecutive 1s. Note
that the 4B/5B encoding results in 80% efficiency.

Table 2.4 gives the 5-bit codes that correspond to each of the 16 possible 4-bit data
symbols. Notice that since 5 bits are enough to encode 32 different codes, and we are
using only 16 of these for data, there are 16 codes left over that we can use for other
purposes. Of these, code 11111 is used when the line is idle, code 00000 corresponds to
when the line is dead, and 00100 is interpreted to mean halt. Of the remaining 13 codes,
7 of them are not valid because they violate the “one leading 0, two trailing 0s,” rule, and
the other 6 represent various control symbols. As we will see later in this chapter, some
framing protocols (e.g., FDDI) make use of these control symbols.
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Figure 2.11 Bits flow between adaptors, frames between hosts.

2.3 Framing
Now that we have seen how to transmit a sequence of bits over a point-to-point link—
from adaptor to adaptor—let’s consider the scenario illustrated in Figure 2.11. Recall
from Chapter 1 that we are focusing on packet-switched networks, which means that
blocks of data (called frames at this level), not bitstreams, are exchanged between nodes.
It is the network adaptor that enables the nodes to exchange frames. When node A
wishes to transmit a frame to node B, it tells its adaptor to transmit a frame from the
node’s memory. This results in a sequence of bits being sent over the link. The adaptor
on node B then collects together the sequence of bits arriving on the link and deposits
the corresponding frame in B’s memory. Recognizing exactly what set of bits constitute
a frame—that is, determining where the frame begins and ends—is the central challenge
faced by the adaptor.

There are several ways to address the framing problem. This section uses several
different protocols to illustrate the various points in the design space. Note that while we
discuss framing in the context of point-to-point links, the problem is a fundamental one
that must also be addressed in multiple-access networks like Ethernet and token rings.

2.3.1 Byte-Oriented Protocols (PPP)
One of the oldest approaches to framing—it has its roots in connecting terminals to
mainframes—is to view each frame as a collection of bytes (characters) rather than a
collection of bits. Such a byte-oriented approach is exemplified by older protocols such as
the Binary Synchronous Communication (BISYNC) protocol developed by IBM in the
late 1960s, and the Digital Data Communication Message Protocol (DDCMP) used in
Digital Equipment Corporation’s DECNET. The more recent and widely used Point-to-
Point Protocol (PPP) provides another example of this approach.

Sentinel-based Approaches
Figure 2.12 illustrates the BISYNC protocol’s frame format. This figure is the first of
many that you will see in this book that are used to illustrate frame or packet formats,
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Figure 2.12 BISYNC frame format.

Figure 2.13 PPP frame format.

so a few words of explanation are in order. We show a packet as a sequence of labeled
fields. Above each field is a number indicating the length of that field in bits. Note that
the packets are transmitted beginning with the leftmost field.

BISYNC uses special characters known as sentinel characters to indicate where
frames start and end. The beginning of a frame is denoted by sending a special SYN
(synchronization) character. The data portion of the frame is then contained between
two more special characters: STX (start of text) and ETX (end of text). The SOH (start
of header) field serves much the same purpose as the STX field. The problem with the
sentinel approach, of course, is that the ETX character might appear in the data por-
tion of the frame. BISYNC overcomes this problem by “escaping” the ETX character by
preceding it with a data-link-escape (DLE) character whenever it appears in the body of
a frame; the DLE character is also escaped (by preceding it with an extra DLE) in the
frame body. (C programmers may notice that this is analogous to the way a quotation
mark is escaped by the backslash when it occurs inside a string.) This approach is often
called character stuffing because extra characters are inserted in the data portion of the
frame.

The frame format also includes a field labeled cyclic redundancy check (CRC) that
is used to detect transmission errors; various algorithms for error detection are presented
in Section 2.4. Finally, the frame contains additional header fields that are used for,
among other things, the link-level reliable delivery algorithm. Examples of these algo-
rithms are given in Section 2.5.

The more recent PPP, which is commonly used to carry Internet Protocol pack-
ets over various sorts of point-to-point links, is similar to BISYNC in that it also uses
sentinels and character stuffing. The format for a PPP frame is given in Figure 2.13.
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What’s in a Layer?

One of the important contributions of
the OSI reference model presented in
Chapter 1 was to provide some vocab-
ulary for talking about protocols and,
in particular, protocol layers. This vo-
cabulary has provided fuel for plenty
of arguments along the lines of “Your
protocol does function X at layer Y,
and the OSI reference model says it
should be done at layer Z—that’s a
layer violation.” In fact, figuring out
the right layer at which to perform
a given function can be very diffi-
cult, and the reasoning is usually a lot
more subtle than “What does the OSI
model say?” It is partly for this rea-
son that this book avoids a rigidly lay-
erist approach. Instead, it shows you
a lot of functions that need to be per-
formed by protocols and looks at some
ways that they have been successfully
implemented.

In spite of our nonlayerist ap-
proach, sometimes we need conve-
nient ways to talk about classes of
protocols, and the name of the layer
at which they operate is often the
best choice. Thus, for example, this
chapter focuses primarily on link-layer
protocols. (Bit encoding, described in
Section 2.2, is the exception, being
considered a physical-layer function.)
Link-layer protocols can be identified
by the fact that they run over sin-
gle links—the type of network dis-
cussed in this chapter. Network-layer

The special start-of-text character,
denoted as the Flag field in Figure 2.13,
is 01111110. The Address and Con-
trol fields usually contain default values,
and so are uninteresting. The Protocol
field is used for demultiplexing: it iden-
tifies the high-level protocol such as IP
or IPX (an IP-like protocol developed by
Novell). The frame payload size can be
negotiated, but it is 1,500 bytes by de-
fault. The Checksum field is either 2
(by default) or 4 bytes long.

The PPP frame format is unusual
in that several of the field sizes are negoti-
ated rather than fixed. This negotiation is
conducted by a protocol called Link Con-
trol Protocol (LCP). PPP and LCP work
in tandem: LCP sends control messages
encapsulated in PPP frames—such mes-
sages are denoted by an LCP identifier in
the PPP Protocol field—and then turns
around and changes PPP’s frame format
based on the information contained in
those control messages. LCP is also in-
volved in establishing a link between two
peers when both sides detect that com-
munication over the link is possible (e.g.,
when each optical receiver detects an in-
coming signal from the fiber to which it
connects).

Byte-Counting Approach

As every Computer Sciences 101 student
knows, the alternative to detecting the
end of a file with a sentinel value is to
include the number of items in the file
at the beginning of the file. The same
is true in framing—the number of bytes
contained in a frame can be included
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Figure 2.14 DDCMP frame format.

protocols, by contrast, run over
switched networks that contain lots
of links interconnected by switches
or routers. Topics related to network-
layer protocols are discussed in Chap-
ters 3 and 4.

Note that protocol layers are
supposed to be helpful—they provide
helpful ways to talk about classes of
protocols, and they help us divide the
problem of building networks into
manageable subtasks. However, they
are not meant to be overly restrictive—
the mere fact that something is a layer
violation does not end the argument
about whether it is a worthwhile thing
to do. In other words, layering makes
a good slave, but a poor master. A par-
ticularly interesting argument about
the best layer in which to place a cer-
tain function comes up when we look
at congestion control in Chapter 6.

as a field in the frame header. The DEC-
NET’s DDCMP protocol uses this ap-
proach, as illustrated in Figure 2.14. In this
example, the COUNT field specifies how
many bytes are contained in the frame’s
body.

One danger with this approach is
that a transmission error could corrupt
the count field, in which case the end of
the frame would not be correctly detected.
(A similar problem exists with the sentinel-
based approach if the ETX field becomes
corrupted.) Should this happen, the re-
ceiver will accumulate as many bytes as the
bad COUNT field indicates and then use
the error detection field to determine that
the frame is bad. This is sometimes called
a framing error. The receiver will then wait
until it sees the next SYN character to start
collecting the bytes that make up the next
frame. It is therefore possible that a fram-
ing error will cause back-to-back frames to
be incorrectly received.

2.3.2 Bit-Oriented Protocols (HDLC)
Unlike byte-oriented protocols, a bit-oriented protocol is not concerned with byte
boundaries—it simply views the frame as a collection of bits. These bits might come
from some character set, such as ASCII, they might be pixel values in an image, or they
could be instructions and operands from an executable file. The Synchronous Data Link
Control (SDLC) protocol developed by IBM is an example of a bit-oriented protocol;
SDLC was later standardized by the ISO as the High-Level Data Link Control (HDLC)
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Figure 2.15 HDLC frame format.

protocol. In the following discussion, we use HDLC as an example; its frame format is
given in Figure 2.15.

HDLC denotes both the beginning and the end of a frame with the distinguished
bit sequence 01111110. This sequence is also transmitted during any times that the link
is idle so that the sender and receiver can keep their clocks synchronized. In this way,
both protocols essentially use the sentinel approach. Because this sequence might ap-
pear anywhere in the body of the frame—in fact, the bits 01111110 might cross byte
boundaries—bit-oriented protocols use the analog of the DLE character, a technique
known as bit stuffing.

Bit stuffing in the HDLC protocol works as follows. On the sending side, any time
five consecutive 1s have been transmitted from the body of the message (i.e., excluding
when the sender is trying to transmit the distinguished 01111110 sequence), the sender
inserts a 0 before transmitting the next bit. On the receiving side, should five consecutive
1s arrive, the receiver makes its decision based on the next bit it sees (i.e., the bit following
the five 1s). If the next bit is a 0, it must have been stuffed, and so the receiver removes
it. If the next bit is a 1, then one of two things is true: Either this is the end-of-frame
marker or an error has been introduced into the bitstream. By looking at the next bit,
the receiver can distinguish between these two cases: if it sees a 0 (i.e., the last eight bits
it has looked at are 01111110), then it is the end-of-frame marker; if it sees a 1 (i.e., the
last eight bits it has looked at are 01111111), then there must have been an error and the
whole frame is discarded. In the latter case, the receiver has to wait for the next 01111110
before it can start receiving again, and as a consequence, there is the potential that the
receiver will fail to receive two consecutive frames. Obviously, there are still ways that
framing errors can go undetected, such as when an entire spurious end-of-frame pattern
is generated by errors, but these failures are relatively unlikely. Robust ways of detecting
errors are discussed in Section 2.4.

An interesting characteristic of bit stuffing, as well as character stuffing, is that the
size of a frame is dependent on the data that is being sent in the payload of the frame.
It is in fact not possible to make all frames exactly the same size, given that the data that
might be carried in any frame is arbitrary. (To convince yourself of this, consider what
happens if the last byte of a frame’s body is the ETX character.) A form of framing that
ensures that all frames are the same size is described in the next subsection.
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2.3.3 Clock-Based Framing (SONET)
A third approach to framing is exemplified by the Synchronous Optical Network
(SONET) standard. For lack of a widely accepted generic term, we refer to this ap-
proach simply as clock-based framing. SONET was first proposed by Bell Communica-
tions Research (Bellcore), and then developed under the American National Standards
Institute (ANSI) for digital transmission over optical fiber; it has since been adopted by
the ITU-T. Who standardized what and when is not the interesting issue, though. The
thing to remember about SONET is that it is the dominant standard for long-distance
transmission of data over optical networks.

An important point to make about SONET before we go any further is that the
full specification is substantially larger than this book. Thus, the following discussion
will necessarily cover only the high points of the standard. Also, SONET addresses both
the framing problem and the encoding problem. It also addresses a problem that is very
important for phone companies—the multiplexing of several low-speed links onto one
high-speed link. We begin with framing and discuss the other issues following.

As with the previously discussed framing schemes, a SONET frame has some spe-
cial information that tells the receiver where the frame starts and ends. However, that is
about as far as the similarities go. Notably, no bit stuffing is used, so that a frame’s length
does not depend on the data being sent. So the question to ask is, “How does the receiver
know where each frame starts and ends?” We consider this question for the lowest-speed
SONET link, which is known as STS-1 and runs at 51.84 Mbps. An STS-1 frame is
shown in Figure 2.16. It is arranged as nine rows of 90 bytes each, and the first 3 bytes
of each row are overhead, with the rest being available for data that is being transmitted
over the link. The first 2 bytes of the frame contain a special bit pattern, and it is these
bytes that enable the receiver to determine where the frame starts. However, since bit
stuffing is not used, there is no reason why this pattern will not occasionally turn up in
the payload portion of the frame. To guard against this, the receiver looks for the special
bit pattern consistently, hoping to see it appearing once every 810 bytes, since each frame
is 9 × 90 = 810 bytes long. When the special pattern turns up in the right place enough
times, the receiver concludes that it is in sync and can then interpret the frame correctly.

One of the things we are not describing due to the complexity of SONET is the
detailed use of all the other overhead bytes. Part of this complexity can be attributed to
the fact that SONET runs across the carrier’s optical network, not just over a single link.
(Recall that we are glossing over the fact that the carriers implement a network, and we
are instead focusing on the fact that we can lease a SONET link from them and then use
this link to build our own packet-switched network.) Additional complexity comes from
the fact that SONET provides a considerably richer set of services than just data transfer.
For example, 64 Kbps of a SONET link’s capacity is set aside for a voice channel that is
used for maintenance.
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Figure 2.16 A SONET STS-1 frame.

The overhead bytes of a SONET frame are encoded using NRZ, the simple en-
coding described in the previous section where 1s are high and 0s are low. However, to
ensure that there are plenty of transitions to allow the receiver to recover the sender’s
clock, the payload bytes are scrambled. This is done by calculating the exclusive-OR
(XOR) of the data to be transmitted and by the use of a well-known bit pattern. The bit
pattern, which is 127 bits long, has plenty of transitions from 1 to 0, so that XORing
it with the transmitted data is likely to yield a signal with enough transitions to enable
clock recovery.

SONET supports the multiplexing of multiple low-speed links in the following
way. A given SONET link runs at one of a finite set of possible rates, ranging from
51.84 Mbps (STS-1) to 2,488.32 Mbps (STS-48), and beyond. (See Table 2.2 in Sec-
tion 2.1 for the full set of SONET data rates.) Note that all of these rates are integer
multiples of STS-1. The significance for framing is that a single SONET frame can con-
tain subframes for multiple lower-rate channels. A second related feature is that each
frame is 125 µs long. This means that at STS-1 rates, a SONET frame is 810 bytes long,
while at STS-3 rates, each SONET frame is 2,430 bytes long. Notice the synergy be-
tween these two features: 3 × 810 = 2,430, meaning that three STS-1 frames fit exactly
in a single STS-3 frame.

Intuitively, the STS-N frame can be thought of as consisting of N STS-1 frames,
where the bytes from these frames are interleaved, that is, a byte from the first frame is
transmitted, then a byte from the second frame is transmitted, and so on. The reason for
interleaving the bytes from each STS-N frame is to ensure that the bytes in each STS-1
frame are evenly paced, that is, bytes show up at the receiver at a smooth 51 Mbps, rather
than all bunched up during one particular 1/N th of the 125-µs interval.

Although it is accurate to view an STS-N signal as being used to multiplex N
STS-1 frames, the payload from these STS-1 frames can be linked together to form a
larger STS-N payload; such a link is denoted STS-N c (for concatenated ). One of the
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Figure 2.17 Three STS-1 frames multiplexed onto one STS-3c frame.

Figure 2.18 SONET frames out of phase.

fields in the overhead is used for this purpose. Figure 2.17 schematically depicts con-
catenation in the case of three STS-1 frames being concatenated into a single STS-3c
frame. The significance of a SONET link being designated as STS-3c rather than STS-3
is that, in the former case, the user of the link can view it as a single 155.25-Mbps pipe,
whereas an STS-3 should really be viewed as three 51.84-Mbps links that happen to
share a fiber.

Finally, the preceding description of SONET is overly simplistic in that it assumes
that the payload for each frame is completely contained within the frame. (Why wouldn’t
it be?) In fact, we should view the STS-1 frame just described as simply a placeholder for
the frame, where the actual payload may float across frame boundaries. This situation
is illustrated in Figure 2.18. Here we see both the STS-1 payload floating across two
STS-1 frames, and the payload shifted some number of bytes to the right and, therefore,
wrapped around. One of the fields in the frame overhead points to the beginning of the
payload. The value of this capability is that it simplifies the task of synchronizing the
clocks used throughout the carriers’ networks, which is something that carriers spend a
lot of their time worrying about.
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2.4 Error Detection
As discussed in Chapter 1, bit errors are sometimes introduced into frames. This hap-
pens, for example, because of electrical interference or thermal noise. Although errors are
rare, especially on optical links, some mechanism is needed to detect these errors so that
corrective action can be taken. Otherwise, the end user is left wondering why the C pro-
gram that successfully compiled just a moment ago now suddenly has a syntax error in it,
when all that happened in the interim is that it was copied across a network file system.

There is a long history of techniques for dealing with bit errors in computer sys-
tems, dating back to at least the 1940s. Hamming and Reed/Solomon codes are two
notable examples that were developed for use in punch card readers and when storing
data on magnetic disks and in early core memories. This section describes some of the
error detection techniques most commonly used in networking.

Detecting errors is only one part of the problem. The other part is correcting errors
once detected. There are two basic approaches that can be taken when the recipient of
a message detects an error. One is to notify the sender that the message was corrupted
so that the sender can retransmit a copy of the message. If bit errors are rare, then in all
probability the retransmitted copy will be error free. Alternatively, there are some types
of error detection algorithms that allow the recipient to reconstruct the correct message
even after it has been corrupted; such algorithms rely on error correcting codes, discussed
below.

One of the most common techniques for detecting transmission errors is a tech-
nique known as the cyclic redundancy check (CRC). It is used in nearly all the link-level
protocols discussed in the previous section—for example, HDLC, DDCMP—as well as
in the CSMA and token ring protocols described later in this chapter. Section 2.4.3 out-
lines the basic CRC algorithm. Before discussing that approach, we consider two simpler
schemes that are also widely used: two-dimensional parity and checksums. The former is
used by the BISYNC protocol when it is transmitting ASCII characters (CRC is used as
the error code when BISYNC is used to transmit EBCDIC), and the latter is used by
several Internet protocols.

The basic idea behind any error detection scheme is to add redundant information
to a frame that can be used to determine if errors have been introduced. In the extreme,
we could imagine transmitting two complete copies of the data. If the two copies are
identical at the receiver, then it is probably the case that both are correct. If they differ,
then an error was introduced into one (or both) of them, and they must be discarded.
This is a rather poor error detection scheme for two reasons. First, it sends n redun-
dant bits for an n-bit message. Second, many errors will go undetected—any error that
happens to corrupt the same bit positions in the first and second copies of the message.

Fortunately, we can do a lot better than this simple scheme. In general, we can
provide quite strong error detection capability while sending only k redundant bits for
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an n-bit message, where k � n. On an Ethernet, for example, a frame carrying up to
12,000 bits (1,500 bytes) of data requires only a 32-bit CRC code, or as it is commonly
expressed, uses CRC-32. Such a code will catch the overwhelming majority of errors, as
we will see below.

We say that the extra bits we send are redundant because they add no new infor-
mation to the message. Instead, they are derived directly from the original message using
some well-defined algorithm. Both the sender and the receiver know exactly what that
algorithm is. The sender applies the algorithm to the message to generate the redun-
dant bits. It then transmits both the message and those few extra bits. When the receiver
applies the same algorithm to the received message, it should (in the absence of errors)
come up with the same result as the sender. It compares the result with the one sent to it
by the sender. If they match, it can conclude (with high likelihood) that no errors were
introduced in the message during transmission. If they do not match, it can be sure that
either the message or the redundant bits were corrupted, and it must take appropriate
action, that is, discarding the message, or correcting it if that is possible.

One note on the terminology for these extra bits. In general, they are referred to
as error-detecting codes. In specific cases, when the algorithm to create the code is based
on addition, they may be called a checksum. We will see that the Internet checksum is
appropriately named: It is an error check that uses a summing algorithm. Unfortunately,
the word “checksum” is often used imprecisely to mean any form of error detecting code,
including CRCs. This can be confusing, so we urge you to use the word “checksum” only
to apply to codes that actually do use addition and to use “error detecting code” to refer
to the general class of codes described in this section.

2.4.1 Two-Dimensional Parity
Two-dimensional parity is exactly what the name suggests. It is based on “simple” (one-
dimensional) parity, which usually involves adding one extra bit to a 7-bit code to balance
the number of 1s in the byte. For example, odd parity sets the eighth bit to 1 if needed
to give an odd number of 1s in the byte, and even parity sets the eighth bit to 1 if
needed to give an even number of 1s in the byte. Two-dimensional parity does a similar
calculation for each bit position across each of the bytes contained in the frame. This
results in an extra parity byte for the entire frame, in addition to a parity bit for each byte.
Figure 2.19 illustrates how two-dimensional even parity works for an example frame
containing 6 bytes of data. Notice that the third bit of the parity byte is 1 since there is
an odd number of 1s in the third bit across the 6 bytes in the frame. It can be shown
that two-dimensional parity catches all 1-, 2-, and 3-bit errors, and most 4-bit errors. In
this case, we have added 14 bits of redundant information to a 42-bit message, and yet
we have stronger protection against common errors than the “repetition code” described
above.
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Figure 2.19 Two-dimensional parity.

2.4.2 Internet Checksum Algorithm
A second approach to error detection is exemplified by the Internet checksum. Although
it is not used at the link level, it nevertheless provides the same sort of functionality as
CRCs and parity, so we discuss it here. We will see examples of its use in Sections 4.1,
5.1, and 5.2.

The idea behind the Internet checksum is very simple—you add up all the words
that are transmitted and then transmit the result of that sum. The result is called the
checksum. The receiver performs the same calculation on the received data and compares
the result with the received checksum. If any transmitted data, including the checksum
itself, is corrupted, then the results will not match, so the receiver knows that an error
occurred.

You can imagine many different variations on the basic idea of a checksum. The
exact scheme used by the Internet protocols works as follows. Consider the data being
checksummed as a sequence of 16-bit integers. Add them together using 16-bit ones
complement arithmetic (explained below) and then take the ones complement of the
result. That 16-bit number is the checksum.

In ones complement arithmetic, a negative integer −x is represented as the comple-
ment of x, that is, each bit of x is inverted. When adding numbers in ones complement
arithmetic, a carryout from the most significant bit needs to be added to the result. Con-
sider, for example, the addition of −5 and −3 in ones complement arithmetic on 4-bit
integers: +5 is 0101, so −5 is 1010; +3 is 0011, so −3 is 1100. If we add 1010 and
1100 ignoring the carry, we get 0110. In ones complement arithmetic, the fact that this
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operation caused a carry from the most significant bit causes us to increment the result,
giving 0111, which is the ones complement representation of −8 (obtained by inverting
the bits in 1000), as we would expect.

The following routine gives a straightforward implementation of the Internet’s
checksum algorithm. The count argument gives the length of buf measured in
16-bit units. The routine assumes that buf has already been padded with 0s to a 16-bit
boundary.

u_short
cksum(u_short *buf, int count)
{

register u_long sum = 0;

while (count--)
{

sum += *buf++;
if (sum & 0xFFFF0000)
{

/* carry occurred,
so wrap around */

sum &= 0xFFFF;
sum++;

}
}
return ~(sum & 0xFFFF);

}

This code ensures that the calculation uses ones complement arithmetic, rather
than the twos complement that is used in most machines. Note the if statement inside
the while loop. If there is a carry into the top 16 bits of sum, then we increment sum
just as in the previous example.

Compared to our repetition code, this algorithm scores well for using a small num-
ber of redundant bits—only 16 for a message of any length—but it does not score ex-
tremely well for strength of error detection. For example, a pair of single-bit errors, one
of which increments a word and one of which decrements another word by the same
amount, will go undetected. The reason for using an algorithm like this in spite of its
relatively weak protection against errors (compared to a CRC, for example) is simple:
This algorithm is much easier to implement in software. Experience in the ARPANET
suggested that a checksum of this form was adequate. One reason it is adequate is that
this checksum is the last line of defense in an end-to-end protocol; the majority of errors
are picked up by stronger error detection algorithms, such as CRCs, at the link level.
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2.4.3 Cyclic Redundancy Check
It should be clear by now that a major goal in designing error detection algorithms is to
maximize the probability of detecting errors using only a small number of redundant bits.
Cyclic redundancy checks use some fairly powerful mathematics to achieve this goal. For
example, a 32-bit CRC gives strong protection against common bit errors in messages
that are thousands of bytes long. The theoretical foundation of the cyclic redundancy
check is rooted in a branch of mathematics called finite fields. While this may sound
daunting, the basic ideas can be easily understood.

To start, think of an (n + 1)-bit message as being represented by an n degree poly-
nomial, that is, a polynomial whose highest-order term is xn. The message is repre-
sented by a polynomial by using the value of each bit in the message as the coefficient

Simple Probability Calculations

When dealing with network errors
and other unlikely (we hope) events,
we often have use for simple back-
of-the-envelope probability estimates.
A useful approximation here is that
if two independent events have small
probabilities p and q, then the proba-
bility of either event is p + q; the ex-
act answer is 1 − (1 − p)(1 − q) =
p + q − pq. For p = q = .01, this es-
timate is .02, while the exact value is
.0199.

For a simple application of this,
suppose that the per-bit error rate on
a link is 1 in 107. Now suppose we are
interested in estimating the probabil-
ity of at least one bit in a 10,000-bit
packet being errored. Using the above
approximation repeatedly over all the
bits, we can say that we are interested
in the probability of either the first
bit being errored, or the second bit,
or the third, and so on. Assuming bit
errors are all independent (which they
aren’t), we can therefore estimate that

for each term in the polynomial, starting
with the most significant bit to represent
the highest-order term. For example,
an 8-bit message consisting of the bits
10011010 corresponds to the polyno-
mial

M(x) = 1 × x7 + 0 × x6 + 0 × x5

+1 × x4 + 1 × x3 + 0 × x2

+1 × x1 + 0 × x0

= x7 + x4 + x3 + x1

We can thus think of a sender and a
receiver as exchanging polynomials with
each other.

For the purposes of calculating a
CRC, a sender and receiver have to agree
on a divisor polynomial, C(x). C(x) is
a polynomial of degree k. For example,
suppose C(x) = x3 + x2 + 1. In this
case, k = 3. The answer to the ques-
tion “Where did C(x) come from?” is,
in most practical cases, “You look it up
in a book.” In fact, the choice of C(x)
has a significant impact on what types
of errors can be reliably detected, as we
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discuss below. There are a handful of divisor polynomials that are very good choices
for various environments, and the exact choice is normally made as part of the proto-
col design. For example, the Ethernet standard uses a well-known polynomial of de-
gree 32.

When a sender wishes to transmit a message M(x) that is n + 1 bits long, what
is actually sent is the (n + 1)-bit message plus k bits. We call the complete transmit-
ted message, including the redundant bits, P(x). What we are going to do is con-
trive to make the polynomial representing P(x) exactly divisible by C(x); we explain
how this is achieved below. If P(x) is transmitted over a link and there are no er-
rors introduced during transmission, then the receiver should be able to divide P(x)
by C(x) exactly, leaving a remainder of zero. On the other hand, if some error is in-
troduced into P(x) during transmission, then in all likelihood the received polynomial
will no longer be exactly divisible by C(x), and thus the receiver will obtain a nonzero

the probability of at least one error in
a 10,000-bit (104 bit) packet is 104 ×
10−7 = 10−3. The exact answer, com-
puted as 1 − P(no errors), would be
1 − (1 − 10−7)10,000 = .00099950.

For a slightly more complex ap-
plication, we compute the probability
of exactly two errors in such a packet;
this is the probability of an error that
would sneak past a 1-parity-bit check-
sum. If we consider two particular bits
in the packet, say bit i and bit j, the
probability of those exact bits being
errored is 10−7 × 10−7. Now the to-
tal number of possible bit pairs in the
packet is

(104

2

) = 104 × (104 − 1)/2 ≈ 5 × 107

So again using the approximation of
repeatedly adding the probabilities of
many rare events (in this case, of any
possible bit pair being errored), our
total probability of at least two errored
bits is 5 × 107 × 10−14 = 5 × 10−7.

remainder implying that an error has oc-
curred.

It will help to understand the follow-
ing if you know a little about polynomial
arithmetic; it is just slightly different from
normal integer arithmetic. We are dealing
with a special class of polynomial arith-
metic here, where coefficients may be only
one or zero, and operations on the coeffi-
cients are performed using modulo 2 arith-
metic. This is referred to as polynomial
arithmetic modulo 2. Since this is a net-
working book, not a mathematics text, let’s
focus on the key properties of this type of
arithmetic for our purposes (which we ask
you to accept on faith):

■ Any polynomial B(x) can be di-
vided by a divisor polynomial
C(x) if B(x) is of higher degree
than C(x);

■ Any polynomial B(x) can be di-
vided once by a divisor polyno-
mial C(x) if B(x) is of the same
degree as C(x);
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■ The remainder obtained when B(x) is divided by C(x) is obtained by subtract-
ing C(x) from B(x);

■ To subtract C(x) from B(x), we simply perform the exclusive-OR (XOR) oper-
ation on each pair of matching coefficients.

For example, the polynomial x3 + 1 can be divided by x3 + x2 + 1 (because they
are both of degree 3) and the remainder would be 0×x3 +1×x2 +0×x1 +0×x0 = x2

(obtained by XORing the coefficients of each term). In terms of messages, we could say
that 1001 can be divided by 1101 and leaves a remainder of 0100. You should be able to
see that the remainder is just the bitwise exclusive-OR of the two messages.

Now that we know the basic rules for dividing polynomials, we are able to do long
division, which is necessary to deal with longer messages. An example appears below.

Recall that we wanted to create a polynomial for transmission that is derived from
the original message M(x), is k bits longer than M(x), and is exactly divisible by C(x).
We can do this in the following way:

1 Multiply M(x) by xk, that is, add k zeros at the end of the message. Call this
zero-extended message T (x).

2 Divide T (x) by C(x) and find the remainder.

3 Subtract the remainder from T (x).

It should be obvious that what is left at this point is a message that is exactly
divisible by C(x). We may also note that the resulting message consists of M(x) followed
by the remainder obtained in step 2, because when we subtracted the remainder (which
can be no more than k bits long), we were just XORing it with the k zeros added in
step 1. This part will become clearer with an example.

Consider the message x7 +x4 +x3 +x1, or 10011010. We begin by multiplying by
x3, since our divisor polynomial is of degree 3. This gives 10011010000. We divide this
by C(x), which corresponds to 1101 in this case. Figure 2.20 shows the polynomial long-
division operation. Given the rules of polynomial arithmetic described above, the long
division operation proceeds much as it would if we were dividing integers. Thus, in the
first step of our example, we see that the divisor 1101 divides once into the first four bits
of the message (1001), since they are of the same degree, and leaves a remainder of 100
(1101 XOR 1001). The next step is to bring down a digit from the message polynomial
until we get another polynomial with the same degree as C(x), in this case 1001. We
calculate the remainder again (100) and continue until the calculation is complete. Note
that the “result” of the long division, which appears at the top of the calculation, is not
really of much interest—it is the remainder at the end that matters.
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Figure 2.20 CRC calculation using polynomial long division.

You can see from the very bottom of Figure 2.20 that the remainder of the example
calculation is 101. So we know that 10011010000 minus 101 would be exactly divisible
by C(x), and this is what we send. The minus operation in polynomial arithmetic is the
logical XOR operation, so we actually send 10011010101. As noted above, this turns
out to be just the original message with the remainder from the long-division calculation
appended to it. The recipient divides the received polynomial by C(x) and, if the result
is 0, concludes that there were no errors. If the result is nonzero, it may be necessary
to discard the corrupted message; with some codes, it may be possible to correct a small
error (e.g., if the error affected only one bit). A code that enables error correction is called
an error correcting code (ECC).

Now we will consider the question of where the polynomial C(x) comes from.
Intuitively, the idea is to select this polynomial so that it is very unlikely to divide evenly
into a message that has errors introduced into it. If the transmitted message is P(x), we
may think of the introduction of errors as the addition of another polynomial E(x), so
the recipient sees P(x)+E(x). The only way that an error could slip by undetected would
be if the received message could be evenly divided by C(x), and since we know that P(x)
can be evenly divided by C(x), this could only happen if E(x) can be divided evenly by
C(x). The trick is to pick C(x) so that this is very unlikely for common types of errors.

One common type of error is a single-bit error, which can be expressed as E(x) = xi

when it affects bit position i. If we select C(x) such that the first and the last term are
nonzero, then we already have a two-term polynomial that cannot divide evenly into the
one term E(x). Such a C(x) can, therefore, detect all single-bit errors. In general, it is
possible to prove that the following types of errors can be detected by a C(x) with the
stated properties:
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■ All single-bit errors, as long as the xk and x0 terms have nonzero coefficients;

■ All double-bit errors, as long as C(x) has a factor with at least three terms;

■ Any odd number of errors, as long as C(x) contains the factor (x + 1);

■ Any “burst” error (i.e., sequence
of consecutive errored bits) for
which the length of the burst is
less than k bits. (Most burst er-
rors of larger than k bits can also
be detected.)

Six versions of C(x) are widely used
in link-level protocols (shown in Table 2.5).
For example, the Ethernet and 802.5
networks described later in this chapter
use CRC-32, while HDLC uses CRC-
CCITT. ATM, as described in Chapter 3,
uses CRC-8, CRC-10, and CRC-32.

Finally, we note that the CRC algo-
rithm, while seemingly complex, is easily
implemented in hardware using a k-bit
shift register and XOR gates. The number
of bits in the shift register equals the de-
gree of the generator polynomial (k). Fig-
ure 2.21 shows the hardware that would
be used for the generator x3 + x2 + 1
from our previous example. The mes-
sage is shifted in from the left, begin-
ning with the most significant bit and
ending with the string of k zeros that
is attached to the message, just as in
the long-division example. When all the
bits have been shifted in and appropri-
ately XORed, the register contains the
remainder, that is, the CRC (most sig-
nificant bit on the right). The position
of the XOR gates is determined as fol-
lows: If the bits in the shift register are
labeled 0 through k − 1, left to right,

Error Detection or Error

Correction?

We have mentioned that it is possi-
ble to use codes that not only detect
the presence of errors but also enable
errors to be corrected. Since the de-
tails of such codes require yet more
complex mathematics than that re-
quired to understand CRCs, we will
not dwell on them here. However, it
is worth considering the merits of cor-
rection versus detection.

At first glance, it would seem
that correction is always better, since
with detection we are forced to throw
away the message and, in general, ask
for another copy to be transmitted.
This uses up bandwidth and may in-
troduce latency while waiting for the
retransmission. However, there is a
downside to correction: It generally
requires a greater number of redun-
dant bits to send an error correcting
code that is as strong (that is, able to
cope with the same range of errors) as
a code that only detects errors. Thus,
while error detection requires more
bits to be sent when errors occur, er-
ror correction requires more bits to be
sent all the time. As a result, error cor-
rection tends to be most useful when
(1) errors are quite probable, as they
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CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Table 2.5 Common CRC polynomials.

Figure 2.21 CRC calculation using shift register.

may be, for example, in a wireless
environment, or (2) the cost of re-
transmission is too high, for exam-
ple, because of the latency involved re-
transmitting a packet over a satellite
link.

The use of error correcting codes
in networking is sometimes referred
to as forward error correction (FEC)
because the correction of errors is han-
dled “in advance” by sending extra
information, rather than waiting for
errors to happen and dealing with
them later by retransmission.

then put an XOR gate in front of bit n if
there is a term xn in the generator poly-
nomial. Thus, we see an XOR gate in
front of positions 0 and 2 for the genera-
tor x3 + x2 + x0.

2.5 Reliable
Transmission

As we saw in the previous section, frames
are sometimes corrupted while in tran-
sit, with an error code like CRC used
to detect such errors. While some error
codes are strong enough also to correct er-
rors, in practice the overhead is typically
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too large to handle the range of bit and burst errors that can be introduced on a network
link. Even when error correcting codes are used (e.g., on wireless links) some errors will
be too severe to be corrected. As a result, some corrupt frames must be discarded. A link-
level protocol that wants to deliver frames reliably must somehow recover from these
discarded (lost) frames.

This is usually accomplished using a combination of two fundamental mechanisms
—acknowledgments and timeouts. An acknowledgment (ACK for short) is a small control
frame that a protocol sends back to its peer saying that it has received an earlier frame.
By control frame we mean a header without any data, although a protocol can piggyback
an ACK on a data frame it just happens to be sending in the opposite direction. The
receipt of an acknowledgment indicates to the sender of the original frame that its frame
was successfully delivered. If the sender does not receive an acknowledgment after a
reasonable amount of time, then it retransmits the original frame. This action of waiting
a reasonable amount of time is called a timeout.

The general strategy of using acknowledgments and timeouts to implement reliable
delivery is sometimes called automatic repeat request (normally abbreviated ARQ). This
section describes three different ARQ algorithms using generic language, that is, we do
not give detailed information about a particular protocol’s header fields.

2.5.1 Stop-and-Wait
The simplest ARQ scheme is the stop-and-wait algorithm. The idea of stop-and-wait is
straightforward: After transmitting one frame, the sender waits for an acknowledgment
before transmitting the next frame. If the acknowledgment does not arrive after a certain
period of time, the sender times out and retransmits the original frame.

Figure 2.22 illustrates four different scenarios that result from this basic algorithm.
This figure is a timeline, a common way to depict a protocol’s behavior (see also the
sidebar on this sort of diagram). The sending side is represented on the left, the receiving
side is depicted on the right, and time flows from top to bottom. Figure 2.22(a) shows
the situation in which the ACK is received before the timer expires, (b) and (c) show the
situation in which the original frame and the ACK, respectively, are lost, and (d) shows
the situation in which the timeout fires too soon. Recall that by “lost” we mean that the
frame was corrupted while in transit, that this corruption was detected by an error code
on the receiver, and that the frame was subsequently discarded.

There is one important subtlety in the stop-and-wait algorithm. Suppose the sender
sends a frame and the receiver acknowledges it, but the acknowledgment is either lost or
delayed in arriving. This situation is illustrated in timelines (c) and (d) of Figure 2.22.
In both cases, the sender times out and retransmits the original frame, but the receiver
will think that it is the next frame, since it correctly received and acknowledged the first



2.5 Reliable Transmission 103

Figure 2.22 Timeline showing four different scenarios for the stop-and-wait algorithm.

(a) The ACK is received before the timer expires; (b) the original frame is lost; (c) the

ACK is lost; (d) the timeout fires too soon.

Timelines and Packet Exchange
Diagrams

Figures 2.22 and 2.23 are two ex-
amples of a frequently-used tool in
teaching, explaining, and designing
protocols: the timeline or packet ex-
change diagram. You are going to see

frame. This has the potential to cause du-
plicate copies of a frame to be delivered.
To address this problem, the header for a
stop-and-wait protocol usually includes a
1-bit sequence number—that is, the se-
quence number can take on the values 0
and 1—and the sequence numbers used
for each frame alternate, as illustrated in
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Figure 2.23 Timeline for stop-and-wait with 1-bit sequence number.

Figure 2.23. Thus, when the sender retransmits frame 0, the receiver can determine that
it is seeing a second copy of frame 0 rather than the first copy of frame 1 and therefore
can ignore it (the receiver still acknowledges it, in case the first ACK was lost).

many more of them in this book—
see Figures 9.12 and 9.16 for more
complex examples. They are very use-
ful because they capture visually the
behavior over time of a distributed
system—something that can be quite
hard to analyze. When designing a
protocol, you often have to be pre-
pared for the unexpected—a system
crashes, a message gets lost, or some-
thing that you expected to happen
quickly turns out to take a long time.
These sorts of diagrams can often help
understand what might go wrong in
such cases and thus help a protocol
designer be prepared for every eventu-
ality.

The main shortcoming of the stop-
and-wait algorithm is that it allows the
sender to have only one outstanding
frame on the link at a time, and this
may be far below the link’s capacity. Con-
sider, for example, a 1.5-Mbps link with
a 45-ms round-trip time. This link has a
delay × bandwidth product of 67.5 Kb,
or approximately 8 KB. Since the sender
can send only one frame per RTT, and as-
suming a frame size of 1 KB, this implies
a maximum sending rate of

Bits Per Frame ÷ Time Per Frame

= 1024 × 8 ÷ 0.045

= 182 Kbps

or about one-eighth of the link’s capacity.
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Figure 2.24 Timeline for the sliding window algorithm.

To use the link fully, then, we’d like the sender to be able to transmit up to eight frames
before having to wait for an acknowledgment.▲

The significance of the bandwidth × delay product is that it represents the amount
of data that could be in transit. We would like to be able to send this much data without
waiting for the first acknowledgment. The principle at work here is often referred to
as keeping the pipe full. The algorithms presented in the following two subsections do
exactly this.

2.5.2 Sliding Window
Consider again the scenario in which the link has a delay × bandwidth product of 8 KB
and frames are of 1-KB size. We would like the sender to be ready to transmit the ninth
frame at pretty much the same moment that the ACK for the first frame arrives. The
algorithm that allows us to do this is called sliding window, and an illustrative timeline is
given in Figure 2.24.

The Sliding Window Algorithm

The sliding window algorithm works as follows. First, the sender assigns a sequence num-
ber, denoted SeqNum, to each frame. For now, let’s ignore the fact that SeqNum
is implemented by a finite-size header field and instead assume that it can grow infi-
nitely large. The sender maintains three variables: The send window size, denoted SWS,
gives the upper bound on the number of outstanding (unacknowledged) frames that the
sender can transmit; LAR denotes the sequence number of the last acknowledgment re-
ceived ; and LFS denotes the sequence number of the last frame sent. The sender also
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Figure 2.25 Sliding window on sender.

Figure 2.26 Sliding window on receiver.

maintains the following invariant:

LFS − LAR ≤ SWS

This situation is illustrated in Figure 2.25.
When an acknowledgment arrives, the sender moves LAR to the right, thereby

allowing the sender to transmit another frame. Also, the sender associates a timer with
each frame it transmits, and it retransmits the frame should the timer expire before an
ACK is received. Notice that the sender has to be willing to buffer up to SWS frames
since it must be prepared to retransmit them until they are acknowledged.

The receiver maintains the following three variables: The receive window size, de-
noted RWS, gives the upper bound on the number of out-of-order frames that the
receiver is willing to accept; LAF denotes the sequence number of the largest acceptable
frame; and LFR denotes the sequence number of the last frame received. The receiver also
maintains the following invariant:

LAF − LFR ≤ RWS

This situation is illustrated in Figure 2.26.
When a frame with sequence number SeqNum arrives, the receiver takes the

following action. If SeqNum ≤ LFR or SeqNum > LAF, then the frame is out-
side the receiver’s window and it is discarded. If LFR < SeqNum ≤ LAF, then the
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frame is within the receiver’s window and it is accepted. Now the receiver needs to de-
cide whether or not to send an ACK. Let SeqNumToAck denote the largest sequence
number not yet acknowledged, such that all frames with sequence numbers less than or
equal to SeqNumToAck have been received. The receiver acknowledges the receipt of
SeqNumToAck, even if higher-numbered packets have been received. This acknowl-
edgment is said to be cumulative. It then sets LFR = SeqNumToAck and adjusts
LAF = LFR + RWS.

For example, suppose LFR = 5 (i.e., the last ACK the receiver sent was for sequence
number 5), and RWS = 4. This implies that LAF = 9. Should frames 7 and 8 arrive,
they will be buffered because they are within the receiver’s window. However, no ACK
needs to be sent since frame 6 is yet to arrive. Frames 7 and 8 are said to have arrived out
of order. (Technically, the receiver could resend an ACK for frame 5 when frames 7 and 8
arrive.) Should frame 6 then arrive—perhaps it is late because it was lost the first time and
had to be retransmitted, or perhaps it was simply delayed2—the receiver acknowledges
frame 8, bumps LFR to 8, and sets LAF to 12. If frame 6 was in fact lost, then a timeout
will have occurred at the sender, causing it to retransmit frame 6.

We observe that when a timeout occurs, the amount of data in transit decreases,
since the sender is unable to advance its window until frame 6 is acknowledged. This
means that when packet losses occur, this scheme is no longer keeping the pipe full. The
longer it takes to notice that a packet loss has occurred, the more severe this problem
becomes.

Notice that in this example, the receiver could have sent a negative acknowledg-
ment (NAK) for frame 6 as soon as frame 7 arrived. However, this is unnecessary since
the sender’s timeout mechanism is sufficient to catch this situation, and sending NAKs
adds additional complexity to the receiver. Also, as we mentioned, it would have been
legitimate to send additional acknowledgments of frame 5 when frames 7 and 8 arrived;
in some cases, a sender can use duplicate ACKs as a clue that a frame was lost. Both
approaches help to improve performance by allowing early detection of packet losses.

Yet another variation on this scheme would be to use selective acknowledgments.
That is, the receiver could acknowledge exactly those frames it has received, rather than
just the highest-numbered frame received in order. So, in the above example, the receiver
could acknowledge the receipt of frames 7 and 8. Giving more information to the sender
makes it potentially easier for the sender to keep the pipe full, but adds complexity to
the implementation.

The sending window size is selected according to how many frames we want to have
outstanding on the link at a given time; SWS is easy to compute for a given delay ×
2It’s unlikely that a packet could be delayed in this way on a point-to-point link, but later on we will see this same
algorithm used on more complex networks where such delays are possible.
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bandwidth product.3 On the other hand, the receiver can set RWS to whatever it wants.
Two common settings are RWS = 1, which implies that the receiver will not buffer any
frames that arrive out of order, and RWS = SWS, which implies that the receiver can
buffer any of the frames the sender transmits. It makes no sense to set RWS > SWS
since it’s impossible for more than SWS frames to arrive out of order.

Finite Sequence Numbers and Sliding Window

We now return to the one simplification we introduced into the algorithm—our assump-
tion that sequence numbers can grow infinitely large. In practice, of course, a frame’s
sequence number is specified in a header field of some finite size. For example, a 3-bit
field means that there are eight possible sequence numbers, 0 . . .7. This makes it neces-
sary to reuse sequence numbers or, stated another way, sequence numbers wrap around.
This introduces the problem of being able to distinguish between different incarnations
of the same sequence numbers, which implies that the number of possible sequence
numbers must be larger than the number of outstanding frames allowed. For example,
stop-and-wait allowed one outstanding frame at a time and had two distinct sequence
numbers.

Suppose we have one more number in our space of sequence numbers than we
have potentially outstanding frames, that is, SWS ≤ MaxSeqNum − 1, where Max-
SeqNum is the number of available sequence numbers. Is this sufficient? The answer
depends on RWR. If RWS = 1, then MaxSeqNum ≥ SWS + 1 is sufficient. If
RWS is equal to SWS, then having a MaxSeqNum just one greater than the sending
window size is not good enough. To see this, consider the situation in which we have
the eight sequence numbers 0 through 7, and SWS = RWS = 7. Suppose the sender
transmits frames 0..6, they are successfully received, but the ACKs are lost. The receiver
is now expecting frames 7,0..5, but the sender times out and sends frames 0..6. Unfor-
tunately, the receiver is expecting the second incarnation of frames 0..5, but gets the first
incarnation of these frames. This is exactly the situation we wanted to avoid.

It turns out that the sending window size can be no more than half as big as the
number of available sequence numbers when RWS = SWS, or stated more precisely,

SWS < (MaxSeqNum + 1)/2

Intuitively, what this is saying is that the sliding window protocol alternates between
the two halves of the sequence number space, just as stop-and-wait alternates between
sequence numbers 0 and 1. The only difference is that it continually slides between the
two halves rather than discretely alternating between them.

3Easy, that is, if we know the delay and the bandwidth. Sometimes we do not, and estimating them well is a challenge to
protocol designers. We discuss this further in Chapter 5.
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Note that this rule is specific to the situation where RWS = SWS. We leave it as
an exercise to determine the more general rule that works for arbitrary values of RWS
and SWS. Also note that the relationship between the window size and the sequence
number space depends on an assumption that is so obvious that it is easy to overlook,
namely, that frames are not reordered in transit. This cannot happen on a direct point-to-
point link since there is no way for one frame to overtake another during transmission.
However, we will see the sliding window algorithm used in a different environment in
Chapter 5, and we will need to devise another rule.

Implementation of Sliding Window

The following routines illustrate how we might implement the sending and receiving
sides of the sliding window algorithm. The routines are taken from a working protocol
named, appropriately enough, Sliding Window Protocol (SWP). So as not to concern
ourselves with the adjacent protocols in the protocol graph, we denote the protocol sit-
ting above SWP as high-level protocol (HLP) and the protocol sitting below SWP as a
link-level protocol (LINK).

We start by defining a pair of data structures. First, the frame header is very
simple: It contains a sequence number (SeqNum) and an acknowledgment number
(AckNum). It also contains a Flags field that indicates whether the frame is an ACK
or carries data.

typedef u_char SwpSeqno;
typedef struct {

SwpSeqno SeqNum; /* sequence number of this frame */
SwpSeqno AckNum; /* ack of received frame */
u_char Flags; /* up to 8 bits worth of flags */

} SwpHdr;

Next, the state of the sliding window algorithm has the following structure. For
the sending side of the protocol, this state includes variables LAR and LFS, as described
earlier in this section, as well as a queue that holds frames that have been transmit-
ted but not yet acknowledged (sendQ). The sending state also includes a counting
semaphore called sendWindowNotFull. We will see how this is used below, but gen-
erally a semaphore is a synchronization primitive that supports semWait and sem-
Signal operations. Every invocation of semSignal increments the semaphore by 1,
and every invocation of semWait decrements s by 1, with the calling process blocked
(suspended) should decrementing the semaphore cause its value to become less than 0. A
process that is blocked during its call to semWait will be allowed to resume as soon as
enough semSignal operations have been performed to raise the value of the semaphore
above 0.
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For the receiving side of the protocol, the state includes the variable NFE. This
is the next frame expected (i.e., the frame with a sequence number one more than the
last frame received (LFR), described earlier in this section). There is also a queue that
holds frames that have been received out of order (recvQ). Finally, although not shown,
the sender and receiver sliding window sizes are defined by constants SWS and RWS,
respectively.

typedef struct {
/* sender side state: */
SwpSeqno LAR; /* seqno of last ACK received */
SwpSeqno LFS; /* last frame sent */
Semaphore sendWindowNotFull;
SwpHdr hdr; /* pre-initialized header */
struct sendQ_slot {

Event timeout;
/* event associated with send-timeout */

Msg msg;
} sendQ[SWS];

/* receiver side state: */
SwpSeqno NFE;

/* seqno of next frame expected */
struct recvQ_slot {

int received; /* is msg valid? */
Msg msg;

} recvQ[RWS];
} SwpState;

The sending side of SWP is implemented by procedure sendSWP. This routine
is rather simple. First, semWait causes this process to block on a semaphore until it
is OK to send another frame. Once allowed to proceed, sendSWP sets the sequence
number in the frame’s header, saves a copy of the frame in the transmit queue (sendQ),
schedules a timeout event to handle the case in which the frame is not acknowledged,
and sends the frame to the next-lower-level protocol, which we denote as LINK.

One detail worth noting is the call to store_swp_hdr just before the call to
msgAddHdr. This routine translates the C structure that holds the SWP header
(state->hdr) into a byte string that can be safely attached to the front of the mes-
sage (hbuf). This routine (not shown) must translate each integer field in the header
into network byte order and remove any padding that the compiler has added to the C
structure. The issue of byte order is discussed more fully in Section 7.1, but for now it is
enough to assume that this routine places the most significant bit of a multiword integer
in the byte with the highest address.
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Another piece of complexity in this routine is the use of semWait and the send-
WindowNotFull semaphore. sendWindowNotFull is initialized to the size of the
sender’s sliding window, SWS (this initialization is not shown). Each time the sender
transmits a frame, the semWait operation decrements this count and blocks the sender
should the count go to 0. Each time an ACK is received, the semSignal operation in-
voked in deliverSWP (see below) increments this count, thus unblocking any waiting
sender.

static int
sendSWP(SwpState *state, Msg *frame)
{

struct sendQ_slot *slot;
hbuf[HLEN];

/* wait for send window to open */
semWait(&state->sendWindowNotFull);
state->hdr.SeqNum = ++state->LFS;
slot = &state->sendQ[state->hdr.SeqNum % SWS];
store_swp_hdr(state->hdr, hbuf);
msgAddHdr(frame, hbuf, HLEN);
msgSaveCopy(&slot->msg, frame);
slot->timeout = evSchedule(swpTimeout, slot,

SWP_SEND_TIMEOUT);
return send(LINK, frame);

}

Before continuing to the receive side of SWP, we need to reconcile a seeming in-
consistency. On the one hand, we have been saying that a high-level protocol invokes the
services of a low-level protocol by calling the send operation, so we would expect that a
protocol that wants to send a message via SWP would call send(SWP, packet). On the
other hand, the procedure that implements SWP’s send operation is called sendSWP,
and its first argument is a state variable (SwpState). What gives? The answer is that
the operating system provides glue code that translates the generic call to send into a
protocol-specific call to sendSWP. This glue code maps the first argument to send
(the magic protocol variable SWP) into both a function pointer to sendSWP, and
a pointer to the protocol state that SWP needs to do its job. The reason we have the
high-level protocol indirectly invoke the protocol-specific function through the generic
function call is that we want to limit how much information the high-level protocol has
coded in it about the low-level protocol. This makes it easier to change the protocol
graph configuration at some time in the future.

Now to SWP’s protocol-specific implementation of the deliver operation, which
is given in procedure deliverSWP. This routine actually handles two different kinds
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of incoming messages: ACKs for frames sent earlier from this node and data frames
arriving at this node. In a sense, the ACK half of this routine is the counterpart to the
sender side of the algorithm given in sendSWP. A decision as to whether the incoming
message is an ACK or a data frame is made by checking the Flags field in the header.
Note that this particular implementation does not support piggybacking ACKs on data
frames.

When the incoming frame is an ACK, deliverSWP simply finds the slot in the
transmit queue (sendQ) that corresponds to the ACK, cancels the timeout event, and
frees the frame saved in that slot. This work is actually done in a loop since the ACK
may be cumulative. The only other thing to notice about this case is the call to subrou-
tine swpInWindow. This subroutine, which is given below, ensures that the sequence
number for the frame being acknowledged is within the range of ACKs that the sender
currently expects to receive.

When the incoming frame contains data, deliverSWP first calls msgStripHdr
and load_swp_hdr to extract the header from the frame. Routine load_swp_hdr is
the counterpart to store_swp_hdr discussed earlier; it translates a byte string into the
C data structure that holds the SWP header. deliverSWP then calls swpInWindow
to make sure the sequence number of the frame is within the range of sequence numbers
that it expects. If it is, the routine loops over the set of consecutive frames it has received
and passes them up to the higher-level protocol by invoking the deliverHLP routine. It
also sends a cumulative ACK back to the sender, but does so by looping over the receive
queue (it does not use the SeqNumToAck variable used in the prose description given
earlier in this section).

static int
deliverSWP(SwpState state, Msg *frame)
{

SwpHdr hdr;
char *hbuf;

hbuf = msgStripHdr(frame, HLEN);
load_swp_hdr(&hdr, hbuf)
if (hdr->Flags & FLAG_ACK_VALID)
{

/* received an acknowledgment---do SENDER side */
if (swpInWindow(hdr.AckNum, state->LAR + 1,

state->LFS))
{

do
{

struct sendQ_slot *slot;
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slot = &state->sendQ[++state->LAR % SWS];
evCancel(slot->timeout);
msgDestroy(&slot->msg);
semSignal(&state->sendWindowNotFull);

} while (state->LAR != hdr.AckNum);
}

}

if (hdr.Flags & FLAG_HAS_DATA)
{

struct recvQ_slot *slot;

/* received data packet---do RECEIVER side */
slot = &state->recvQ[hdr.SeqNum % RWS];
if (!swpInWindow(hdr.SeqNum, state->NFE,

state->NFE + RWS - 1))
{

/* drop the message */
return SUCCESS;

}
msgSaveCopy(&slot->msg, frame);
slot->received = TRUE;
if (hdr.SeqNum == state->NFE)
{

Msg m;

while (slot->received)
{

deliver(HLP, &slot->msg);
msgDestroy(&slot->msg);
slot->received = FALSE;
slot = &state->recvQ[++state->NFE % RWS];

}
/* send ACK: */
prepare_ack(&m, state->NFE - 1);
send(LINK, &m);
msgDestroy(&m);

}
}
return SUCCESS;

}
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Finally, swpInWindow is a simple subroutine that checks to see if a given se-
quence number falls between some minimum and maximum sequence number.

static bool
swpInWindow(SwpSeqno seqno, SwpSeqno min, SwpSeqno max)
{

SwpSeqno pos, maxpos;

pos = seqno - min;
/* pos *should* be in range [0..MAX) */

maxpos = max - min + 1;
/* maxpos is in range [0..MAX] */

return pos < maxpos;
}

Frame Order and Flow Control
The sliding window protocol is perhaps the best-known algorithm in computer net-
working. What is easily confusing about the algorithm, however, is that it can be used to
serve three different roles. The first role is the one we have been concentrating on in this
section—to reliably deliver frames across an unreliable link. (In general, the algorithm
can be used to reliably deliver messages across an unreliable network.) This is the core
function of the algorithm.

The second role that the sliding window algorithm can serve is to preserve the order
in which frames are transmitted. This is easy to do at the receiver—since each frame has
a sequence number, the receiver just makes sure that it does not pass a frame up to the
next-higher-level protocol until it has already passed up all frames with a smaller sequence
number. That is, the receiver buffers (i.e., does not pass along) out-of-order frames. The
version of the sliding window algorithm described in this section does preserve frame
order, although we could imagine a variation in which the receiver passes frames to
the next protocol without waiting for all earlier frames to be delivered. A question we
should ask ourselves is whether we really need the sliding window protocol to keep the
frames in order, or whether, instead, this is unnecessary functionality at the link level.
Unfortunately, we have not yet seen enough of the network architecture to answer this
question; we first need to understand how a sequence of point-to-point links is connected
by switches to form an end-to-end path.

The third role that the sliding window algorithm sometimes plays is to support
flow control—a feedback mechanism by which the receiver is able to throttle the sender.
Such a mechanism is used to keep the sender from overrunning the receiver, that is, from
transmitting more data than the receiver is able to process. This is usually accomplished
by augmenting the sliding window protocol so that the receiver not only acknowledges
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frames it has received, but also informs the sender of how many frames it has room to
receive. The number of frames that the receiver is capable of receiving corresponds to
how much free buffer space it has. As in the case of ordered delivery, we need to make
sure that flow control is necessary at the link level before incorporating it into the sliding
window protocol.▲

One important concept to take away from this discussion is the system design prin-
ciple we call separation of concerns. That is, you must be careful to distinguish between
different functions that are sometimes rolled together in one mechanism, and you must
make sure that each function is necessary and being supported in the most effective way.
In this particular case, reliable delivery, ordered delivery, and flow control are sometimes
combined in a single sliding window protocol, and we should ask ourselves if this is the
right thing to do at the link level. With this question in mind, we revisit the sliding
window algorithm in Chapter 3 (we show how X.25 networks use it to implement hop-
by-hop flow control) and in Chapter 5 (we describe how TCP uses it to implement a
reliable byte-stream channel).

2.5.3 Concurrent Logical Channels
The data link protocol used in the ARPANET provides an interesting alternative to the
sliding window protocol, in that it is able to keep the pipe full while still using the
simple stop-and-wait algorithm. One important consequence of this approach is that
the frames sent over a given link are not kept in any particular order. The protocol also
implies nothing about flow control.

The idea underlying the ARPANET protocol, which we refer to as concurrent logi-
cal channels, is to multiplex several logical channels onto a single point-to-point link and
to run the stop-and-wait algorithm on each of these logical channels. There is no rela-
tionship maintained among the frames sent on any of the logical channels, yet because
a different frame can be outstanding on each of the several logical channels, the sender
can keep the link full.

More precisely, the sender keeps 3 bits of state for each channel: a boolean, saying
whether the channel is currently busy; the 1-bit sequence number to use the next time a
frame is sent on this logical channel; and the next sequence number to expect on a frame
that arrives on this channel. When the node has a frame to send, it uses the lowest idle
channel, and otherwise it behaves just like stop-and-wait.

In practice, the ARPANET supported 8 logical channels over each ground link and
16 over each satellite link. In the ground-link case, the header for each frame included
a 3-bit channel number and a 1-bit sequence number, for a total of 4 bits. This is ex-
actly the number of bits the sliding window protocol requires to support up to eight
outstanding frames on the link when RWS = SWS.
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2.6 Ethernet (802.3)
The Ethernet is easily the most successful local area networking technology of the last 20
years. Developed in the mid-1970s by researchers at the Xerox Palo Alto Research Center
(PARC), the Ethernet is a working example of the more general carrier sense, multiple
access with collision detect (CSMA/CD) local area network technology.

As indicated by the CSMA name, the Ethernet is a multiple-access network, mean-
ing that a set of nodes send and receive frames over a shared link. You can, therefore,
think of an Ethernet as being like a bus that has multiple stations plugged into it. The
“carrier sense” in CSMA/CD means that all the nodes can distinguish between an idle
and a busy link, and “collision detect” means that a node listens as it transmits and can
therefore detect when a frame it is transmitting has interfered (collided) with a frame
transmitted by another node.

The Ethernet has its roots in an early packet radio network, called Aloha, developed
at the University of Hawaii to support computer communication across the Hawaiian
Islands. Like the Aloha network, the fundamental problem faced by the Ethernet is how
to mediate access to a shared medium fairly and efficiently (in Aloha the medium was
the atmosphere, while in Ethernet the medium is a coax cable). That is, the core idea in
both Aloha and the Ethernet is an algorithm that controls when each node can transmit.

Digital Equipment Corporation and Intel Corporation joined Xerox to define a
10-Mbps Ethernet standard in 1978. This standard then formed the basis for IEEE
standard 802.3. With one exception that we will see in Section 2.6.2, it is fair to view
the 1978 Ethernet standard as a proper subset of the 802.3 standard; 802.3 additionally
defines a much wider collection of physical media over which Ethernet can operate, and
more recently, it has been extended to include a 100-Mbps version called Fast Ethernet,
and a 1,000-Mbps version called Gigabit Ethernet. The rest of this section focuses on the
10-Mbps Ethernet since it is typically used in multiple-access mode, and we are interested
in how multiple hosts share a single link. Both 100- and 1,000-Mbps Ethernets are
designed to be used in full-duplex, point-to-point configurations, which means that they
are typically used in switched networks, as described in the next chapter.

2.6.1 Physical Properties
An Ethernet segment is implemented on a coaxial cable of up to 500 m. This cable is sim-
ilar to the type used for cable TV, except that it typically has an impedance of 50 ohms
instead of cable TV’s 75 ohms. Hosts connect to an Ethernet segment by tapping into
it; taps must be at least 2.5 m apart. A transceiver—a small device directly attached to
the tap—detects when the line is idle and drives the signal when the host is transmitting.
It also receives incoming signals. The transceiver is, in turn, connected to an Ethernet
adaptor, which is plugged into the host. All the logic that makes up the Ethernet pro-
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Figure 2.27 Ethernet transceiver and adaptor.

tocol, as described in this section, is implemented in the adaptor (not the transceiver).
This configuration is shown in Figure 2.27.

Multiple Ethernet segments can be joined together by repeaters. A repeater is a de-
vice that forwards digital signals, much like an amplifier forwards analog signals. How-
ever, no more than four repeaters may be positioned between any pair of hosts, meaning
that an Ethernet has a total reach of only 2,500 m. For example, using just two repeaters
between any pair of hosts supports a configuration similar to the one illustrated in Fig-
ure 2.28, that is, a segment running down the spine of a building with a segment on
each floor. All told, an Ethernet is limited to supporting a maximum of 1,024 hosts.

Any signal placed on the Ethernet by a host is broadcast over the entire network,
that is, the signal is propagated in both directions, and repeaters forward the signal on all
outgoing segments. Terminators attached to the end of each segment absorb the signal
and keep it from bouncing back and interfering with trailing signals. The Ethernet uses
the Manchester encoding scheme described in Section 2.2.

In addition to the system of segments and repeaters just described, alternative tech-
nologies have been introduced over the years. For example, rather than using a 50-ohm
coax cable, an Ethernet can be constructed from a thinner cable known as 10Base2; the
original cable is called 10Base5 (the two cables are commonly called thin-net and thick-
net, respectively). The “10” in 10Base2 means that the network operates at 10 Mbps,
“Base” refers to the fact that the cable is used in a baseband system, and the “2” means
that a given segment can be no longer than 200 m (a segment of the original 10Base5
cable can be up to 500 m long). Today, a third cable technology is predominantly used,
called 10BaseT, where the “T” stands for twisted pair. Typically, Category 5 twisted pair
wiring is used. A 10BaseT segment is usually limited to under 100 m in length. (Both
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Figure 2.28 Ethernet repeater.

100- and 1,000-Mbps Ethernets also run up over Category 5 twisted pair, up to distances
of 100 m.)

Because the cable is so thin, you do not tap into a 10Base2 or 10BaseT cable
in the same way as you would with 10Base5 cable. With 10Base2, a T-joint is spliced
into the cable. In effect, 10Base2 is used to daisy-chain a set of hosts together. With
10BaseT, the common configuration is to have several point-to-point segments coming
out of a multiway repeater, sometimes called a hub, as illustrated in Figure 2.29. Multiple

Figure 2.29 Ethernet hub.
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100-Mbps Ethernet segments can also be connected by a hub, but the same is not true
of 1,000-Mbps segments.

It is important to understand that whether a given Ethernet spans a single segment,
a linear sequence of segments connected by repeaters, or multiple segments connected
in a star configuration by a hub, data transmitted by any one host on that Ethernet
reaches all the other hosts. This is the good news. The bad news is that all these hosts are
competing for access to the same link, and as a consequence, they are said to be in the
same collision domain.

2.6.2 Access Protocol
We now turn our attention to the algorithm that controls access to the shared Ethernet
link. This algorithm is commonly called the Ethernet’s media access control (MAC). It
is typically implemented in hardware on the network adaptor. We will not describe the
hardware per se, but instead focus on the algorithm it implements. First, however, we
describe the Ethernet’s frame format and addresses.

Frame Format

Each Ethernet frame is defined by the format given in Figure 2.30. The 64-bit pream-
ble allows the receiver to synchronize with the signal; it is a sequence of alternating 0s
and 1s. Both the source and destination hosts are identified with a 48-bit address. The
packet type field serves as the demultiplexing key, that is, it identifies to which of pos-
sibly many higher-level protocols this frame should be delivered. Each frame contains
up to 1,500 bytes of data. Minimally, a frame must contain at least 46 bytes of data,
even if this means the host has to pad the frame before transmitting it. The reason for
this minimum frame size is that the frame must be long enough to detect a collision; we
discuss this more below. Finally, each frame includes a 32-bit CRC. Like the HDLC pro-
tocol described in Section 2.3.2, the Ethernet is a bit-oriented framing protocol. Note
that from the host’s perspective, an Ethernet frame has a 14-byte header: two 6-byte ad-
dresses and a 2-byte type field. The sending adaptor attaches the preamble, CRC, and
postamble before transmitting, and the receiving adaptor removes them.

The frame format just described is taken from the Digital-Intel-Xerox Ethernet
standard. The 802.3 frame format is exactly the same, except it substitutes a 16-bit length

Figure 2.30 Ethernet frame format.
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field for the 16-bit type field. 802.3 is usually paired with an encapsulation standard that
defines a type field used to demultiplex incoming frames. This type field is the first thing
in the data portion of the 802.3 frames, that is, it immediately follows the 802.3 header.
Fortunately, since the Ethernet standard has avoided using any type values less than 1,500
(the maximum length found in an 802.3 header), and the type and length fields are in
the same location in the header, it is possible for a single device to accept both formats,
and for the device driver running on the host to interpret the last 16 bits of the header
as either a type or a length. In practice, most hosts follow the Digital-Intel-Xerox format
and interpret this field as the frame’s type.

Addresses
Each host on an Ethernet—in fact, every Ethernet host in the world—has a unique Eth-
ernet address. Technically, the address belongs to the adaptor, not the host; it is usually
burned into ROM. Ethernet addresses are typically printed in a form humans can read
as a sequence of six numbers separated by colons. Each number corresponds to 1 byte
of the 6-byte address and is given by a pair of hexadecimal digits, one for each of the
4-bit nibbles in the byte; leading 0s are dropped. For example, 8:0:2b:e4:b1:2 is the
human-readable representation of Ethernet address

00001000 00000000 00101011 11100100 10110001 00000010

To ensure that every adaptor gets a unique address, each manufacturer of Ethernet
devices is allocated a different prefix that must be prepended to the address on every
adaptor they build. For example, Advanced Micro Devices has been assigned the 24-bit
prefix x080020 (or 8:0:20). A given manufacturer then makes sure the address suffixes
it produces are unique.

Each frame transmitted on an Ethernet is received by every adaptor connected to
that Ethernet. Each adaptor recognizes those frames addressed to its address and passes
only those frames on to the host. (An adaptor can also be programmed to run in promis-
cuous mode, in which case it delivers all received frames to the host, but this is not the
normal mode.) In addition to these unicast addresses, an Ethernet address consisting of
all 1s is treated as a broadcast address; all adaptors pass frames addressed to the broadcast
address up to the host. Similarly, an address that has the first bit set to 1 but is not the
broadcast address is called a multicast address. A given host can program its adaptor to
accept some set of multicast addresses. Multicast addresses are used to send messages to
some subset of the hosts on an Ethernet (e.g., all file servers). To summarize, an Ethernet
adaptor receives all frames and accepts

■ Frames addressed to its own address;

■ Frames addressed to the broadcast address;
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■ Frames addressed to a multicast address, if it has been instructed to listen to that
address;

■ All frames, if it has been placed in promiscuous mode.

It passes to the host only the frames that it accepts.

Transmitter Algorithm
As we have just seen, the receiver side of the Ethernet protocol is simple; the real smarts
are implemented at the sender’s side. The transmitter algorithm is defined as follows.

When the adaptor has a frame to send and the line is idle, it transmits the frame
immediately; there is no negotiation with the other adaptors. The upper bound of
1,500 bytes in the message means that the adaptor can occupy the line for only a fixed
length of time.

When an adaptor has a frame to send and the line is busy, it waits for the line to go
idle and then transmits immediately.4 The Ethernet is said to be a 1-persistent protocol
because an adaptor with a frame to send transmits with probability 1 whenever a busy
line goes idle. In general, a p-persistent algorithm transmits with probability 0 ≤ p ≤ 1
after a line becomes idle, and defers with probability q = 1 − p. The reasoning behind
choosing a p < 1 is that there might be multiple adaptors waiting for the busy line to
become idle, and we don’t want all of them to begin transmitting at the same time.
If each adaptor transmits immediately with a probability of, say, 33%, then up to three
adaptors can be waiting to transmit and the odds are that only one will begin transmitting
when the line becomes idle. Despite this reasoning, an Ethernet adaptor always transmits
immediately after noticing that the network has become idle and has been very effective
in doing so.

To complete the story about p-persistent protocols for the case when p < 1, you
might wonder how long a sender that loses the coin flip (i.e., decides to defer) has to wait
before it can transmit. The answer for the Aloha network, which originally developed this
style of protocol, was to divide time into discrete slots, with each slot corresponding to
the length of time it takes to transmit a full frame. Whenever a node has a frame to
send and it senses an empty (idle) slot, it transmits with probability p and defers until
the next slot with probability q = 1 − p. If that next slot is also empty, the node again
decides to transmit or defer, with probabilities p and q, respectively. If that next slot is
not empty—that is, some other station has decided to transmit—then the node simply
waits for the next idle slot and the algorithm repeats.

Returning to our discussion of the Ethernet, because there is no centralized control
it is possible for two (or more) adaptors to begin transmitting at the same time, either

4To be more precise, all adaptors wait 9.6 µs after the end of one frame before beginning to transmit the next frame. This
is true for both the sender of the first frame, as well as those nodes listening for the line to become idle.
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because both found the line to be idle or because both had been waiting for a busy
line to become idle. When this happens, the two (or more) frames are said to collide on
the network. Each sender, because the Ethernet supports collision detection, is able to
determine that a collision is in progress. At the moment an adaptor detects that its frame
is colliding with another, it first makes sure to transmit a 32-bit jamming sequence and
then stops the transmission. Thus, a transmitter will minimally send 96 bits in the case
of a collision: 64-bit preamble plus 32-bit jamming sequence.

One way that an adaptor will send only 96 bits—which is sometimes called a runt
frame—is if the two hosts are close to each other. Had the two hosts been farther apart,
they would have had to transmit longer, and thus send more bits, before detecting the
collision. In fact, the worst-case scenario happens when the two hosts are at opposite
ends of the Ethernet. To know for sure that the frame it just sent did not collide with
another frame, the transmitter may need to send as many as 512 bits. Not coincidentally,
every Ethernet frame must be at least 512 bits (64 bytes) long: 14 bytes of header plus
46 bytes of data plus 4 bytes of CRC.

Why 512 bits? The answer is related to another question you might ask about an
Ethernet: Why is its length limited to only 2,500 m? Why not 10 or 1,000 km? The
answer to both questions has to do with the fact that the farther apart two nodes are, the
longer it takes for a frame sent by one to reach the other, and the network is vulnerable
to a collision during this time.

Figure 2.31 illustrates the worst-case scenario, where hosts A and B are at opposite
ends of the network. Suppose host A begins transmitting a frame at time t , as shown
in (a). It takes it one link latency (let’s denote the latency as d ) for the frame to reach
host B. Thus, the first bit of A’s frame arrives at B at time t + d , as shown in (b). Suppose
an instant before host A’s frame arrives (i.e., B still sees an idle line), host B begins
to transmit its own frame. B’s frame will immediately collide with A’s frame, and this
collision will be detected by host B (c). Host B will send the 32-bit jamming sequence,
as described above. (B’s frame will be a runt.) Unfortunately, host A will not know that
the collision occurred until B’s frame reaches it, which will happen one link latency
later, at time t + 2 × d , as shown in (d). Host A must continue to transmit until this
time in order to detect the collision. In other words, host A must transmit for 2 × d
to be sure that it detects all possible collisions. Considering that a maximally configured
Ethernet is 2,500 m long, and that there may be up to four repeaters between any two
hosts, the round-trip delay has been determined to be 51.2 µs, which on a 10-Mbps
Ethernet corresponds to 512 bits. The other way to look at this situation is that we need
to limit the Ethernet’s maximum latency to a fairly small value (e.g., 51.2 µs) for the
access algorithm to work; hence, an Ethernet’s maximum length must be something on
the order of 2,500 m.
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Figure 2.31 Worst-case scenario: (a) A sends a frame at time t; (b) A’s frame arrives at

B at time t + d; (c) B begins transmitting at time t + d and collides with A’s frame;

(d) B’s runt (32-bit) frame arrives at A at time t + 2d.

Once an adaptor has detected a collision and stopped its transmission, it waits a
certain amount of time and tries again. Each time it tries to transmit but fails, the adap-
tor doubles the amount of time it waits before trying again. This strategy of doubling
the delay interval between each retransmission attempt is a general technique known as
exponential backoff. More precisely, the adaptor first delays either 0 or 51.2 µs, selected
at random. If this effort fails, it then waits 0, 51.2, 102.4, or 153.6 µs (selected ran-
domly) before trying again; this is k × 51.2 for k = 0..3. After the third collision, it
waits k × 51.2 for k = 0..23 − 1, again selected at random. In general, the algorithm
randomly selects a k between 0 and 2n −1 and waits k ×51.2 µs, where n is the number
of collisions experienced so far. The adaptor gives up after a given number of tries and
reports a transmit error to the host. Adaptors typically retry up to 16 times, although the
backoff algorithm caps n in the above formula at 10.

2.6.3 Experience with Ethernet
Because Ethernets have been around for so many years and are so popular, we have a
great deal of experience in using them. One of the most important observations people
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have made about Ethernets is that they work best under lightly loaded conditions. This
is because under heavy loads—typically, a utilization of over 30% is considered heavy on
an Ethernet—too much of the network’s capacity is wasted by collisions.

Fortunately, most Ethernets are used in a far more conservative way than the stan-
dard allows. For example, most Ethernets have fewer than 200 hosts connected to them,
which is far fewer than the maximum of 1,024. (See if you can discover a reason for this
upper limit of around 200 hosts in Chapter 4.) Similarly, most Ethernets are far shorter
than 2,500 m, with a round-trip delay of closer to 5 µs than 51.2 µs. Another factor that
makes Ethernets practical is that, even though Ethernet adaptors do not implement link-
level flow control, the hosts typically provide an end-to-end flow-control mechanism.
As a result, it is rare to find situations in which any one host is continuously pumping
frames onto the network.

Finally, it is worth saying a few words about why Ethernets have been so successful,
so that we can understand the properties we should emulate with any LAN technology
that tries to replace it. First, an Ethernet is extremely easy to administer and maintain:
There are no switches that can fail, no routing or configuration tables that have to be kept
up-to-date, and it is easy to add a new host to the network. It is hard to imagine a simpler
network to administer. Second, it is inexpensive: Cable is cheap, and the only other
cost is the network adaptor on each host. Any switch-based approach will involve an
investment in some relatively expensive infrastructure (the switches), in addition to the
incremental cost of each adaptor. As we will see in the next chapter, the most successful
LAN switching technology in use today is itself based on Ethernet.

2.7 Rings (802.5, FDDI, RPR)
Ring networks, like Ethernets, are shared-media networks. This section will focus on
the type that was for years the most prevalent, known as the IBM Token Ring. Like
the Xerox Ethernet, IBM’s Token Ring has a nearly identical IEEE standard, known as
802.5. 802.5 and the later Fiber Distributed Data Interface (FDDI) token ring are no
longer in widespread use. Resilient Packet Ring (RPR) is a relatively recent technology,
and its corresponding IEEE standard is known as 802.17; it remains to be seen how
popular RPR will be.

As the name suggests, a ring network consists of a set of nodes connected in a
ring (see Figure 2.32). Data always flows in a particular direction around the ring, with
each node receiving frames from its upstream neighbor and then forwarding them to
its downstream neighbor. This ring-based topology is in contrast to the Ethernet’s bus
topology. Like the Ethernet, however, the ring is viewed as a single shared medium; it
does not behave as a collection of independent point-to-point links that just happen to
be configured in a loop. Thus, a ring network shares two key features with an Ethernet:



2.7 Rings (802.5, FDDI, RPR) 125

Figure 2.32 A ring network.

First, it involves a distributed algorithm that controls when each node is allowed to
transmit, and second, all nodes typically5 see all frames, with the node identified in the
frame header as the destination saving a copy of the frame as it flows past.

The most common early forms of ring network were all token rings. The word
“token” comes from the way access to the shared ring is managed. The idea is that a
token, which is really just a special sequence of bits, circulates around the ring; each node
receives and then forwards the token. When a node that has a frame to transmit sees the
token, it takes the token off the ring (i.e., it does not forward the special bit pattern)
and instead inserts its frame into the ring. Each node along the way simply forwards the
frame, with the destination node saving a copy and forwarding the message onto the next
node on the ring. When the frame makes its way back around to the sender, this node
strips its frame off the ring (rather than continuing to forward it) and reinserts the token.
In this way, some node downstream will have the opportunity to transmit a frame. The
media access algorithm is fair in the sense that as the token circulates around the ring,
each node gets a chance to transmit. Nodes are serviced in a round-robin fashion.

One of the first things you might worry about with a ring topology is that any link
or node failure would render the whole network useless. The problem of node failure
may be addressed by connecting each station into the ring using an electromechanical
relay. As long as the station is healthy, the relay is open and the station is included in
the ring. If the station stops providing power, the relay closes and the ring automatically
bypasses the station. This is illustrated in Figure 2.33. Note that this approach is only
effective when the transmission medium is electrical cable, not optical fiber.

5We will see an exception to this in Section 2.7.4.
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Figure 2.33 Relay used on a token ring: (a) relay open—host active; (b) relay

closed—host bypassed.

Figure 2.34 Multistation access unit.

Several of these relays are usually packed into a single box, known as a multistation
access unit (MSAU). This has the interesting effect of making a token ring actually look
more like a star topology, as shown in Figure 2.34. Any failure of a link outside the
MSAU is then equivalent to a host failure, hence solved by the same relay mechanism.
It also makes it very easy to add stations to and remove stations from the network, since
they can just be plugged into or unplugged from the nearest MSAU, while the overall
wiring of the network can be left unchanged.
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2.7.1 Token Ring Media Access Control
It is now time to look a little more closely at how the MAC protocol operates on a token
ring. The network adaptor for a token ring contains a receiver and a transmitter. Most
of the time, when a node is neither the source nor the destination of the data on the
ring, its adaptor is simply retransmitting the data that its receiver receives. When none
of the stations connected to the ring has anything to send, the token circulates around
the ring. As it does so, any station that has data to send may “seize” the token, that is,
not retransmit it and begin sending data. Once a station has the token, it is allowed to
send one or more packets—exactly how many more depends on some factors described
below.

Each transmitted packet contains the destination address of the intended receiver;
it may also contain a multicast (or broadcast) address if it is intended to reach more than
one (or all) receivers. As the packet flows past each node on the ring, each node looks
inside the packet to see if it is the intended recipient. If so, it copies the packet into a
buffer as it flows through the network adaptor, but it does not remove the packet from
the ring. The sending station has the responsibility of removing the packet from the
ring.

One issue we must address is how much data a given node is allowed to transmit
each time it possesses the token or, equivalently, how long a given node is allowed to hold
the token: the token holding time (THT). If we assume that most nodes on the network
do not have data to send at any given time—a reasonable assumption, and certainly one
that the Ethernet takes advantage of—then we could make a case for letting a node that
possesses the token transmit as much data as it has before passing the token on to the
next node, in effect setting the THT to infinity. The danger is that a single station could
monopolize the ring for an arbitrarily long time, but we could certainly set the THT to
significantly more than the time to send one packet.

It is easy to see that the more bytes a node can send each time it has the token, the
better the utilization of the ring you can achieve in the situation in which only a single
node has data to send. The downside, of course, is that this strategy does not work well
when multiple nodes have data to send—it favors nodes that have a lot of data to send
over nodes that have only a small message to send, even when it is important to get this
small message delivered as soon as possible.

That issue is addressed by the 802.5 protocol’s support for different levels of pri-
ority. The token contains a 3-bit priority field, so we can think of the token having a
certain priority n at any time. Each device that wants to send a packet assigns a priority
to that packet, and the device can only seize the token to transmit a packet if the packet’s
priority is at least as great as the token’s. The priority of the token changes over time due
to the use of three reservation bits in the frame header. For example, a station X waiting
to send a priority n packet may set these bits to n if it sees a data frame going past and
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Figure 2.35 Token release: (a) early versus (b) delayed.

the bits have not already been set to a higher value. This causes the station that currently
holds the token to elevate its priority to n when it releases it. Station X is responsible for
lowering the token priority to its old value when it is done.

Note that this is a strict priority scheme, in the sense that no lower-priority packets
get sent when higher-priority packets are waiting. This may cause lower-priority packets
to be locked out of the ring for extended periods if there is a sufficient supply of high-
priority packets.

The 802.5 protocol provides a form of reliable delivery using 2 bits in the packet
trailer, the A and C bits. These are both 0 initially. When a station sees a frame for
which it is the intended recipient, it sets the A bit in the frame. When it copies the
frame into its adaptor, it sets the C bit. If the sending station sees the frame come back
over the ring with the A bit still 0, it knows that the intended recipient is not func-
tioning or absent. If the A bit is set but not the C bit, this implies that for some rea-
son (e.g., lack of buffer space), the destination could not accept the frame. Thus, the
frame might reasonably be retransmitted later in the hope that buffer space had become
available.

One final issue will complete our discussion of the MAC protocol, which is the
matter of exactly when the sending node releases the token. As illustrated in Figure 2.35,
the sender can insert the token back onto the ring immediately following its frame (this is
called early release) or after the frame it transmits has gone all the way around the ring and
been removed (this is called delayed release). Clearly early release allows better bandwidth
utilization, especially on large rings. 802.5 originally used delayed token release, but
support for early release was subsequently added.
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2.7.2 Token Ring Maintenance
Each 802.5 token ring has one station designated as a monitor. The monitor’s job is to
ensure the health of the ring by, for example, making sure that the token is not lost. Any
station on the ring can become the monitor, and there are defined procedures by which
the monitor is elected when the ring is first connected or on the failure of the current
monitor. A healthy monitor periodically announces its presence with a special control
message; if a station fails to see such a message for some period of time, it will assume
that the monitor has failed and will try to become the monitor. The procedures for
electing a monitor are the same whether the ring has just come up or the active monitor
has just failed.

When a station decides that a new monitor is needed, it transmits a “claim token”
frame, announcing its intent to become the new monitor. If that token circulates back
to the sender, it can assume that it is okay for it to become the monitor. If some other
station is also trying to become the monitor at the same instant, the sender might see
a claim token message from that other station first. In this case, it will be necessary to
break the tie using some well-defined rule like “highest address wins.”

One responsibility of the monitor is to make sure that there is always a token
somewhere in the ring, either circulating or currently held by a station. It should be clear
that a token may vanish for several reasons, such as a bit error, or a crash on the part of a
station that was holding it. To detect a missing token, the monitor watches for a passing
token and maintains a timer equal to the maximum possible token rotation time. This
interval equals

NumStations × THT + RingLatency

where NumStations is the number of stations on the ring, and RingLatency is the
total propagation delay of the ring. If the timer expires without the monitor seeing a
token, it creates a new one.

The monitor also checks for corrupted or orphaned frames. The former have check-
sum errors or invalid formats, and without monitor intervention, they could circulate
forever on the ring. The monitor drains them off the ring before reinserting the token.
An orphaned frame is one that was transmitted correctly onto the ring but whose “par-
ent” died, that is, the sending station went down before it could remove the frame from
the ring. These are detected using another header bit, the “‘monitor” bit. This is 0 on
transmission and set to 1 the first time the packet passes the monitor. If the monitor
sees a packet with this bit set, it knows the packet is going by for the second time and it
drains the packet off the ring.

One additional ring maintenance function is the detection of dead stations. The
relays in the MSAU can automatically bypass a station that has been disconnected or
powered down, but may not detect more subtle failures. If any station suspects a failure
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Figure 2.36 802.5/token ring frame format.

on the ring, it can send a beacon frame to the suspect destination. Based on how far this
frame gets, the status of the ring can be established, and malfunctioning stations can be
bypassed by the relays in the MSAU.

Frame Format
We are now ready to define the 802.5 frame format, which is depicted in Figure 2.36.
802.5 uses differential Manchester encoding. This fact is used by the frame format, which
uses “illegal” Manchester codes in the start and end delimiters. After the start delimiter
comes the access control byte, which includes the frame priority and the reservation
priority mentioned above. The frame control byte is a demux key that identifies the
higher-layer protocol.

Similar to the Ethernet, 802.5 addresses are 48 bits long. The frame also includes a
32-bit CRC. This is followed by the frame status byte, which includes the A and C bits
for reliable delivery.

2.7.3 FDDI
Although FDDI is similar to 802.5 in many respects, there are significant differences.
For one, FDDI runs on fiber, not copper (although a later standard, CDDI, was defined
to allow copper links to be used). A more interesting difference is that an FDDI network
consists of a dual ring—two independent rings that transmit data in opposite directions,
as illustrated in Figure 2.37(a). The second ring is not used during normal operation
but instead comes into play only if the primary ring fails, as depicted in Figure 2.37(b).
That is, the ring loops back on the secondary fiber to form a complete ring, and as a
consequence, an FDDI network is able to tolerate a single break in the cable or the
failure of one station.

Another interesting difference is that instead of designating one node as a monitor,
all the nodes participate equally in maintaining the FDDI ring. Each node maintains an
estimate of the token rotation time (TRT)—the expected maximum time for the token
to make one complete trip around the ring. A node then measures the time between
successive arrivals of the token. If too much time elapses, suggesting that the token has
been lost, the node transmits a “claim” frame, in which it includes its current TRT
estimate. This claim serves two functions. First, the claim frame is a vote for a particular
value of the TRT. Any node that wants to vote for a shorter TRT will replace that claim
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Figure 2.37 Dual-fiber ring: (a) normal operation; (b) failure of the primary ring.

frame with its own claim frame, otherwise it will accept the new time and forward the
claim frame. Second, the claim frame is a request for authorization to regenerate the
token. If a claim frame makes it all the way back around to the original sender, that node
knows not only that the TRT it voted for was the shortest and has been accepted by all
the other nodes, but also that it has been authorized to regenerate the token.

When the token arrives at a node with time to spare (i.e., in less than one TRT
since the last time this node saw the token), the node can transmit data so long as it
does not make the token fall behind schedule; otherwise, the node cannot transmit data.
A shortcoming of this basic scheme is that it cannot guarantee any particular node the
opportunity to transmit regularly, even if that node has data that is sensitive to jitter,
because an upstream node could consume all the available time. To account for this
possibility, FDDI defines two classes of traffic: synchronous and asynchronous. When a
node receives a token, it is always allowed to send synchronous data, without regard for
whether the token is early or late. In contrast, a node can send asynchronous traffic only
when the token is early.

2.7.4 Resilient Packet Ring (802.17)
Resilient Packet Ring (RPR) is a relatively recent technology that has been standardized
by the IEEE as 802.17. While it bears some similarity to the ring technologies described
above, it was designed with slightly different goals in mind, which led to some key dif-
ferences in the protocol. Resiliency—the ability to recover quickly from a link or node
failure—was a key design goal, to make the technology suitable for service provider net-
works. Historically this had been provided at lower layers (e.g., by SONET’s protection
mechanisms). Other design goals included bandwidth efficiency and quality of service
(QoS) support, which had quite an impact on the protocol.



132 2 Direct Link Networks

Like FDDI, RPR consists of two counterrotating optical fiber rings; unlike FDDI,
it takes advantage of the bandwidth of both rings during normal operation. And unlike
the previously described rings, an RPR frame is removed from the ring by the receiving
node instead of leaving it to be removed by the sender, thereby freeing up some of the
bandwidth on the ring in what is called spatial reuse.

Most strikingly, RPR does not use tokens. Instead, RPR uses a technique called
buffer insertion. In a buffer insertion ring, a node can transmit its own frames when-
ever it has no other frames to forward. If a frame arrives while the node is transmitting

Where Are They Now ????
The Future of Rings

The history of rings has seen them
compete against Ethernet and ulti-
mately lose on several occasions. 802.5
eventually lost out to 10-Mbit Eth-
ernet for a variety of reasons, not
least of which being the develop-
ment of switched Ethernet, a topic
we will discuss in the next chapter.
FDDI was proposed as the faster al-
ternative to Ethernet, but then Eth-
ernet got faster too, and without the
need for costly fiber optics, and FDDI
never really caught on. The one ring
technology that is still seeing some
significant deployment is RPR, pri-
marily in metropolitan area networks
(MANs), although it seems likely that
“metro Ethernet” will eventually come
to dominate here just as Ethernet has
done in LANs. There is, however, at
least one reason RPR has had some
success in MANs, which is the fact
that rings are something of a nat-
ural fit for this kind of network, in
a way that they are not in the LAN.
Whereas it is cheap enough in a LAN

its own frame, then the node temporarily
buffers that frame. One of the major chal-
lenges for buffer insertion rings is how to
avoid starvation and enforce QoS guar-
antees, since in its simplest form a buffer
insertion ring could allow a station to hog
the link indefinitely. RPR addresses this
issue with fairly sophisticated QoS and
fairness mechanisms.

RPR supports three QoS classes:
class A provides low latency and low jit-
ter (e.g., for phone calls), class B pro-
vides predictable latency and jitter (e.g.,
for prerecorded multimedia), and class C
provides a best-effort transport.

To meet the resiliency goals, RPR
uses two mechanisms to recover from the
failure of a link or node. The first, wrap-
ping, is similar to the approach described
above for FDDI. The second, steering,
is more sophisticated: nodes adjacent to
the failure notify the other nodes, which
are then able to direct packets in the
correct (unbroken) direction around the
ring toward any given destination, even if
that is the “long” way around the ring—
assuming the destination is not the node
that just failed, of course.

A final interesting aspect of RPR is
that it was designed to run over previ-
ously defined physical layers, including
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SONET and the physical layer specified for Ethernet. This saved the designers the time
and effort of developing their own physical layer specs and hardware—a good example
of the value of layered architectures.

2.8 Wireless
Wireless technologies differ in a variety of dimensions, most notably in how much band-
width they provide and how far apart communicating nodes can be. Other important dif-
ferences include which part of the electromagnetic spectrum they use (including whether
it requires a license) and how much power they consume (important for mobile nodes).

Where Are They Now ????
to string cables in a hub-and-spoke
manner from a central switch to each
workstation, a ring actually provides
a very cost-effective way to intercon-
nect nodes in a MAN, where the cost
of obtaining rights-of-way and lay-
ing fiber can be significant. The re-
siliency of a ring is also attractive in
this environment—the fact that you
have both a “clockwise” and an “coun-
terclockwise” path between any two
points ensures that a single fiber cut
won’t cut off a customer. RPR was also
developed with some fairness mech-
anisms that ensure that a node’s lo-
cation on the ring doesn’t put it at
an unfair advantage or disadvantage
to another node in another location
when it comes to getting access to the
bandwidth—this is harder to achieve
with Ethernet. Thus, while there is
certainly plenty of momentum behind
Ethernet in the MAN, it is probably
too soon to predict the demise of RPR
in this environment.

In this section we discuss four promi-
nent wireless technologies: Bluetooth,
Wi-Fi (more formally known as 802.11),
WiMAX (802.16), and third-generation
or 3G cellular wireless. In the following
sections we present them in order from
shortest range to longest. Table 2.6 gives
an overview of these technologies and
how they relate to each other.

The most widely used wireless links
today are usually asymmetric, that is, the
two endpoints are usually different kinds
of nodes. One endpoint, sometimes de-
scribed as the base station, usually has no
mobility, but has a wired (or at least high
bandwidth) connection to the Internet or
other networks as in Figure 2.38. The
node at the other end of the link—shown
here as a “client node”—is often mobile,
and relies on its link to the base sta-
tion for all its communication with other
nodes.

Observe that in Figure 2.38 we
have used a wavy pair of lines to repre-
sent the wireless “link” abstraction pro-
vided between two devices (e.g., between
a base station and one of its client nodes).
One of the interesting aspects of wireless
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Bluetooth WiMAX

802.15.1 Wi-Fi 802.11 802.16 3G Cellular

Typical link
length

10 m 100 m 10 km Tens of km

Typical
bandwidth

2.1 Mbps
(shared)

54 Mbps
(shared)

70 Mbps
(shared)

384+ Kbps (per
connection)

Typical use Link a
peripheral to a
notebook
computer

Link a
notebook
computer to a
wired base

Link a building
to a wired tower

Link a cell
phone to a
wired tower

Wired technol-
ogy analogy

USB Ethernet Coaxial cable DSL

Table 2.6 Overview of leading wireless technologies.

Figure 2.38 A wireless network using a base station.
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Figure 2.39 A wireless ad hoc or mesh network.

communication is that it naturally supports point-to-multipoint communication, be-
cause radio waves sent by one device can be simultaneously received by many devices.
However, it is often useful to create a point-to-point link abstraction for higher-layer
protocols, and we will see examples of how this works later in this section.

Note that in Figure 2.38, communication between nonbase (client) nodes is routed
via the base station. This is in spite of the fact that radio waves emitted by one client node
may well be received by other client nodes—the common base station model does not
permit direct communication between the client nodes.

This topology implies three qualitatively different levels of mobility. The first level
is no mobility, such as when a receiver must be in a fixed location to receive a directional
transmission from the base station, as is the case with the initial version of WiMAX. The
second level is mobility within the range of a base, as is the case with Bluetooth. The
third level is mobility between bases, as is the case with cell phones and Wi-Fi.

An alternative topology that is seeing increasing interest is the mesh or ad hoc net-
work. In a wireless mesh, nodes are peers (i.e., there is no special base station node).
Messages may be forwarded via a chain of peer nodes as long as each node is within
range of the preceding node. This is illustrated in Figure 2.39. This allows the wireless
portion of a network to extend beyond the limited range of a single radio. From the point
of view of competition between technologies, this allows a shorter-range technology to
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extend its range and potentially compete with a longer-range technology. Meshes also
offer fault tolerance by providing multiple routes for a message to get from point A to
point B. A mesh network can be extended incrementally, with incremental costs. On
the other hand, a mesh requires nonbase nodes to have a certain level of sophistication
in their hardware and software, potentially increasing per-unit costs—and power con-
sumption, a critical consideration for battery-powered devices. Wireless mesh networks
are of considerable research interest, but they are still in their relative infancy compared
to networks with base stations, and thus we do not cover them further here.

We now turn our attention to the details of the four wireless technologies men-
tioned above, beginning with the most short-range technology, Bluetooth.

2.8.1 Bluetooth (802.15.1)
Bluetooth fills the niche of very short-range communication between mobile phones,
PDAs, notebook computers, and other personal or peripheral devices. For example, Blue-
tooth can be used to connect a mobile phone to a headset, or a notebook computer to a
printer. Roughly speaking, Bluetooth is a more convenient alternative to connecting two
devices with a wire. In such applications, it is not necessary to provide much range or
bandwidth. This is fortunate for some of the target battery-powered devices, since it is
important that they not consume much power.

Bluetooth operates in the license-exempt band at 2.45 GHz. It has a range of only
about 10 m. For this reason, and because the communicating devices typically belong to
one individual or group, Bluetooth is sometimes categorized as a personal area network
(PAN). Version 2.0 provides speeds up to 2.1 Mbps. Power consumption is low.

Bluetooth is specified by an industry consortium called the Bluetooth Special Inter-
est Group. It specifies an entire suite of protocols, going beyond the link layer to define
application protocols, which it calls profiles, for a range of applications. For example,
there is a profile for synchronizing a PDA with a personal computer. Another profile
gives a mobile computer access to a wired LAN in the manner of 802.11, although this
was not Bluetooth’s original goal. The IEEE 802.15.1 standard is based on Bluetooth
but excludes the application protocols.

The basic Bluetooth network configuration, called a piconet, consists of a master de-
vice and up to seven slave devices, as in Figure 2.40. Any communication is between the
master and a slave; the slaves do not communicate directly with each other. Because slaves
have a simpler role, their Bluetooth hardware and software can be simpler and cheaper.

Since Bluetooth operates in an license-exempt band, it is required to use a spread
spectrum technique (as discussed in Section 2.1.2) to deal with possible interference
in the band. It uses frequency hopping with 79 channels (frequencies), using each for
625 µm at a time. This provides a natural time slot for Bluetooth to use for synchronous
time division multiplexing. A frame takes up 1, 3, or 5 consecutive time slots. Only



2.8 Wireless 137

Figure 2.40 A Bluetooth piconet.

the master can start to transmit in odd-numbered slots. A slave can start to transmit in
an even-numbered slot, but only in response to a request from the master during the
previous slot, thereby preventing any contention between the slave devices.

A slave device can be parked : set to an inactive, low-power state. A parked device
cannot communicate on the piconet; it can only be reactivated by the master. A piconet
can have up to 255 parked devices in addition to its active slave devices.

ZigBee is a newer technology that competes with Bluetooth to some extent. De-
vised by the ZigBee alliance and standardized as IEEE 802.15.4, it is designed for sit-
uations where the bandwidth requirements are low and power consumption must be
very low to give very long battery life. It is also intended to be simpler and cheaper than
Bluetooth, making it financially feasible to incorporate in cheaper devices such as a wall
switch that wirelessly communicates with a ceiling-mounted fan.

2.8.2 Wi-Fi (802.11)
This section takes a closer look at a specific technology centered around the emerging
IEEE 802.11 standard, also known as Wi-Fi.6 Wi-Fi is technically a trademark, owned by

6There is some debate over whether Wi-Fi stands for “wireless fidelity,” by analogy to Hi-Fi, or whether it is just a catchy
name that doesn’t stand for anything other than 802.11.
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a trade group called the Wi-Fi alliance, that certifies product compliance with 802.11.
Like its Ethernet and token ring siblings, 802.11 is designed for use in a limited geo-
graphical area (homes, office buildings, campuses), and its primary challenge is to medi-
ate access to a shared communication medium—in this case, signals propagating through
space. 802.11 supports additional features (e.g., time-bounded services, power manage-
ment, and security mechanisms), but we focus our discussion on its base functionality.

Physical Properties

802.11 runs over six different physical layer protocols (so far). Five are based on spread
spectrum radio, and one on diffused infrared (and is of historical interest only at this
point). The fastest runs at a maximum of 54 Mbps.

The original 802.11 standard defined two radio-based physical layers standards,
one using frequency hopping (over 79 1-MHz-wide frequency bandwidths) and the
other using direct sequence (with an 11-bit chipping sequence). Both provide up to
2 Mbps. Then physical layer standard 802.11b was added. Using a variant of direct
sequence, 802.11b provides up to 11 Mbps. These three standards run in the license-
exempt 2.4 GHz frequency band of the electromagnetic spectrum. Then came 802.11a,
which delivers up to 54 Mbps using a variant of FDM called orthogonal frequency division
multiplexing (OFDM). 802.11a runs in the license-exempt 5-GHz band. On one hand,
this band is less used, so there is less interference. On the other hand, there is more ab-
sorption of the signal and it is limited to almost line of sight. The most recent standard
is 802.11g, which is backward compatible with 802.11b (and returns to the 2.4-GHz
band). 802.11g uses OFDM and delivers up to 54 Mbps. It is common for commercial
products to support all three of 802.11a, 802.11b, and 802.11g, which not only ensures
compatibility with any device that supports any one of the standards, but also makes it
possible for two such products to choose the highest bandwidth option for a particular
environment.

Collision Avoidance

At first glance, it might seem that a wireless protocol would follow the same algorithm as
the Ethernet—wait until the link becomes idle before transmitting and back off should
a collision occur—and to a first approximation, this is what 802.11 does. The additional
complication for wireless is that, while a node on an Ethernet receives every other node’s
transmissions, a node on an 802.11 network may be too far from certain other nodes to
receive their transmissions (and vice versa).

Consider the situation depicted in Figure 2.41, where A and C are both within
range of B but not each other. Suppose both A and C want to communicate with B and
so they each send it a frame. A and C are unaware of each other since their signals do
not carry that far. These two frames collide with each other at B, but unlike an Ethernet,
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Figure 2.41 The hidden node problem. Although A and C are hidden from each other,

their signals can collide at B. (B’s reach is not shown.)

Figure 2.42 The exposed node problem. Although B and C are exposed to each other’s

signals, there is no interference if B transmits to A while C transmits to D. (A’s and D’s

reaches are not shown.)

neither A nor C is aware of this collision. A and C are said to be hidden nodes with respect
to each other.

A related problem, called the exposed node problem, occurs under the circumstances
illustrated in Figure 2.42, where each of the four nodes is able to send and receive signals
that reach just the nodes to its immediate left and right. For example, B can exchange
frames with A and C but it cannot reach D, while C can reach B and D but not A.
Suppose B is sending to A. Node C is aware of this communication because it hears B’s
transmission. It would be a mistake, however, for C to conclude that it cannot transmit
to anyone just because it can hear B’s transmission. For example, suppose C wants to
transmit to node D. This is not a problem since C’s transmission to D will not interfere
with A’s ability to receive from B. (It would interfere with A sending to B, but B is
transmitting in our example.)
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802.11 addresses these two problems with an algorithm called multiple access with
collision avoidance (MACA). The idea is for the sender and receiver to exchange control
frames with each other before the sender actually transmits any data. This exchange
informs all nearby nodes that a transmission is about to begin. Specifically, the sender
transmits a Request to Send (RTS) frame to the receiver; the RTS frame includes a field
that indicates how long the sender wants to hold the medium (i.e., it specifies the length
of the data frame to be transmitted). The receiver then replies with a Clear to Send (CTS)
frame; this frame echoes this length field back to the sender. Any node that sees the CTS
frame knows that it is close to the receiver, and therefore cannot transmit for the period
of time it takes to send a frame of the specified length. Any node that sees the RTS frame
but not the CTS frame is not close enough to the receiver to interfere with it, and so is
free to transmit.

There are two more details to complete the picture. First, the receiver sends an
ACK to the sender after successfully receiving a frame. All nodes must wait for this ACK
before trying to transmit.7 Second, should two or more nodes detect an idle link and
try to transmit an RTS frame at the same time, their RTS frames will collide with each
other. 802.11 does not support collision detection, but instead the senders realize the
collision has happened when they do not receive the CTS frame after a period of time,
in which case they each wait a random amount of time before trying again. The amount
of time a given node delays is defined by the same exponential backoff algorithm used
on the Ethernet (see Section 2.6.2).

Distribution System
As described so far, 802.11 would be suitable for a network with a mesh (ad hoc) topol-
ogy, and development of an 802.11s standard for mesh networks is nearing completion.
At the current time, however, nearly all 802.11 networks use a base-station-oriented
topology.

Instead of all nodes being created equal, some nodes are allowed to roam (e.g.,
your laptop) and some are connected to a wired network infrastructure. 802.11 calls
these base stations access points (AP), and they are connected to each other by a so-called
distribution system. Figure 2.43 illustrates a distribution system that connects three access
points, each of which services the nodes in some region. The details of the distribution
system are not important to this discussion—it could be an Ethernet or a token ring, for
example. The only important point is that the distribution network runs at layer 2 of
the ISO architecture (the link layer), that is, it operates at the same protocol layer as the
wireless links. In other words, it does not depend on any higher-level protocols (such as
the network layer).

7This ACK was not part of the original MACA algorithm, but was instead proposed in an extended version called
MACAW: MACA for Wireless LANs.
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Figure 2.43 Access points connected to a distribution network.

Although two nodes can communicate directly with each other if they are within
reach of each other, the idea behind this configuration is that each node associates itself
with one access point. For node A to communicate with node E, for example, A first
sends a frame to its access point (AP-1), which forwards the frame across the distribution
system to AP-3, which finally transmits the frame to E. How AP-1 knew to forward the
message to AP-3 is beyond the scope of 802.11; it may have used the bridging protocol
described in the next chapter (Section 3.2). What 802.11 does specify is how nodes select
their access points and, more interestingly, how this algorithm works in light of nodes
moving from one cell to another.

The technique for selecting an AP is called scanning and involves the following four
steps:

1 The node sends a Probe frame;

2 All APs within reach reply with a Probe Response frame;

3 The node selects one of the access points, and sends that AP an Association
Request frame;

4 The AP replies with an Association Response frame.

A node engages this protocol whenever it joins the network, as well as when it becomes
unhappy with its current AP. This might happen, for example, because the signal from
its current AP has weakened due to the node moving away from it. Whenever a node
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Figure 2.44 Node mobility.

Figure 2.45 802.11 frame format.

acquires a new AP, the new AP notifies the old AP of the change (this happens in step 4)
via the distribution system.

Consider the situation shown in Figure 2.44, where node C moves from the cell
serviced by AP-1 to the cell serviced by AP-2. As it moves, it sends Probe frames, which
eventually result in Probe Response frames from AP-2. At some point, C prefers
AP-2 over AP-1, and so it associates itself with that access point.

The mechanism just described is called active scanning since the node is actively
searching for an access point. APs also periodically send a Beacon frame that advertises
the capabilities of the access point; these include the transmission rates supported by
the AP. This is called passive scanning, and a node can change to this AP based on the
Beacon frame simply by sending an Association Request frame back to the access
point.

Frame Format

Most of the 802.11 frame format, which is depicted in Figure 2.45, is exactly what we
would expect. The frame contains the source and destination node addresses, each of
which are 48 bits long, up to 2,312 bytes of data, and a 32-bit CRC. The Control
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field contains three subfields of interest (not shown): a 6-bit Type field that indicates
whether the frame carries data, is an RTS or CTS frame, or is being used by the scanning
algorithm; and a pair of 1-bit fields—called ToDS and FromDS—that are described
below.

The peculiar thing about the 802.11 frame format is that it contains four, rather
than two, addresses. How these addresses are interpreted depends on the settings of the
ToDS and FromDS bits in the frame’s Control field. This is to account for the pos-
sibility that the frame had to be forwarded across the distribution system, which would
mean that the original sender is not necessarily the same as the most recent transmitting
node. Similar reasoning applies to the destination address. In the simplest case, when
one node is sending directly to another, both the DS bits are 0, Addr1 identifies the
target node, and Addr2 identifies the source node. In the most complex case, both DS
bits are set to 1, indicating that the message went from a wireless node onto the dis-
tribution system, and then from the distribution system to another wireless node. With
both bits set, Addr1 identifies the ultimate destination, Addr2 identifies the immediate
sender (the one that forwarded the frame from the distribution system to the ultimate
destination), Addr3 identifies the intermediate destination (the one that accepted the
frame from a wireless node and forwarded it across the distribution system), and Addr4
identifies the original source. In terms of the example given in Figure 2.43, Addr1
corresponds to E, Addr2 identifies AP-3, Addr3 corresponds to AP-1, and Addr4
identifies A.

2.8.3 WiMAX (802.16)
WiMAX, which stands for Worldwide Interoperability for Microwave Access, was de-
signed by the WiMAX Forum and standardized as IEEE 802.16. It was originally con-
ceived as a last-mile technology (Section 2.1.2). In WiMAX’s case that “mile” is typically
1 to 6 miles, with a maximum of about 30 miles, leading to WiMAX being classified
as a metropolitan area network (MAN). In keeping with a last-mile role, WiMAX does
not incorporate mobility at the time of this writing, although efforts to add mobility are
nearing completion as IEEE 802.16e. Also in keeping with the last-mile niche, WiMAX’s
client systems, called subscriber stations, are assumed to be not end-user computing de-
vices, but rather systems that multiplex all the communication of the computing devices
being used in a particular building. WiMAX provides up to 70 Mbps to a single sub-
scriber station.

In order to adapt to different frequency bands and different conditions, WiMAX
defines several physical layer protocols. The original WiMAX physical layer protocol
is designed to use frequencies in the 10- to 66-GHz range. In this range waves travel
in straight lines, so communication is limited to line-of-sight (LOS). A WiMAX base
station uses multiple antennas pointed in different directions; the area covered by one
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antenna’s signal is a sector. To extend WiMAX to near-line-of-sight and nonline-of-sight
situations, several physical layer protocols were added that use the frequencies below
11 GHz (in the 10- to 11-GHz range, WiMAX can use either the original physical
layer or one of the newer ones). Since this range includes both licensed and license-
exempt frequencies, each of these physical layer protocols defines a variant better adapted
to the additional interference and the regulatory constraints of the license-exempt
frequencies.

The physical layer protocols provide two ways to divide the bandwidth between
upstream (i.e., from subscribers to base station) and downstream traffic: time division
duplexing (TDD) and frequency division duplexing (FDD). TDD is simply STDM
of the two streams; they take turns using the same frequency, and the proportion of
upstream to downstream time can be varied dynamically, adaptively, by the base station.
FDD is simply FDM of the two streams; one frequency is used for upstream and another
for downstream. In license-exempt bands, the protocols use only TDD.

Both channels, upstream and downstream, must be shared not just among the
many subscriber stations in a given sector, but also among the many WiMAX connec-
tions that each subscriber can have with the base station. WiMAX—unlike 802.11 and
Ethernet—is connection oriented. One reason for this is to be able to offer a variety
of QoS guarantees regarding properties such as latency and jitter, with the aim of sup-
porting high-quality telephony and high-volume multimedia in addition to bursty data
traffic. This is conceptually similar to some of the wired last mile technologies (such as
DSL) with which WiMAX is intended to compete.

Sharing of the upstream and downstream channels is based on dividing them into
equal-sized time slots. A WiMAX frame generally takes up multiple slots, with differ-
ent frames taking different numbers of slots. The downstream channel (from base to
subscribers) is relatively easy to subdivide into connections since only the base station
sends on that channel. The base station simply sends addressed frames, one after the
other. Each subscriber station in the sector receives all the frames, but ignores those not
addressed to one of its connections.

In the upstream direction, how a connection gets handled depends on its QoS
parameters. Some connections get slots at a fixed rate, some get polled to determine
how many slots they need currently, and some must request slots whenever they need
them. Connections in this last category must contend to place their requests in a limited
number of upstream slots set aside for contention. They use an exponential backoff
algorithm to minimize the chance of a collision, even on the first attempt.

A European alternative to WiMAX is HIPERMAN, which stands for high-
performance radio metropolitan area network and uses the 2- to 11-GHz range. South
Korea’s WiBro (for wireless broadband) technology operates at 2.3 GHz, and is being
brought into line with the emerging IEEE 802.16e standard for mobile WiMAX.
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2.8.4 Cell Phone Technologies
Cell phone technology seems an obvious approach to mobile computer communication,
and indeed data services based on cellular standards are commercially available. One
drawback is the cost to users, due in part to cellular’s use of licensed spectrum (which
has historically been sold off to cellular phone operators for astronomical sums). The
frequency bands that are used for cellular telephones (and now for cellular data) vary
around the world. In Europe, for example, the main bands for cellular phones are at
900 and 1,800 MHz. In North America, 850- and 1,900-MHz bands are used. This
global variation in spectrum usage creates problems for users who want to travel from
one part of the world to another, and has created a market for phones that can operate
at multiple frequencies (e.g., a tri-band phone can operate at three of the four frequency
bands mentioned above). That problem, however, pales in comparison to the prolifera-
tion of incompatible standards that have plagued the cellular communication business.
Only recently have some signs of convergence on a small set of standards appeared.
And finally, there is the problem that most cellular technology was designed for voice
communication, and is only now starting to support moderately high-bandwidth data
communication.

Like 802.11 and WiMAX, cellular technology relies on the use of base stations
that are part of a wired network. The geographic area served by a base station’s antenna is
called a cell. A base station could serve a single cell, or use multiple directional antennas
to serve multiple cells. Cells don’t have crisp boundaries, and they overlap. Where they
overlap, a mobile phone could potentially communicate with multiple base stations. This
is somewhat similar to the 802.11 picture shown in Figure 2.43. At any time, however,
the phone is in communication with, and under the control of, just one base station. As
the phone begins to leave a cell, it moves into an area of overlap with one or more other
cells. The current base station senses the weakening signal from the phone, and gives
control of the phone to whichever base station is receiving the strongest signal from it.
If the phone is involved in a call at the time, the call must be transferred to the new base
station in what is called a handoff.

As we noted above, there is not one unique standard for cellular, but rather a col-
lection of competing technologies that support data traffic in different ways and deliver
different speeds. These technologies are loosely categorized by “generation.” The first
generation (1G) was analog, and thus of limited interest from a data communications
perspective. Most of the cell phone technology currently deployed is considered second
generation (2G) or “2.5G” (not quite worthy of being called 3G, but more advanced
than 2G). The 2G and later technologies are digital. The most widely deployed 2G tech-
nology is referred to as GSM—the Global System for Mobile Communications, which
is used in more than 200 countries. North America, however, is a late adopter of GSM,
which helped prolong the proliferation of competing standards.
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Most 2G technologies use one of two approaches to sharing a limited amount of
spectrum between simultaneous calls. One way is a combination of FDM and TDM.
The spectrum available is divided into disjoint frequency bands, and each band is sub-
divided into time slots. A given call is allocated every nth slot in one of the bands. The
other approach is code division multiple access (CDMA). CDMA does not divide the
channel in either time or frequency, but rather uses different chipping codes to distin-
guish the transmissions of different cellphone users. (See Section 2.1.2 for a discussion
of chipping codes.)

The 2G and later cell phone technologies use compression algorithms tailored to
human speech to compress voice data to about 8 Kbps without losing quality. Since 2G
technologies focus on voice communication, they provide connections with just enough
bandwidth for that compressed speech—not enough for a decent data link. One of the
first cellular data standards to gain widespread adoption is the General Packet Radio
Service (GPRS), which is part of the GSM set of standards and is often referred to as a
2.5G technology.

GSM networks make use of a multiplexing technique called time division multiple
access (TDMA). (Confusingly, there is also a particular cellular standard that is some-
times called TDMA, but is known formally as IS-136.) You can think of TDMA as being
like TDM (time division multiplexing)—traditionally used for telephone services—with
the additional feature that the timeslots can be dynamically allocated to users or devices
that need them (and deallocated from devices that no longer need them). The number
of timeslots that are available for GPRS at a given frequency depends on how many cel-
lular voice calls are currently in progress, since voice calls also consume timeslots. As a
result, GPRS data rates tend to be lower in busy cells. In practice, users often get between
30 and 70 Kbps—coincidentally, just about the same as a user of a dial-up modem on
a landline. Nevertheless, GPRS has proven quite useful and popular in some parts of
the world as a way to communicate wirelessly when faster connection methods (such
as 802.11) are not available. Other 2.5G data standards have also become available and
some manage to be quite a bit higher in bandwidth than GPRS.

The concept of a third generation (3G) was established before there was any
implementation of 3G technologies, with the aim of shaping a single international
standard that would provide much higher data bandwidth. Unfortunately, at the
time of writing, several mutually incompatible 3G standards are emerging. Thus,
the possibility that cellular standards will continue to diverge seems quite realistic.
Interestingly, all the 3G standards are based on variants of CDMA. For example,
the Universal Mobile Telecommunications System (UMTS) is based on wideband
CDMA (W-CDMA). UMTS appears poised to be the successor to GSM, and in
fact is sometimes referred to as 3GSM (i.e., the third generation version of GSM).
UMTS is intended to support data transfer rates of up to 1.92 Mbps, although
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real network conditions will probably result in lower rates in practice. Neverthe-
less, it should represent a significant performance improvement over GPRS. And like
GSM, it should have quite widespread (if not actually universal) adoption around the
world.

There are a number of commercial UMTS networks in operation at the time of
writing with many more announced or planned. And to make it quite clear that work
in this field is far from complete, we note that 3.5G and 4G standards are also in the
works.

Finally, it should be noted that there is a class of mobile phones that are not cellular
phones but satellite phones, or satphones. Satphones use communication satellites as base
stations, communicating on frequency bands that have been reserved internationally for
satellite use. Consequently, service is available even where there are no cellular base sta-
tions. Satphones are rarely used where cellular is available, since service is typically much
more expensive. Satphones are also larger and heavier than modern cell phones because
of the need to transmit and receive over much longer distances, to reach satellites rather
than cellphone towers. Satellite communication is more extensively used in television
and radio broadcasting, taking advantage of the fact that the signal is broadcast, not
point-to-point. High-bandwidth data communication via satellite is commercially avail-
able, but its relatively high price (for both equipment and service) limits its use to regions
where no alternative is available.

2.9 Summary
This chapter introduced the hardware building blocks of a computer network—nodes
and links—and discussed the five key problems that must be solved so that two or more
nodes that are directly connected by a physical link can exchange messages with each
other. In practice, most of the algorithms that address these five problems are imple-
mented on the adaptor that connects the host to the link. It turns out that the design of
this adaptor, and how the rest of the host interacts with it, is of critical importance in
how well the network performs overall.

The first problem is to encode the bits that make up a binary message into the signal
at the source node and then to recover the bits from the signal at the receiving node. This
is the encoding problem, and it is made challenging by the need to keep the sender’s and
receiver’s clocks synchronized. We discussed four different encoding techniques—NRZ,
NRZI, Manchester, and 4B/5B—which differ largely in how they encode clock infor-
mation along with the data being transmitted. One of the key attributes of an encoding
scheme is its efficiency, that is, the ratio of signal pulses to encoded bits.

Once it is possible to transmit bits between nodes, the next step is to figure out
how to package these bits into frames. This is the framing problem, and it boils down
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to being able to recognize the beginning and end of each frame. Again, we looked at
several different techniques, including byte-oriented protocols, bit-oriented protocols,
and clock-based protocols.

Assuming that each node is able to recognize the collection of bits that make up
a frame, the third problem is to determine if those bits are in fact correct, or if they
have possibly been corrupted in transit. This is the error detection problem, and we
looked at three different approaches: cyclic redundancy check, two-dimensional parity,
and checksums. Of these, the CRC approach gives the strongest guarantees and is the
most widely used at the link level.

Given that some frames will arrive at the destination node containing errors and
thus will have to be discarded, the next problem is how to recover from such losses. The
goal is to make the link appear reliable. The general approach to this problem is called
ARQ and involves using a combination of acknowledgments and timeouts. We looked at
three specific ARQ algorithms: stop-and-wait, sliding window, and concurrent channels.
What makes these algorithms interesting is how effectively they use the link, with the
goal being to keep the pipe full.

The final problem is not relevant to point-to-point links, but it is the central issue
in multiple-access links: how to mediate access to a shared link so that all nodes even-
tually have a chance to transmit their data. In this case, we looked at a variety of media
access protocols—Ethernet, token ring, and several wireless protocols—which have been
put to practical use in building local area networks. The Ethernet and token ring media
access protocols are notable for their distributed nature—there is no central arbitrator
of access. Media access in wireless networks is made more complicated by the fact that
some nodes may be “hidden” from each other due to range limitations of radio transmis-
sion. Most of the common wireless protocols today designate some nodes as “wired” or
“base-station” nodes, while the other “mobile” nodes communicate with a base station.
Wireless standards and technologies are rapidly evolving, with mesh networks, in which
all nodes communicate as peers, now starting to emerge.

O P E N I S S U E

Sensor Networks

A sensor network is a wireless
network of many nodes—up to tens of
thousands—whose purpose is to mon-
itor some aspect of the geographic area
over which it is spread. The nodes are
equipped with one or more types of
sensor that allow them to detect, for

example, sound, motion, radiation, or chemicals. Some example applications of sensor
networks are monitoring a battleground to detect the locations of enemy forces, monitor-
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ing a natural environment for pollutants or seismic activity, and monitoring temperature
throughout a building to optimize climate control.

The nodes in a sensor network must be low cost because of the quantity involved,
and must use very little power because they are generally battery powered. These min-
imal nodes are perhaps better described as devices rather than computers. There is an
open-source operating system called TinyOS designed specifically for the constraints
of these devices. Researchers are pursuing development of smart dust—sensor network
nodes called motes whose size is on the order of millimeters.

Although the sensor information is ultimately routed to a base station, most of the
nodes are not directly linked to the base station. Instead they communicate only with
their nearest neighbors, who forward the data to their neighbors until it reaches the base
station. This uses less power than transmitting over a longer distance, and allows the sen-
sor network to extend beyond the range of a single link. One of the open questions about
sensor networks is how a node should determine which node to transmit or forward data
to. In one technique, the nodes form clusters. Each cluster designates one node as cluster
head, and all data is routed via cluster heads. In a technique that blurs the line between
network and application, nodes called aggregation points collect and process the data they
receive from neighboring nodes, then transmit the processed data. By processing the data
incrementally, instead of forwarding all the raw data to the base station, the amount of
traffic in the network (and the power consumed) is reduced. Further complicating the
issue of how to organize the network is the possibility of nodes failing, perhaps because of
battery exhaustion, and the possibility of nodes being dynamically added to an existing
network.

Another open issue for sensor networks is localization or location discovery—
determining the locations of nodes. Suppose the nodes are deployed by dropping them
from an aircraft, as might be the case for, say, military or environmental monitoring.
Then neither the node nor the base station would know where a node is. And yet that
geographical information is crucial; we need to know the location of that seismic activity
or enemy tank. GPS is considered too expensive and consumes too much power for the
majority of nodes. A typical solution requires a few nodes called beacons to determine
their own absolute locations based on GPS or manual configuration. The majority of
nodes can then derive their absolute location by combining an estimate of their position
relative to the beacons with the absolute location information provided by the beacons.

F U R T H E R R E A D I N G
One of the most important contributions in computer networking over the last 20 years
is the original paper by Metcalf and Boggs (1976) introducing the Ethernet. Many years
later, Boggs, Mogul, and Kent (1988) reported their practical experiences with Ethernet,
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debunking many of the myths that had found their way into the literature over the years.
Both papers are must reading. The third and fourth papers discuss the issues involved in
integrating high-speed network adaptors with system software.

■ Metcalf, R., and D. Boggs. “Ethernet: Distributed Packet Switching for Local
Computer Networks.” Communications of the ACM 19(7):395–403, July 1976.

■ Boggs, D., J. Mogul, and C. Kent. “Measured Capacity of an Ethernet.” Pro-
ceedings of the SIGCOMM ’88 Symposium, pp. 222–234, August 1988.

■ Metcalf, R. “Computer/Network Interface Design Lessons from Arpanet and
Ethernet.” IEEE Journal of Selected Areas in Communication (JSAC) 11(2):173–
180, February 1993.

■ Druschel, P., M. Abbott, M. Pagels, and L. L. Peterson. “Network Subsystem
Design.” IEEE Network (Special Issue on End-System Support for High-Speed Net-
works) 7(4):8–17, July 1993.

There are countless textbooks with a heavy emphasis on the lower levels of the
network hierarchy, with a particular focus on telecommunications—networking from the
phone company’s perspective. Books by Spragins et al. [SHP91] and Minoli [Min93]
are two good examples. Several other books concentrate on various local area network
technologies. Of these, Stallings’s book is the most comprehensive [Sta00], while Jain
gives a thorough description of FDDI [Jai94]. Jain’s book also gives a good introduction
to the low-level details of optical communication. Also, a comprehensive overview of
FDDI can be found in Ross’s article [Ros86].

For an introduction to information theory, Blahut’s book is a good place to start
[Bla87], along with Shannon’s seminal paper on link capacity [Sha48].

For a general introduction to the mathematics behind error codes, Rao and Fu-
jiwara [RF89] is recommended. For a detailed discussion of the mathematics of CRCs
in particular, along with some more information about the hardware used to calculate
them, see Peterson and Brown [PB61].

On the topic of network adaptor design, much work was done in the early 1990s
by researchers trying to connect hosts to networks running at higher and higher rates.
In addition to the two examples given in the reading list, see Traw and Smith [TS93],
Ramakrishnan [Ram93], Edwards et al. [EWL+94], Druschel et al. [DPD94], Kanakia
and Cheriton [KC88], Cohen et al. [CFFD93], and Steenkiste [Ste94a]. Recently, a new
generation of interface cards, ones that utilize network processors, are coming onto the
market. Spalink et al. demonstrate how these new processors can be programmed to
implement various network functionality [SKPG01].
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For general information on computer architecture, Hennessy and Patterson’s book
[HP06] is an excellent reference.

Finally, we recommend the following live reference:

■ http://standards.ieee.org/: Status of various IEEE network-related
standards.

E X E R C I S E S
1 Show the NRZ, Manchester, and NRZI encodings for the bit pattern shown

in Figure 2.46. Assume that the NRZI signal starts out low.

2 Show the 4B/5B encoding, and the resulting NRZI signal, for the following
bit sequence:

1110 0101 0000 0011

✓ 3 Show the 4B/5B encoding, and the resulting NRZI signal, for the following
bit sequence:

1101 1110 1010 1101 1011 1110 1110 1111

4 In the 4B/5B encoding (see Table 2.4), only two of the 5-bit codes used end
in two 0s. How many possible 5-bit sequences are there (used by the existing
code or not) that meet the stronger restriction of having at most one leading
and at most one trailing 0? Could all 4-bit sequences be mapped to such 5-bit
sequences?

Figure 2.46 Diagram for Exercise 1.
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5 Assuming a framing protocol that uses bit stuffing, show the bit sequence trans-
mitted over the link when the frame contains the following bit sequence:

110101111101011111101011111110

Mark the stuffed bits.

6 Suppose the following sequence of bits arrives over a link:

1101011111010111110010111110110

Show the resulting frame after any stuffed bits have been removed. Indicate any
errors that might have been introduced into the frame.

✓ 7 Suppose the following sequence of bits arrive over a link:

011010111110101001111111011001111110

Show the resulting frame after any stuffed bits have been removed. Indicate any
errors that might have been introduced into the frame.

8 Suppose you want to send some data using the BISYNC framing protocol, and
the last 2 bytes of your data are DLE and ETX. What sequence of bytes would
be transmitted immediately prior to the CRC?

9 For each of the following framing protocols, give an example of a byte/bit
sequence that should never appear in a transmission:

(a) BISYNC.

(b) HDLC.

★ 10 Assume that a SONET receiver resynchronizes its clock whenever a 1 bit ap-
pears; otherwise, the receiver samples the signal in the middle of what it believes
is the bit’s timeslot.

(a) What relative accuracy of the sender’s and receiver’s clocks is required in
order to receive correctly 48 zero-bytes (one ATM AAL5 cell’s worth) in a
row?

(b) Consider a forwarding station A on a SONET STS-1 line, receiving frames
from the downstream end B and retransmitting them upstream. What rel-
ative accuracy of A’s and B’s clocks is required to keep A from accumulating
more than one extra frame per minute?
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11 Show that two-dimensional parity allows detection of all 3-bit errors.

12 Give an example of a 4-bit error that would not be detected by a two-
dimensional parity, as illustrated in Figure 2.19. What is the general set of
circumstances under which 4-bit errors will be undetected?

13 Show that two-dimensional parity provides the receiver enough information to
correct any 1-bit error (assuming the receiver knows only 1 bit is bad), but not
any 2-bit error.

14 Show that the Internet checksum will never be 0xFFFF (that is, the final value
of sum will not be 0x0000) unless every byte in the buffer is 0. (Internet spec-
ifications in fact require that a checksum of 0x0000 be transmitted as 0xFFFF;
the value 0x0000 is then reserved for an omitted checksum. Note that, in ones
complement arithmetic, 0x0000 and 0xFFFF are both representations of the
number 0.)

15 Prove the Internet checksum computation shown in the text is independent
of byte order (host order or network order) except that the bytes in the final
checksum should be swapped later to be in the correct order. Specifically, show
that the sum of 16-bit words can be computed in either byte order. For exam-
ple, if the 1’s complement sum (denoted by +’) of 16-bit words is represented
as follows,

[A,B] +’ [C,D] +’ · · · +’ [Y,Z]

the following swapped sum is the same as the original sum above.

[B,A] +’ [D,C] +’ · · · +’ [Z,Y]

16 Suppose that one byte in a buffer covered by the Internet checksum algorithm
needs to be decremented (e.g., a header hop count field). Give an algorithm
to compute the revised checksum without rescanning the entire buffer. Your
algorithm should consider whether the byte in question is low order or high
order.

★ 17 Show that the Internet checksum can be computed by first taking the 32-bit
ones complement sum of the buffer in 32-bit units, then taking the 16-bit ones
complement sum of the upper and lower halfwords, and finishing as before by
complementing the result. (To take a 32-bit ones complement sum on 32-bit
twos complement hardware, you need access to the “overflow” bit.)

18 Suppose we want to transmit the message 11001001 and protect it from errors
using the CRC polynomial x3 + 1.
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(a) Use polynomial long division to determine the message that should be
transmitted.

(b) Suppose the leftmost bit of the message is inverted due to noise on the
transmission link. What is the result of the receiver’s CRC calculation?
How does the receiver know that an error has occurred?

✓ 19 Suppose we want to transmit the message 1011 0010 0100 1011 and protect
it from errors using the CRC8 polynomial x8 + x2 + x1 + 1.

(a) Use polynomial long division to determine the message that should be
transmitted.

(b) Suppose the leftmost bit of the message is inverted due to noise on the
transmission link. What is the result of the receiver’s CRC calculation?
How does the receiver know that an error has occurred?

20 The CRC algorithm as presented in this chapter requires lots of bit manipu-
lations. It is, however, possible to do polynomial long division taking multiple
bits at a time, via a table-driven method, that enables efficient software imple-
mentations of CRC. We outline the strategy here for long division 3 bits at a
time (see Table 2.7); in practice we would divide 8 bits at a time, and the table
would have 256 entries.

Let the divisor polynomial C = C(x) be x3 + x2 + 1, or 1101. To build
the table for C , we take each 3-bit sequence, p, append three trailing 0s, and

p q = p�000 ÷ C C × q

000 000 000 000

001 001 001 101

010 011 010 ____

011 0___ 011 ____

100 111 100 011

101 110 101 110

110 100 110 ____

111 ____ 111 ____

Table 2.7 Table-driven CRC calculation.
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then find the quotient q = p�000 ÷ C , ignoring the remainder. The third
column is the product C × q, the first 3 bits of which should equal p.

(a) Verify, for p = 110, that the quotients p�000 ÷ C and p�111 ÷ C are the
same, that is, it doesn’t matter what the trailing bits are.

(b) Fill in the missing entries in the table.

(c) Use the table to divide 101 001 011 001 100 by C . Hint: The first 3 bits
of the dividend are p = 101, so from the table the corresponding first 3 bits
of the quotient are q = 110. Write the 110 above the second 3 bits of the
dividend, and subtract C × q = 101 110, again from the table, from the
first 6 bits of the dividend. Keep going in groups of 3 bits. There should
be no remainder.

★ 21 With 1 parity bit we can detect all 1-bit errors. Show that at least one general-
ization fails, as follows:

(a) Show that if messages m are 8 bits long, then there is no error detection
code e = e(m) of size 2 bits that can detect all 2-bit errors. (Hint: Consider
the set M of all 8-bit messages with a single 1 bit; note that any message
from M can be transmuted into any other with a 2-bit error, and show that
some pair of messages m1 and m2 in M must have the same error code e.)

(b) Find an N (not necessarily minimal) such that no 32-bit error detection
code applied to N -bit blocks can detect all errors altering up to 8 bits.

22 Consider an ARQ protocol that uses only negative acknowledgments (NAKs),
but no positive acknowledgments (ACKs). Describe what timeouts would need
to be scheduled. Explain why an ACK-based protocol is usually preferred to a
NAK-based protocol.

23 Consider an ARQ algorithm running over a 20-km point-to-point fiber link.

(a) Compute the propagation delay for this link, assuming that the speed of
light is 2 × 108 m/s in the fiber.

(b) Suggest a suitable timeout value for the ARQ algorithm to use.

(c) Why might it still be possible for the ARQ algorithm to time out and
retransmit a frame, given this timeout value?
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24 Suppose you are designing a sliding window protocol for a 1-Mbps point-to-
point link to the moon, which has a one-way latency of 1.25 seconds. Assuming
that each frame carries 1 KB of data, what is the minimum number of bits you
need for the sequence number?

✓ 25 Suppose you are designing a sliding window protocol for a 1-Mbps point-
to-point link to the stationary satellite evolving around Earth at 3 × 104 km
altitude. Assuming that each frame carries 1 KB of data, what is the minimum
number of bits you need for the sequence number in the following cases? As-
sume the speed of light is 3 × 108 meters per second.

(a) RWS=1.

(b) RWS=SWS.

26 The text suggests that the sliding window protocol can be used to implement
flow control. We can imagine doing this by having the receiver delay ACKs,
that is, not send the ACK until there is free buffer space to hold the next
frame. In doing so, each ACK would simultaneously acknowledge the receipt
of the last frame and tell the source that there is now free buffer space available
to hold the next frame. Explain why implementing flow control in this way is
not a good idea.

27 Implicit in the stop-and-wait scenarios of Figure 2.22 is the notion that the
receiver will retransmit its ACK immediately on receipt of the duplicate data
frame. Suppose instead that the receiver keeps its own timer, and retransmits
its ACK only after the next expected frame has not arrived within the timeout
interval. Draw timelines illustrating the scenarios in Figure 2.22(b)–(d); assume
the receiver’s timeout value is twice the sender’s. Also redraw (c) assuming the
receiver’s timeout value is half the sender’s.

28 In stop-and-wait transmission, suppose that both sender and receiver retrans-
mit their last frame immediately on receipt of a duplicate ACK or data frame;
such a strategy is superficially reasonable because receipt of such a duplicate is
most likely to mean the other side has experienced a timeout.

(a) Draw a timeline showing what will happen if the first data frame is some-
how duplicated, but no frame is lost. How long will the duplications con-
tinue? This situation is known as the Sorcerer’s Apprentice bug.

(b) Suppose that, like data, ACKs are retransmitted if there is no response
within the timeout period. Suppose also that both sides use the same time-
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out interval. Identify a reasonably likely scenario for triggering the Sor-
cerer’s Apprentice bug.

29 Give some details of how you might augment the sliding window protocol
with flow control by having ACKs carry additional information that reduces
the SWS as the receiver runs out of buffer space. Illustrate your protocol with
a timeline for a transmission; assume the initial SWS and RWS are 4, the
link speed is instantaneous, and the receiver can free buffers at the rate of one
per second (i.e., the receiver is the bottleneck). Show what happens at T = 0,
T = 1, . . . ,T = 4 seconds.

30 Describe a protocol combining the sliding window algorithm with selective
ACKs. Your protocol should retransmit promptly, but not if a frame simply ar-
rives one or two positions out of order. Your protocol should also make explicit
what happens if several consecutive frames are lost.

31 Draw a timeline diagram for the sliding window algorithm with SWS =
RWS = 3 frames, for the following two situations. Use a timeout interval of
about 2 × RTT.

(a) Frame 4 is lost.

(b) Frames 4–6 are lost.

✓ 32 Draw a timeline diagram for the sliding window algorithm with SWS =
RWS = 4 frames in the following two situations. Assume the receiver sends
a duplicate acknowledgment if it does not receive the expected frame. For
example, it sends DUPACK[2] when it expects to see Frame[2] but receives
Frame[3] instead. Also, the receiver sends a cumulative acknowledgment after
it receives all the outstanding frames. For example, it sends ACK[5] when it
receives the lost frame Frame[2] after it already received Frame[3], Frame[4],
and Frame[5]. Use a timeout interval of about 2 × RTT.

(a) Frame[2] is lost. Retransmission takes place upon timeout (as usual).

(b) Frame[2] is lost. Retransmission takes place either upon receipt of the first
DUPACK or upon timeout. Does this scheme reduce the transaction time?
(Note that some end-to-end protocol (e.g., variant of TCP) uses a similar
scheme for fast retransmission.)
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33 Suppose that we attempt to run the sliding window algorithm with SWS =
RWS = 3 and with MaxSeqNum = 5. The N th packet DATA[N ] thus ac-
tually contains N mod 5 in its sequence number field. Give an example in
which the algorithm becomes confused, that is, a scenario in which the receiver
expects DATA[5] and accepts DATA[0]—which has the same transmitted se-
quence number—in its stead. No packets may arrive out of order. Note this
implies MaxSeqNum ≥ 6 is necessary as well as sufficient.

34 Consider the sliding window algorithm with SWS = RWS = 3, with no out-
of-order arrivals, and with infinite-precision sequence numbers.

(a) Show that if DATA[6] is in the receive window, then DATA[0] (or in
general any older data) cannot arrive at the receiver (and hence that
MaxSeqNum = 6 would have sufficed).

(b) Show that if ACK[6] may be sent (or, more literally, that DATA[5] is in
the sending window), then ACK[2] (or earlier) cannot be received.

These amount to a proof of the formula given in Section 2.5.2, particularized to
the case SWS = 3. Note that part (b) implies that the scenario of the previous
problem cannot be reversed to involve a failure to distinguish ACK[0] and
ACK[5].

35 Suppose that we run the sliding window algorithm with SWS = 5 and
RWS = 3, and no out-of-order arrivals.

(a) Find the smallest value for MaxSeqNum. You may assume that it suffices
to find the smallest MaxSeqNum such that if DATA[MaxSeqNum]
is in the receive window, then DATA[0] can no longer arrive.

(b) Give an example showing that MaxSeqNum − 1 is not sufficient.

(c) State a general rule for the minimum MaxSeqNum in terms of SWS
and RWS.

36 Suppose A is connected to B via an intermediate router R, as shown in Fig-
ure 2.47. The A–R and R–B links each accept and transmit only one packet
per second in each direction (so two packets take 2 seconds), and the two direc-
tions transmit independently. Assume A sends to B using the sliding window
protocol with SWS = 4.
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Figure 2.47 Diagram for Exercises 36–38.

(a) For Time = 0,1,2,3,4,5, state what packets arrive at and leave each node,
or label them on a timeline.

(b) What happens if the links have a propagation delay of 1.0 seconds, but
accept immediately as many packets as are offered (i.e., latency = 1 second
but bandwidth is infinite)?

37 Suppose A is connected to B via an intermediate router R, as in the previous
problem. The A–R link is instantaneous, but the R–B link transmits only one
packet each second, one at a time (so two packets take 2 seconds). Assume A
sends to B using the sliding window protocol with SWS = 4. For Time =
0,1,2,3,4, state what packets arrive at and are sent from A and B. How large
does the queue at R grow?

38 Consider the situation in the previous exercise, except this time assume that
the router has a queue size of 1, that is, it can hold one packet in addition to
the one it is sending (in each direction). Let A’s timeout be 5 seconds, and let
SWS again be 4. Show what happens at each second from T = 0 until all four
packets from the first windowful are successfully delivered.

39 Why is it important for protocols configured on top of the Ethernet to have a
length field in their header indicating how long the message is?

40 What kind of problem can arise when two hosts on the same Ethernet share
the same hardware address? Describe what happens and why that behavior is a
problem.

41 The 1982 Ethernet specification allowed between any two stations up to
1,500 m of coaxial cable, 1,000 m of other point-to-point link cable, and two
repeaters. Each station or repeater connects to the coaxial cable via up to 50 m
of “drop cable.” Typical delays associated with each device are given in Table 2.8
(where c = speed of light in a vacuum = 3 × 108 m/s). What is the worst-case
round-trip propagation delay, measured in bits, due to the sources listed? (This
list is not complete; other sources of delay include sense time and signal rise
time.)



160 2 Direct Link Networks

Item Delay

Coaxial cable Propagation speed .77c

Link/drop cable Propagation speed .65c

Repeaters Approximately 0.6 µs each

Transceivers Approximately 0.2 µs each

Table 2.8 Typical delays associated with various devices (Exercise 41).

★ 42 Coaxial cable Ethernet was limited to a maximum of 500 m between repeaters,
which regenerate the signal to 100% of its original amplitude. Along one
500 m segment, the signal could decay to no less than 14% of its original
value (8.5 dB). Along 1,500 m, then, the decay might be (0.14)3 = 0.3%.
Such a signal, even along 2,500 m, is still strong enough to be read; why then
are repeaters required every 500 m?

43 Suppose the round-trip propagation delay for Ethernet is 46.4 µs. This yields
a minimum packet size of 512 bits (464 bits corresponding to propagation
delay + 48 bits of jam signal).

(a) What happens to the minimum packet size if the delay time is held con-
stant, and the signaling rate rises to 100 Mbps?

(b) What are the drawbacks to so large a minimum packet size?

(c) If compatibility were not an issue, how might the specifications be written
so as to permit a smaller minimum packet size?

★ 44 Let A and B be two stations attempting to transmit on an Ethernet. Each has a
steady queue of frames ready to send; A’s frames will be numbered A1, A2, and
so on, and B’s similarly. Let T = 51.2 µs be the exponential backoff base unit.

Suppose A and B simultaneously attempt to send frame 1, collide, and
happen to choose backoff times of 0 × T and 1 × T , respectively, meaning A
wins the race and transmits A1 while B waits. At the end of this transmission,
B will attempt to retransmit B1 while A will attempt to transmit A2. These first
attempts will collide, but now A backs off for either 0 × T or 1 × T , while B
backs off for time equal to one of 0 × T , . . . ,3 × T .

(a) Give the probability that A wins this second backoff race immediately after
this first collision, that is, A’s first choice of backoff time k × 51.2 is less
than B’s.
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(b) Suppose A wins this second backoff race. A transmits A3, and when it is
finished, A and B collide again as A tries to transmit A4 and B tries once
more to transmit B1. Give the probability that A wins this third backoff
race immediately after the first collision.

(c) Give a reasonable lower bound for the probability that A wins all the re-
maining backoff races.

(d) What then happens to the frame B1?

This scenario is known as the Ethernet capture effect.

45 Suppose the Ethernet transmission algorithm is modified as follows: After each
successful transmission attempt, a host waits one or two slot times before at-
tempting to transmit again, and otherwise backs off the usual way.

(a) Explain why the capture effect of the previous exercise is now much less
likely.

(b) Show how the strategy above can now lead to a pair of hosts capturing the
Ethernet, alternating transmissions, and locking out a third host.

(c) Propose an alternative approach, for example, by modifying the exponen-
tial backoff. What aspects of a station’s history might be used as parameters
to the modified backoff?

46 Ethernets use Manchester encoding. Assuming that hosts sharing the Ethernet
are not perfectly synchronized, why does this allow collisions to be detected
soon after they occur, without waiting for the CRC at the end of the packet?

47 Suppose A, B, and C all make their first carrier sense, as part of an attempt
to transmit, while a fourth station D is transmitting. Draw a timeline showing
one possible sequence of transmissions, attempts, collisions, and exponential
backoff choices. Your timeline should also meet the following criteria: (1) ini-
tial transmission attempts should be in the order A, B, C, but successful trans-
missions should be in the order C, B, A, and (2) there should be at least four
collisions.

48 Repeat the previous exercise, now with the assumption that Ethernet is p-per-
sistent with p = 0.33 (that is, a waiting station transmits immediately with
probability p when the line goes idle, and otherwise defers one 51.2-µs slot
time and repeats the process). Your timeline should meet criterion (1) of the
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previous problem, but in lieu of criterion (2), you should show at least one
collision and at least one run of four deferrals on an idle line. Again, note that
many solutions are possible.

★ 49 Suppose Ethernet physical addresses are chosen at random (using true random
bits).

(a) What is the probability that on a 1,024-host network, two addresses will
be the same?

(b) What is the probability that the above event will occur on some one or
more of 220 networks?

(c) What is the probability that of the 230 hosts in all the networks of (b),
some pair has the same address?

Hint: The calculation for (a) and (c) is a variant of that used in solving the so-
called Birthday Problem: Given N people, what is the probability that two of
their birthdays (addresses) will be the same? The second person has probability
1 − 1

365 of having a different birthday from the first, the third has probabil-
ity 1 − 2

365 of having a different birthday from the first two, and so on. The
probability all birthdays are different is thus

(
1 − 1

365

)
×

(
1 − 2

365

)
× · · · ×

(
1 − N − 1

365

)

which for smallish N is about

1 − 1 + 2 + · · · + (N − 1)

365

50 Suppose five stations are waiting for another packet to finish on an Ethernet.
All transmit at once when the packet is finished and collide.

(a) Simulate this situation up until the point when one of the five waiting
stations succeeds. Use coin flips or some other genuine random source to
determine backoff times. Make the following simplifications: ignore inter-
frame spacing, ignore variability in collision times (so that retransmission
is always after an exact integral multiple of the 51.2-µs slot time), and
assume that each collision uses up exactly one slot time.

(b) Discuss the effect of the listed simplifications in your simulation versus the
behavior you might encounter on a real Ethernet.
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51 Write a program to implement the simulation discussed above, this time with
N stations waiting to transmit. Again model time as an integer, T, in units of
slot times, and again treat collisions as taking one slot time (so a collision at
time T followed by a backoff of k = 0 would result in a retransmission attempt
at time T + 1). Find the average delay before one station transmits successfully,
for N = 20, N = 40, and N = 100. Does your data support the notion that
the delay is linear in N ? Hint: For each station, keep track of that station’s
NextTimeToSend and CollisionCount. You are done when you reach a
time T for which there is only one station with NextTimeToSend == T. If
there is no such station, increment T. If there are two or more, schedule the
retransmissions and try again.

52 Suppose that N Ethernet stations, all trying to send at the same time, require
N/2 slot times to sort out who transmits next. Assuming the average packet
size is 5 slot times, express the available bandwidth as a function of N .

53 Consider the following Ethernet model. Transmission attempts are at random
times with an average spacing of λ slot times; specifically, the interval between
consecutive attempts is an exponential random variable x = −λ log u, where u
is chosen randomly in the interval 0 ≤ u ≤ 1. An attempt at time t results in a
collision if there is another attempt in the range from t − 1 to t + 1, where t is
measured in units of the 51.2-µs slot time; otherwise the attempt succeeds.

(a) Write a program to simulate, for a given value of λ, the average number
of slot times needed before a successful transmission, called the contention
interval. Find the minimum value of the contention interval. Note that
you will have to find one attempt past the one that succeeds, in order to
determine if there was a collision. Ignore retransmissions, which probably
do not fit the random model above.

(b) The Ethernet alternates between contention intervals and successful trans-
missions. Suppose the average successful transmission lasts 8 slot times
(512 bytes). Using your minimum length of the contention interval from
above, what fraction of the theoretical 10-Mbps bandwidth is available for
transmissions?

54 What conditions would have to hold for a corrupted frame to circulate forever
on a token ring without a monitor? How does the monitor fix this problem?
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55 An IEEE 802.5 token ring has five stations and a total wire length of 230 m.
How many bits of delay must the monitor insert into the ring? Do this for both
4 and 16 Mbps; use a propagation rate of 2.3 × 108 m/s.

56 Consider a token ring network like FDDI in which a station is allowed to
hold the token for some period of time (the token holding time, or THT). Let
RingLatency denote the time it takes the token to make one complete rota-
tion around the network when none of the stations have any data to send.

(a) In terms of THT and RingLatency, express the efficiency of this network
when only a single station is active.

(b) What setting of THT would be optimal for a network that had only one
station active (with data to send) at a time?

(c) In the case where N stations are active, give an upper bound on the token
rotation time, or TRT, for the network.

57 Consider a token ring with a ring latency of 200 µs. Assuming that the de-
layed token release strategy is used, what is the effective throughput rate that
can be achieved if the ring has a bandwidth of 4 Mbps? What is the effective
throughput rate that can be achieved if the ring has a bandwidth of 100 Mbps?
Answer for both a single active host and for “many” hosts; for the latter, assume
there are sufficiently many hosts transmitting that the time spent advancing the
token can be ignored. Assume a packet size of 1 KB.

58 For a 100-Mbps token ring network with a token rotation time of 200 µs and
that allows each station to transmit one 1-KB packet each time it possesses the
token, calculate the maximum effective throughput rate that any one host can
achieve. Do this assuming (a) immediate release and (b) delayed release.

59 Suppose a 100-Mbps delayed-release token ring has 10 stations, a ring latency
of 30 µs, and an agreed-on token rotation time (TRT) of 350 µs.

(a) How many synchronous frame bytes could each station send, assuming all
are allocated the same amount?

(b) Assume stations A, B, C are in increasing order on the ring. Due to uniform
synchronous traffic, the TRT without asynchronous data is 300 µs. B sends
a 200-µs (2.5-Kb) asynchronous frame. What TRT will A, B, and C then
see on their next measurement? Who may transmit such a frame next?
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60 How can an RPR network operate without using a token?

61 How can a wireless node interfere with the communications of another node
when the two nodes are separated by a distance greater than the transmission
range of either node?

62 Why might a mesh topology be superior to a base station topology for com-
munications in a natural disaster?

63 Suppose a single computer is capable of generating output data at a rate higher
than Bluetooth’s bandwidth. If the computer were equipped with two or more
Bluetooth masters, each with its own slaves, would that work?

64 Why does it make sense that 802.16 (WiMAX) physical layer protocols use
only TDD (and not FDD) in license-exempt bands?

65 Which wireless protocol would you expect to provide a better foundation for a
packet-based telephony service: 802.11 (Wi-Fi) or 802.16 (WiMAX)? Why?

66 When a cell phone moves from an area served exclusively by a single base
station to an area where the cells of several base stations overlap, how is it
determined which base station will control the phone?

67 Why does a second generation (2G) cell phone connection provide much lower
bandwidth than a typical dial-up Internet connection?

68 Why is it important that nodes in sensor nets consume very little power?

69 Why isn’t it practical for each node in a sensor net to learn its location by using
GPS? Describe a practical alternative.
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Nature seems . . . to reach many of her ends by long circuitous routes.

—Rudolph Lotze

he directly connected networks described in the previous chapter suffer fromTtwo limitations. First, there is a limit to how many hosts can be attached. For
example, only two hosts can be attached to a point-to-point link, and the Eth-

ernet specification allows no more than 1,024 hosts. Second, there is a limit to how large
of a geographic area a single network can serve. For example, an Ethernet can span only
2,500 m, wireless networks are limited by the ranges of their radios, and even though

P R O B L E M

Not All Networks Are
Directly Connected

point-to-point links can be quite
long, they do not really serve the area
between the two ends. Since our goal
is to build networks that can be global
in scale, the next problem is therefore
to enable communication between
hosts that are not directly connected.

This problem is similar to one addressed in the telephone network: Your phone
is not directly connected to every person you might want to call, but instead is con-
nected to an exchange that contains a switch. It is the switches that create the impression
that you have a connection to the person at the other end of the call. Similarly, com-
puter networks use packet switches to enable packets to travel from one host to another,
even when no direct connection exists between those hosts. This chapter introduces the
major concepts of packet switching, which lies at the heart of computer networking.

A packet switch is a device with several inputs and outputs leading to and from the
hosts that the switch interconnects. The core job of a switch is to take packets that arrive
on an input and forward (or switch) them to the right output so that they will reach
their appropriate destination. There are a variety of ways that the switch can determine
the “right” output for a packet, which can be broadly categorized as connectionless and
connection-oriented approaches.
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A key problem that a switch must deal with is the finite

bandwidth of its outputs. If packets destined for a certain out-
put arrive at a switch and their arrival rate exceeds the capac-
ity of that output, then we have a problem of contention. The
switch queues (buffers) packets until the contention subsides, but
if it lasts too long, the switch will run out of buffer space and
be forced to discard packets. When packets are discarded too
frequently, the switch is said to be congested. The ability of a
switch to handle contention is a key aspect of its performance.

This chapter introduces the issues of forwarding and con-
tention in packet switches. We begin by considering the vari-
ous approaches to switching, including the connectionless and
connection-oriented models. We then examine two particular
technologies in detail. The first is LAN switching, which has
evolved from Ethernet bridging to become one of the domi-
nant technologies in today’s LAN environments. The second
noteworthy switching technology is asynchronous transfer mode
(ATM), which was initially developed to meet the needs of
telecommunications service providers in wide area networks. Fi-
nally, we consider some of the aspects of switch design that
must be taken into account when building large-scale networks.



168 3 Packet Switching

3.1 Switching and Forwarding
In the simplest terms, a switch is a mechanism that allows us to interconnect links to
form a larger network. A switch is a multi-input, multioutput device, which transfers
packets from an input to one or more outputs. Thus, a switch adds the star topology
(see Figure 3.1) to the point-to-point link, bus (Ethernet), and ring (802.5, 802.17, and
FDDI) topologies established in the last chapter. A star topology has several attractive
properties:

■ Even though a switch has a fixed number of inputs and outputs, which limits
the number of hosts that can be connected to a single switch, large networks can
be built by interconnecting a number of switches;

■ We can connect switches to each other and to hosts using point-to-point links,
which typically means that we can build networks of large geographic scope;

■ Adding a new host to the network by connecting it to a switch does not neces-
sarily reduce the performance of the network for other hosts already connected.

This last claim cannot be made for the shared-media networks discussed in the last
chapter. For example, it is impossible for two hosts on the same 10-Mbps Ethernet to
transmit continuously at 10 Mbps because they share the same transmission medium.
Every host on a switched network has its own link to the switch, so it may be entirely
possible for many hosts to transmit at the full link speed (bandwidth), provided that the
switch is designed with enough aggregate capacity. Providing high aggregate throughput

Figure 3.1 A switch provides a star topology.
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Figure 3.2 Example protocol graph running on a switch.

Figure 3.3 Example switch with three input and output ports.

is one of the design goals for a switch; we return to this topic below. In general, switched
networks are considered more scalable (i.e., more capable of growing to large numbers of
nodes) than shared-media networks because of this ability to support many hosts at full
speed.

A switch is connected to a set of links and, for each of these links, runs the ap-
propriate data link protocol to communicate with the node at the other end of the link.
A switch’s primary job is to receive incoming packets on one of its links and to transmit
them on some other link. This function is sometimes referred to as either switching or
forwarding, and in terms of the OSI architecture, it is the main function of the network
layer. Figure 3.2 shows the protocol graph that would run on a switch that is connected
to two T3 links and one STS-1 SONET link. A representation of this same switch is
given in Figure 3.3. In this figure, we have split the input and output halves of each link,
and we refer to each input or output as a port. (In general, we assume that each link is
bidirectional, and hence supports both input and output.) In other words, this example
switch has three input ports and three output ports.

The question then is, how does the switch decide on which output port to place
each packet? The general answer is that it looks at the header of the packet for an iden-
tifier that it uses to make the decision. The details of how it uses this identifier vary, but
there are two common approaches. The first is the datagram or connectionless approach.



170 3 Packet Switching

The second is the virtual circuit or connection-oriented approach. A third approach, source
routing, is less common than these other two, but it is simple to explain and does have
some useful applications.

One thing that is common to all networks is that we need to have a way to identify
the end nodes. Such identifiers are usually called addresses. We have already seen exam-
ples of addresses in the previous chapter, such as the 48-bit address used for Ethernet.
The only requirement for Ethernet addresses is that no two nodes on a network have the
same address. This is accomplished by making sure that all Ethernet cards are assigned
a globally unique identifier. For the following discussions, we assume that each host has
a globally unique address. Later on, we consider other useful properties that an address
might have, but global uniqueness is adequate to get us started.

Another assumption that we need to make is that there is some way to identify the
input and output ports of each switch. There are at least two sensible ways to identify
ports: One is to number each port, and the other is to identify the port by the name of
the node (switch or host) to which it leads. For now, we use numbering of the ports.

3.1.1 Datagrams
The idea behind datagrams is incredibly simple: You just make sure that every packet
contains enough information to enable any switch to decide how to get it to its des-
tination. That is, every packet contains the complete destination address. Consider the
example network illustrated in Figure 3.4, in which the hosts have addresses A, B, C, and
so on. To decide how to forward a packet, a switch consults a forwarding table (some-
times called a routing table), an example of which is depicted in Table 3.1. This particular
table shows the forwarding information that switch 2 needs to forward datagrams in the

Destination Port

A 3

B 0

C 3

D 3

E 2

F 1

G 0

H 0

Table 3.1 Forwarding table for switch 2.
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Figure 3.4 Datagram forwarding: an example network.

example network. It is pretty easy to figure out such a table when you have a complete
map of a simple network like that depicted here; we could imagine a network operator
configuring the tables statically. It is a lot harder to create the forwarding tables in large,
complex networks with dynamically changing topologies and multiple paths between
destinations. That harder problem is known as routing and is the topic of Section 4.2.
We can think of routing as a process that takes place in the background so that when a
data packet turns up, we will have the right information in the forwarding table to be
able to forward, or switch, the packet.

Connectionless (datagram) networks have the following characteristics:

■ A host can send a packet anywhere at any time, since any packet that turns
up at a switch can be immediately forwarded (assuming a correctly populated
forwarding table). As we will see, this contrasts with most connection-oriented
networks, in which some “connection state” needs to be established before the
first data packet is sent.

■ When a host sends a packet, it has no way of knowing if the network is capable
of delivering it or if the destination host is even up and running.
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■ Each packet is forwarded independently of previous packets that might have
been sent to the same destination. Thus, two successive packets from host A to
host B may follow completely different paths (perhaps because of a change in
the forwarding table at some switch in the network).

■ A switch or link failure might not have any serious effect on communication
if it is possible to find an alternate route around the failure and to update the
forwarding table accordingly.

This last fact is particularly important to the history of datagram networks. One
of the important design goals of the Internet is robustness to failures, and history has
shown it to be quite effective at meeting this goal.1

3.1.2 Virtual Circuit Switching
A widely used technique for packet switching, which differs significantly from the data-
gram model, uses the concept of a virtual circuit (VC). This approach, which is also
called a connection-oriented model, requires that a virtual connection from the source
host to the destination host is set up before any data is sent. To understand how this
works, consider Figure 3.5, where host A again wants to send packets to host B. We can
think of this as a two-stage process. The first stage is connection setup. The second is data
transfer. We consider each in turn.

Figure 3.5 An example of a virtual circuit network.

1The oft-repeated claim that the ARPANET was built to withstand nuclear attack does not appear to be substantiated by
those who actually worked on its design.
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In the connection setup phase, it is necessary to establish “connection state” in
each of the switches between the source and destination hosts. The connection state for
a single connection consists of an entry in a VC table in each switch through which the
connection passes. One entry in the VC table on a single switch contains

■ A virtual circuit identifier (VCI) that uniquely identifies the connection at this
switch, and which will be carried inside the header of the packets that belong to
this connection;

■ An incoming interface on which packets for this VC arrive at the switch;

■ An outgoing interface in which packets for this VC leave the switch;

■ A potentially different VCI that will be used for outgoing packets.

The semantics of one such entry is as follows: If a packet arrives on the designated
incoming interface and that packet contains the designated VCI value in its header,
then that packet should be sent out the specified outgoing interface with the specified
outgoing VCI value having been first placed in its header.

Note that the combination of the VCI of packets as they are received at the switch
and the interface on which they are received uniquely identifies the virtual connection.
There may of course be many virtual connections established in the switch at one time.
Also, we observe that the incoming and outgoing VCI values are generally not the same.
Thus, the VCI is not a globally significant identifier for the connection; rather, it has
significance only on a given link (i.e., it has link-local scope).

Whenever a new connection is created, we need to assign a new VCI for that
connection on each link that the connection will traverse. We also need to ensure that
the chosen VCI on a given link is not currently in use on that link by some existing
connection.

There are two broad classes of approach to establishing connection state. One is to
have a network administrator configure the state, in which case the virtual circuit is “per-
manent.” Of course, it can also be deleted by the administrator, so a permanent virtual
circuit (PVC) might best be thought of as a long-lived, or administratively configured
VC. Alternatively, a host can send messages into the network to cause the state to be
established. This is referred to as signalling, and the resulting virtual circuits are said to
be switched. The salient characteristic of a switched virtual circuit (SVC) is that a host
may set up and delete such a VC dynamically without the involvement of a network ad-
ministrator. Note that an SVC should more accurately be called a “signalled” VC, since
it is the use of signalling (not switching) that distinguishes an SVC from a PVC.

Let’s assume that a network administrator wants to manually create a new vir-
tual connection from host A to host B. First, the administrator needs to identify a path
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Incoming Interface Incoming VCI Outgoing Interface Outgoing VCI

2 5 1 11

Table 3.2 Virtual circuit table entry for switch 1.

through the network from A to B. In the example network of Figure 3.5, there is only
one such path, but in general this may not be the case. The administrator then picks
a VCI value that is currently unused on each link for the connection. For the purposes
of our example, let’s suppose that the VCI value 5 is chosen for the link from host A
to switch 1, and that 11 is chosen for the link from switch 1 to switch 2. In that case,
switch 1 needs to have an entry in its VC table configured as shown in Table 3.2.

Similarly, suppose that the VCI of 7 is chosen to identify this connection on the
link from switch 2 to switch 3, and that a VCI of 4 is chosen for the link from switch 3
to host B. In that case, switches 2 and 3 need to be configured with VC table entries as
shown in Table 3.3. Note that the “outgoing” VCI value at one switch is the “incoming”
VCI value at the next switch.

Once the VC tables have been set up, the data transfer phase can proceed, as il-
lustrated in Figure 3.6. For any packet that it wants to send to host B, A puts the VCI
value of 5 in the header of the packet and sends it to switch 1. Switch 1 receives any
such packet on interface 2, and it uses the combination of the interface and the VCI
in the packet header to find the appropriate VC table entry. As shown in Table 3.2, the
table entry in this case tells switch 1 to forward the packet out of interface 1 and to put
the VCI value 11 in the header when the packet is sent. Thus, the packet will arrive at
switch 2 on interface 3 bearing VCI 11. Switch 2 looks up interface 3 and VCI 11 in
its VC table (as shown in Table 3.3) and sends the packet on to switch 3 after updating
the VCI value in the packet header appropriately, as shown in Figure 3.7. This process
continues until it arrives at host B with the VCI value of 4 in the packet. To host B, this
identifies the packet as having come from host A.

Incoming Interface Incoming VCI Outgoing Interface Outgoing VCI

3 11 2 7
VC table entry at switch 2

Incoming Interface Incoming VCI Outgoing Interface Outgoing VCI

0 7 1 4
VC table entry at switch 3

Table 3.3 Virtual circuit table entries for switches 2 and 3.
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Figure 3.6 A packet is sent into a virtual circuit network.

Figure 3.7 A packet makes its way through a virtual circuit network.

In real networks of reasonable size, the burden of configuring VC tables correctly in
a large number of switches would quickly become excessive using the above procedures.
Thus, some sort of signalling is almost always used, even when setting up “permanent”
VCs. In the case of PVCs, signalling is initiated by the network administrator, while
SVCs are usually set up using signalling by one of the hosts. We consider now how the
same VC just described could be set up by signalling from the host.

To start the signalling process, host A sends a setup message into the network, that
is, to switch 1. The setup message contains, among other things, the complete destina-
tion address of host B. The setup message needs to get all the way to B to create the
necessary connection state in every switch along the way. We can see that getting the
setup message to B is a lot like getting a datagram to B, in that the switches have to
know which output to send the setup message to so that it eventually reaches B. For
now, let’s just assume that the switches know enough about the network topology to
figure out how to do that, so that the setup message flows on to switches 2 and 3 before
finally reaching host B.
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When switch 1 receives the connection request, in addition to sending it on to
switch 2, it creates a new entry in its virtual circuit table for this new connection. This
entry is exactly the same as shown previously in Table 3.2. The main difference is that
now the task of assigning an unused VCI value on the interface is performed by the
switch for that port. In this example, the switch picks the value 5. The virtual circuit table
now has the following information: “When packets arrive on port 2 with identifier 5,
send them out on port 1.” Another issue is that, somehow, host A will need to learn that
it should put the VCI value of 5 in packets that it wants to send to B; we will see how
that happens below.

When switch 2 receives the setup message, it performs a similar process; in this
example it picks the value 11 as the incoming VCI value. Similarly switch 3 picks 7 as
the value for its incoming VCI. Each switch can pick any number it likes, as long as that
number is not currently in use for some other connection on that port of that switch. As
noted above, VCIs have link-local scope, that is, they have no global significance.

Finally the setup message arrives as host B. Assuming that B is healthy and willing
to accept a connection from host A, it too allocates an incoming VCI value, in this case 4.
This VCI value can be used by B to identify all packets coming from host A.

Now, to complete the connection, everyone needs to be told what their downstream
neighbor is using as the VCI for this connection. Host B sends an acknowledgment of
the connection setup to switch 3 and includes in that message the VCI that it chose (4).
Now switch 3 can complete the virtual circuit table entry for this connection, since it
knows the outgoing value must be 4. Switch 3 sends the acknowledgment on to switch 2,
specifying a VCI of 7. Switch 2 sends the message on to switch 1, specifying a VCI of 11.
Finally, switch 1 passes the acknowledgment on to host A, telling it to use the VCI of 5
for this connection.

At this point, everyone knows all that is necessary to allow traffic to flow from
host A to host B. Each switch has a complete virtual circuit table entry for the connec-
tion. Furthermore, host A has a firm acknowledgment that everything is in place all the
way to host B. At this point, the connection table entries are in place in all three switches
just as in the administratively configured example above, but the whole process happened
automatically in response to the signalling message sent from A. The data transfer phase
can now begin and is identical to that used in the PVC case.

When host A no longer wants to send data to host B, it tears down the connection
by sending a teardown message to switch 1. The switch removes the relevant entry from
its table and forwards the message on to the other switches in the path, which similarly
delete the appropriate table entries. At this point, if host A were to send a packet with a
VCI of 5 to switch 1, it would be dropped as if the connection had never existed.
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There are several things to note about virtual circuit switching:

■ Since host A has to wait for the connection request to reach the far side of the
network and return before it can send its first data packet, there is at least one
RTT of delay before data is sent.2

■ While the connection request contains the full address for host B (which might
be quite large, being a global identifier on the network), each data packet con-
tains only a small identifier, which is only unique on one link. Thus, the per-
packet overhead caused by the header is reduced relative to the datagram model.

■ If a switch or a link in a connection fails, the connection is broken and a new
one will need to be established. Also, the old one needs to be torn down to free
up table storage space in the switches.

■ The issue of how a switch decides which link to forward the connection request
on has been glossed over. In essence, this is the same problem as building up the
forwarding table for datagram forwarding, which requires some sort of routing
algorithm. Routing is described in Section 4.2, and the algorithms described
there are generally applicable to routing setup requests as well as datagrams.

One of the nice aspects of virtual circuits is that by the time the host gets the go-
ahead to send data, it knows quite a lot about the network—for example, that there
really is a route to the receiver and that the receiver is willing and able to receive data.
It is also possible to allocate resources to the virtual circuit at the time it is established.
For example, an X.25 network—a packet-switched network that uses the connection-
oriented model—employs the following three-part strategy:

1 Buffers are allocated to each virtual circuit when the circuit is initialized;

2 The sliding window protocol is run between each pair of nodes along the virtual
circuit, and this protocol is augmented with flow control to keep the sending
node from overrunning the buffers allocated at the receiving node;

3 The circuit is rejected by a given node if not enough buffers are available at that
node when the connection request message is processed.

2This is not strictly true. Some people have proposed “optimistically” sending a data packet immediately after sending
the connection request. However, most current implementations wait for connection setup to complete before sending
data.
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In doing these three things, each node is ensured of having the buffers it needs to queue
the packets that arrive on that circuit. This basic strategy is usually called hop-by-hop flow
control.

By comparison, a datagram network has no connection establishment phase,
and each switch processes each packet independently, making it less obvious how a
datagram network would allocate resources in a meaningful way. Instead, each arriv-
ing packet competes with all other pack-
ets for buffer space. If there are no free
buffers, the incoming packet must be dis-
carded. We observe, however, that even in
a datagram-based network, a source host
often sends a sequence of packets to the
same destination host. It is possible for
each switch to distinguish among the set of
packets it currently has queued, based on
the source/destination pair, and thus for
the switch to ensure that the packets be-
longing to each source/destination pair are
receiving a fair share of the switch’s buffers.
We discuss this idea in much greater depth
in Chapter 6.

In the virtual circuit model, we could
imagine providing each circuit with a dif-
ferent quality of service (QoS). In this
setting, the term “quality of service” is
usually taken to mean that the network
gives the user some kind of performance-
related guarantee, which in turn implies
that switches set aside the resources they
need to meet this guarantee. For example,
the switches along a given virtual circuit
might allocate a percentage of each out-
going link’s bandwidth to that circuit. As
another example, a sequence of switches
might ensure that packets belonging to a
particular circuit not be delayed (queued)
for more than a certain amount of time.
We return to the topic of quality of service
in Section 6.5.

Introduction to Congestion

Recall the distinction between con-
tention and congestion: Contention
occurs when multiple packets have to
be queued at a switch because they
are competing for the same output
link, while congestion means that the
switch has so many packets queued
that it runs out of buffer space and has
to start dropping packets. We return
to the topic of congestion in Chap-
ter 6, after we have seen the trans-
port protocol component of the net-
work architecture. At this point, how-
ever, we observe that the decision as to
whether your network uses virtual cir-
cuits or datagrams has an impact on
how you deal with congestion.

On the one hand, suppose that
each switch allocates enough buffers
to handle the packets belonging to
each virtual circuit it supports, as is
done in an X.25 network. In this
case, the network has defined away
the problem of congestion—a switch
never encounters a situation in which
it has more packets to queue than it
has buffer space, since it does not al-
low the connection to be established
in the first place unless it can dedicate
enough resources to it to avoid this
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Figure 3.8 Frame Relay packet format.

situation. The problem with this ap-
proach, however, is that it is extremely
conservative—it is unlikely that all the
circuits will need to use all of their
buffers at the same time, and as a
consequence, the switch is potentially
underutilized.

On the other hand, the data-
gram model seemingly invites con-
gestion—you do not know that there
is enough contention at a switch to
cause congestion until you run out of
buffers. At that point, it is too late to
prevent the congestion, and your only
choice is to try to recover from it. The
good news, of course, is that you may
be able to get better utilization out of
your switches since you are not hold-
ing buffers in reserve for a worst-case
scenario that is unlikely to happen.

As is quite often the case, noth-
ing is strictly black and white—there
are design advantages for defining
congestion away (as the X.25 model
does) and for doing nothing about
congestion until after it happens (as
the simple datagram model does).
There are also intermediate points be-
tween these two extremes. We describe
some of these design points in Chap-
ter 6.

The most popular examples of vir-
tual circuit technologies are Frame Relay
and asynchronous transfer mode (ATM).
ATM has a number of interesting proper-
ties that we discuss in Section 3.3. Frame
Relay is a rather straightforward imple-
mentation of virtual circuit technology,
and its simplicity has made it extremely
popular. Many network service providers
offer Frame Relay PVC services. One
of the applications of Frame Relay is
the construction of virtual private net-
works (VPNs), a subject discussed in Sec-
tion 4.1.8.

Frame Relay provides some ba-
sic quality of service and congestion-
avoidance features, but these are rather
lightweight compared to X.25 and ATM.
The Frame Relay packet format (see Fig-
ure 3.8) provides a good example of a
packet used for virtual circuit switching.

3.1.3 Source Routing
A third approach to switching that uses
neither virtual circuits nor conventional
datagrams is known as source routing. The
name derives from the fact that all the in-
formation about network topology that is
required to switch a packet across the net-
work is provided by the source host.

There are various ways to imple-
ment source routing. One would be to
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Figure 3.9 Source routing in a switched network (where the switch reads the

rightmost number).

assign a number to each output of each
switch and to place that number in the
header of the packet. The switching func-
tion is then very simple: For each packet
that arrives on an input, the switch would
read the port number in the header and
transmit the packet on that output. How-
ever, since there will in general be more
than one switch in the path between the
sending and the receiving host, the header
for the packet needs to contain enough in-
formation to allow every switch in the path
to determine on which output the packet
needs to be placed. One way to do this
would be to put an ordered list of switch
ports in the header and to rotate the list so
that the next switch in the path is always
at the front of the list. Figure 3.9 illustrates
this idea.

In this example, the packet needs to
traverse three switches to get from host A

Optical Switching

To a casual observer of the network-
ing industry around the year 2000, it
might have appeared that the most in-
teresting sort of switching was optical
switching. Indeed, optical switching
did become an important technol-
ogy in the late 1990s, due to a con-
fluence of several factors. One factor
was the commercial availability of
dense wavelength division multiplex-
ing (DWDM) equipment, which
makes it possible to send a great deal
of information down a single fiber by
transmitting on a large number of op-
tical wavelengths (or colors) at once.
Thus, for example, one might send
data on 100 or more different wave-
lengths, and each wavelength might
carry as much as 10 Gbps of data.
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A second factor was the com-
mercial availability of optical ampli-
fiers. Optical signals are attenuated as
they pass through fiber, and after some
distance (about 40 km or so) they
need to be made stronger in some way.
Before optical amplifiers, it was neces-
sary to place repeaters in the path to
recover the optical signal, convert it
to a digital electronic signal, and then
convert it back to optical again. Be-
fore you could get the data into a re-
peater, you would have to demultiplex
it using a DWDM terminal. Thus, a
large number of DWDM terminals
would be needed just to drive a single
fiber pair for a long distance. Optical
amplifiers, unlike repeaters, are analog
devices that boost whatever signal is
sent along the fiber, even if it is sent
on a hundred different wavelengths.
Optical amplifiers, therefore, made
DWDM gear much more attractive,
because now a pair of DWDM ter-
minals could talk to each other when
separated by a distance of hundreds
of kilometers. Furthermore, you could
even upgrade the DWDM gear at the
ends without touching the optical am-
plifiers in the middle of the path,
because they will amplify 100 wave-
lengths as easily as 50 wavelengths.

With DWDM and optical am-
plifiers, it became possible to build op-
tical networks of huge capacity. But at
least one more type of device is needed
to make these networks useful—the
optical switch. Most so-called optical
switches today actually perform their

to host B. At switch 1, it needs to exit
on port 1, at the next switch it needs to
exit at port 0, and at the third switch it
needs to exit at port 3. Thus, the original
header when the packet leaves host A con-
tains the list of ports (3, 0, 1), where we
assume that each switch reads the right-
most element of the list. To make sure
that the next switch gets the appropri-
ate information, each switch rotates the
list after it has read its own entry. Thus,
the packet header as it leaves switch 1
en route to switch 2 is now (1, 3, 0);
switch 2 performs another rotation and
sends out a packet with (0, 1, 3) in the
header. Although not shown, switch 3
performs yet another rotation, restoring
the header to what it was when host A
sent it.

There are several things to note
about this approach. First, it assumes that
host A knows enough about the topology
of the network to form a header that has
all the right directions in it for every switch
in the path. This is somewhat analogous
to the problem of building the forward-
ing tables in a datagram network or fig-
uring out where to send a setup packet in
a virtual circuit network. Second, observe
that we cannot predict how big the header
needs to be, since it must be able to hold
one word of information for every switch
on the path. This implies that headers are
probably of variable length with no up-
per bound, unless we can predict with ab-
solute certainty the maximum number of
switches through which a packet will ever
need to pass. Third, there are some varia-
tions on this approach. For example, rather
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Figure 3.10 Three ways to handle headers for source routing: (a) rotation,

(b) stripping, and (c) pointer. The labels are read right to left.

than rotate the header, each switch could
just strip the first element as it uses it.
Rotation has an advantage over stripping,
however: Host B gets a copy of the com-
plete header, which may help it figure
out how to get back to host A. Yet an-
other alternative is to have the header carry
a pointer to the current “next port” en-
try, so that each switch just updates the
pointer rather than rotating the header;
this may be more efficient to implement.
We show these three approaches in Fig-
ure 3.10. In each case, the entry that this
switch needs to read is A, and the en-
try that the next switch needs to read
is B.

Source routing can be used in both
datagram networks and virtual circuit net-
works. For example, the Internet Proto-
col, which is a datagram protocol, includes
a source route option that allows selected
packets to be source routed, while the ma-
jority are switched as conventional data-
grams. Source routing is also used in some
virtual circuit networks as the means to
get the initial setup request along the path
from source to destination.

switching function electronically, and
from an architectural point of view
they have more in common with the
circuit switches of the telephone net-
work than the packet switches de-
scribed in this chapter. A typical op-
tical switch has a large number of
interfaces that understand SONET
framing, and is able to cross-connect
a SONET channel from an incom-
ing interface to an outgoing interface.
Thus, with an optical switch, it be-
comes possible to provide SONET
channels from point A to point B via
point C even if there is no direct fiber
path from A to B—there just needs
to be a path from A to C, a switch at
C, and a path from C to B. In this
respect, an optical switch bears some
relationship to the switches in Fig-
ure 3.5, in that it creates the illusion
of a connection between two points
even when there is no direct physi-
cal connection between them. How-
ever, optical switches do not provide
virtual circuits, they provide “real” cir-
cuits (e.g., a SONET channel). There
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Source routes are sometimes categorized as “strict” or “loose.” In a strict source
route, every node along the path must be specified, whereas a loose source route only
specifies a set of nodes to be traversed, without saying exactly how to get from one node
to the next. A loose source route can be thought of as a set of waypoints rather than
a completely specified route. The loose option can be helpful to limit the amount of
information that a source must obtain to create a source route. In any reasonably large
network, it is likely to be hard for a host to get the complete path information it needs
to correctly construct a strict source route to any destination. But both types of source
routes do find application in certain scenarios, one of which is described in Section 4.5.

3.2 Bridges and LAN Switches
Having discussed some of the basic ideas behind switching, we now focus more closely
on some specific switching technologies. We begin by considering a class of switch that

are even some newer types of optical
switch that use microscopic, electron-
ically controlled mirrors to deflect all
the light from one switch port to an-
other, so that there could be an unin-
terrupted optical channel from point
A to point B. The technology behind
these devices is called MEMS (Micro-
electromechanical Systems).

We don’t cover optical network-
ing extensively in this book, in part
because of space considerations. For
many practical purposes, you can think
of optical networks as a piece of the
infrastructure that enables telephone
companies to provide SONET links
or other types of circuits where and
when you need them. However, it is
worth noting that many of the tech-
nologies that are discussed later in this
book, such as routing protocols and
multiprotocol label switching, do have
application to the world of optical
networking.

is used to forward packets between shared-
media LANs such as Ethernets. Such
switches are sometimes known by the ob-
vious name of LAN switches; historically
they have also been referred to as bridges.

Suppose you have a pair of Eth-
ernets that you want to interconnect.
One approach you might try is to put
a repeater between them, as described in
Chapter 2. This would not be a workable
solution, however, if doing so exceeded
the physical limitations of the Ethernet.
(Recall that no more than four repeaters
between any pair of hosts and no more
than a total of 2,500 m in length are al-
lowed.) An alternative would be to put a
node between the two Ethernets and have
the node forward frames from one Ether-
net to the other. This node would be in
promiscuous mode, accepting all frames
transmitted on either of the Ethernets,
so it could forward them to the other.

The node we have just described
is typically called a bridge, and a collec-
tion of LANs connected by one or more
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bridges is usually said to form an extended LAN. In their simplest variants, bridges simply
accept LAN frames on their inputs and forward them out on all other outputs. This
simple strategy was used by early bridges, but has since been refined to make bridges a
more effective mechanism for interconnecting a set of LANs. The rest of this section fills
in the more interesting details.

Note that a bridge meets our definition of a switch from the previous section: a
multi-input, multioutput device, which transfers packets from an input to one or more
outputs. And recall that this provides a way to increase the total bandwidth of a network.
For example, while a single Ethernet segment can carry only 10 Mbps of total traffic, an
Ethernet bridge can carry as much as 10n Mbps, where n is the number of ports (inputs
and outputs) on the bridge.

3.2.1 Learning Bridges
The first optimization we can make to a bridge is to observe that it need not forward
all frames that it receives. Consider the bridge in Figure 3.11. Whenever a frame from
host A that is addressed to host B arrives on port 1, there is no need for the bridge to
forward the frame out over port 2. The question, then, is, how does a bridge come to
learn on which port the various hosts reside?

One option would be to have a human download a table into the bridge similar
to the one given in Table 3.4. Then, whenever the bridge receives a frame on port 1
that is addressed to host A, it would not forward the frame out on port 2; there would
be no need because host A would have already directly received the frame on the LAN
connected to port 1. Anytime a frame addressed to host A was received on port 2, the
bridge would forward the frame out on port 1.

Figure 3.11 Illustration of a learning bridge.
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Host Port

A 1

B 1

C 1

X 2

Y 2

Z 2

Table 3.4 Forwarding table maintained by a bridge.

Note that a bridge using such a table would be using the datagram (or connection-
less) model of forwarding described in Section 3.1.1. Each packet carries a global address,
and the bridge decides on which output to send a packet by looking up that address in a
table.

Having a human maintain this table is quite a burden, especially considering that
there is a simple trick by which a bridge can learn this information for itself. The idea
is for each bridge to inspect the source address in all the frames it receives. Thus, when
host A sends a frame to a host on either side of the bridge, the bridge receives this frame
and records the fact that a frame from host A was just received on port 1. In this way,
the bridge can build a table just like Table 3.4.

When a bridge first boots, this table is empty; entries are added over time. Also,
a timeout is associated with each entry, and the bridge discards the entry after a specified
period of time. This is to protect against the situation in which a host—and as a conse-
quence, its LAN address—is moved from one network to another. Thus, this table is not
necessarily complete. Should the bridge receive a frame that is addressed to a host not
currently in the table, it goes ahead and forwards the frame out on all the other ports.
In other words, this table is simply an optimization that filters out some frames; it is not
required for correctness.

Implementation

The code that implements the learning bridge algorithm is quite simple, and we sketch
it here. Structure BridgeEntry defines a single entry in the bridge’s forwarding table;
these are stored in a Map structure (which supports mapCreate, mapBind, and
MapResolve operations) to enable entries to be efficiently located when packets arrive
from sources already in the table. The constant MAX_TTL specifies how long an entry
is kept in the table before it is discarded.



186 3 Packet Switching

#define BRIDGE_TAB_SIZE 1024 /* max. size of bridging

table */

#define MAX_TTL 120 /* time (in seconds) before

an entry is flushed */

typedef struct {

MacAddr destination; /* MAC address of a node */

int ifnumber; /* interface to reach it */

u_short TTL; /* time to live */

Binding binding; /* binding in the Map */

} BridgeEntry;

int numEntries = 0;

Map bridgeMap = mapCreate(BRIDGE_TAB_SIZE,

sizeof(BridgeEntry));

The routine that updates the forwarding table when a new packet arrives is given
by updateTable. The arguments passed are the source MAC address contained in the
packet and the interface number on which it was received. Another routine, not shown
here, is invoked at regular intervals, scans the entries in the forwarding table, and decre-
ments the TTL (time to live) field of each entry, discarding any entries whose TTL has
reached 0. Note that the TTL is reset to MAX_TTL every time a packet arrives to refresh
an existing table entry, and that the interface on which the destination can be reached is
updated to reflect the most recently received packet.

void

updateTable (MacAddr src, int inif)

{

BridgeEntry *b;

if (mapResolve(bridgeMap, &src, (void **)&b)

== FALSE )

{

/* this address is not in the table,

so try to add it */

if (numEntries < BRIDGE_TAB_SIZE)

{

b = NEW(BridgeEntry);

b->binding = mapBind( bridgeMap, &src, b);

/* use source address of packet as dest.
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address in table */

b->destination = src;

numEntries++;

}

else

{

/* can’t fit this address in the table now,

so give up */

return;

}

}

/* reset TTL and use most recent input interface */

b->TTL = MAX_TTL;

b->ifnumber = inif;

}

Note that this implementation adopts a simple strategy in the case where the bridge
table has become full to capacity—it simply fails to add the new address. Recall that
completeness of the bridge table is not necessary for correct forwarding, it just optimizes
performance. If there is some entry in the table that is not currently being used, it will
eventually time out and be removed, creating space for a new entry. An alternative ap-
proach would be to invoke some sort of cache replacement algorithm on finding the
table full; for example, we might locate and remove the entry with the smallest TTL to
accommodate the new entry.

3.2.2 Spanning Tree Algorithm
The preceding strategy works just fine until the extended LAN has a loop in it, in which
case it fails in a horrible way—frames potentially loop through the extended LAN forever.
This is easy to see in the example depicted in Figure 3.12, where, for example, bridges
B1, B4, and B6 form a loop. How does an extended LAN come to have a loop in it? One
possibility is that the network is managed by more than one administrator, for example,
because it spans multiple departments in an organization. In such a setting, it is possible
that no single person knows the entire configuration of the network, meaning that a
bridge that closes a loop might be added without anyone knowing. A second, more likely
scenario is that loops are built into the network on purpose—to provide redundancy in
case of failure.

Whatever the cause, bridges must be able to correctly handle loops. This problem
is addressed by having the bridges run a distributed spanning tree algorithm. If you think
of the extended LAN as being represented by a graph that possibly has loops (cycles),
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Figure 3.12 Extended LAN with loops.

Figure 3.13 Example of (a) a cyclic graph; (b) a corresponding spanning tree.

then a spanning tree is a subgraph of this graph that covers (spans) all the vertices, but
contains no cycles. That is, a spanning tree keeps all of the vertices of the original graph,
but throws out some of the edges. For example, Figure 3.13 shows a cyclic graph on the
left and one of possibly many spanning trees on the right.

The spanning tree algorithm, which was developed by Radia Perlman at the Digital
Equipment Corporation, is a protocol used by a set of bridges to agree upon a spanning
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tree for a particular extended LAN. (The IEEE 802.1 specification for LAN bridges is
based on this algorithm.) In practice, this means that each bridge decides the ports over
which it is and is not willing to forward frames. In a sense, it is by removing ports from
the topology that the extended LAN is reduced to an acyclic tree.3 It is even possible that
an entire bridge will not participate in forwarding frames, which seems kind of strange
when you consider that the one reason we intentionally have loops in the network in
the first place is to provide redundancy. The algorithm is dynamic, however, meaning
that the bridges are always prepared to reconfigure themselves into a new spanning tree
should some bridge fail.

The main idea of the spanning tree is for the bridges to select the ports over which
they will forward frames. The algorithm selects ports as follows. Each bridge has a unique
identifier; for our purposes, we use the labels B1, B2, B3, and so on. The algorithm first
elects the bridge with the smallest ID as the root of the spanning tree; exactly how this
election takes place is described below. The root bridge always forwards frames out over
all of its ports. Next, each bridge computes the shortest path to the root and notes which
of its ports is on this path. This port is also selected as the bridge’s preferred path to the
root. Finally, all the bridges connected to a given LAN elect a single designated bridge that
will be responsible for forwarding frames toward the root bridge. Each LAN’s designated
bridge is the one that is closest to the root, and if two or more bridges are equally close
to the root, then the bridges’ identifiers are used to break ties; the smallest ID wins.
Of course, each bridge is connected to more than one LAN, so it participates in the
election of a designated bridge for each LAN it is connected to. In effect, this means that
each bridge decides if it is the designated bridge relative to each of its ports. The bridge
forwards frames over those ports for which it is the designated bridge.

Figure 3.14 shows the spanning tree that corresponds to the extended LAN shown
in Figure 3.12. In this example, B1 is the root bridge, since it has the smallest ID. Notice
that both B3 and B5 are connected to LAN A, but B5 is the designated bridge since
it is closer to the root. Similarly, both B5 and B7 are connected to LAN B, but in this
case, B5 is the designated bridge since it has the smaller ID; both are an equal distance
from B1.

While it is possible for a human to look at the extended LAN given in Figure 3.12
and to compute the spanning tree given in Figure 3.14 according to the rules given
above, the bridges in an extended LAN do not have the luxury of being able to see
the topology of the entire network, let alone peek inside other bridges to see their IDs.

3Representing an extended LAN as an abstract graph is a bit awkward. Basically, you let both the bridges and the LANs
correspond to the vertices of the graph, and the ports correspond to the graph’s edges. However, the spanning tree we are
going to compute for this graph needs to span only those nodes that correspond to networks. It is possible that nodes
corresponding to bridges will be disconnected from the rest of the graph. This corresponds to a situation in which all the
ports connecting a bridge to various networks get removed by the algorithm.
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Figure 3.14 Spanning tree with some ports not selected.

Instead, the bridges have to exchange configuration messages with each other and then
decide whether or not they are the root or a designated bridge based on these messages.

Specifically, the configuration messages contain three pieces of information:

1 The ID for the bridge that is sending the message;

2 The ID for what the sending bridge believes to be the root bridge;

3 The distance, measured in hops, from the sending bridge to the root bridge.

Each bridge records the current “best” configuration message it has seen on each of
its ports (“best” is defined below), including both messages it has received from other
bridges and messages that it has itself transmitted.

Initially, each bridge thinks it is the root, and so it sends a configuration message
out on each of its ports identifying itself as the root and giving a distance to the root of 0.
Upon receiving a configuration message over a particular port, the bridge checks to see if
that new message is better than the current best configuration message recorded for that
port. The new configuration message is considered “better” than the currently recorded
information if
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■ It identifies a root with a smaller ID or

■ It identifies a root with an equal ID but with a shorter distance or

■ The root ID and distance are equal, but the sending bridge has a smaller ID.

If the new message is better than the currently recorded information, the bridge dis-
cards the old information and saves the new information. However, it first adds 1 to the
distance-to-root field since the bridge is one hop farther away from the root than the
bridge that sent the message.

When a bridge receives a configuration message indicating that it is not the root
bridge—that is, a message from a bridge with a smaller ID—the bridge stops generat-
ing configuration messages on its own and instead only forwards configuration messages
from other bridges, after first adding 1 to the distance field. Likewise, when a bridge
receives a configuration message that indicates it is not the designated bridge for that
port—that is, a message from a bridge that is closer to the root or equally far from the
root but with a smaller ID—the bridge stops sending configuration messages over that
port. Thus, when the system stabilizes, only the root bridge is still generating configu-
ration messages, and the other bridges are forwarding these messages only over ports for
which they are the designated bridge.

To make this more concrete, consider what would happen in Figure 3.14 if the
power had just been restored to the building housing this network, so that all the bridges
boot at about the same time. All the bridges would start off by claiming to be the root.
We denote a configuration message from node X in which it claims to be distance d
from root node Y as (Y ,d ,X ). Focusing on the activity at node B3, a sequence of
events would unfold as follows:

1 B3 receives (B2, 0, B2);

2 Since 2 < 3, B3 accepts B2 as root;

3 B3 adds one to the distance advertised by B2 (0) and thus sends (B2, 1, B3)
toward B5;

4 Meanwhile, B2 accepts B1 as root because it has the lower ID, and it sends
(B1, 1, B2) toward B3;

5 B5 accepts B1 as root and sends (B1, 1, B5) toward B3;

6 B3 accepts B1 as root, and it notes that both B2 and B5 are closer to the root
than it is. Thus, B3 stops forwarding messages on both its interfaces.

This leaves B3 with both ports not selected, as shown in Figure 3.14.
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Even after the system has stabilized, the root bridge continues to send configu-
ration messages periodically, and the other bridges continue to forward these messages
as described in the previous paragraph. Should a particular bridge fail, the downstream
bridges will not receive these configuration messages, and after waiting a specified period
of time, they will once again claim to be the root, and the algorithm just described will
kick in again to elect a new root and new designated bridges.

One important thing to notice is that although the algorithm is able to reconfigure
the spanning tree whenever a bridge fails, it is not able to forward frames over alternative
paths for the sake of routing around a congested bridge.

3.2.3 Broadcast and Multicast
The preceding discussion has focused on how bridges forward unicast frames from one
LAN to another. Since the goal of a bridge is to transparently extend a LAN across
multiple networks, and since most LANs support both broadcast and multicast, then
bridges must also support these two features. Broadcast is simple—each bridge forwards
a frame with a destination broadcast address out on each active (selected) port other than
the one on which the frame was received.

Multicast can be implemented in exactly the same way, with each host deciding
for itself whether or not to accept the message. This is exactly what is done in practice.
Notice, however, that since not all the LANs in an extended LAN necessarily have a host
that is a member of a particular multicast group, it is possible to do better. Specifically,
the spanning tree algorithm can be extended to prune networks over which multicast
frames need not be forwarded. Consider a frame sent to group M by a host on LAN A in
Figure 3.14. If there is no host on LAN J that belongs to group M, then there is no need
for bridge B4 to forward the frames over that network. On the other hand, not having a
host on LAN H that belongs to group M does not necessarily mean that bridge B1 can
avoid forwarding multicast frames onto LAN H. It all depends on whether or not there
are members of group M on LANs I and J.

How does a given bridge learn whether it should forward a multicast frame over
a given port? It learns exactly the same way that a bridge learns whether it should for-
ward a unicast frame over a particular port—by observing the source addresses that it
receives over that port. Of course, groups are not typically the source of frames, so we
have to cheat a little. In particular, each host that is a member of group M must pe-
riodically send a frame with the address for group M in the source field of the frame
header. This frame would have as its destination address the multicast address for the
bridges.

Note that while the multicast extension just described has been proposed, it is not
widely adopted. Instead, multicast is implemented in exactly the same way as broadcast
on today’s extended LANs.
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3.2.4 Limitations of Bridges
The bridge-based solution just described is meant to be used in only a fairly limited
setting—to connect a handful of similar LANs. The main limitations of bridges become
apparent when we consider the issues of scale and heterogeneity.

On the issue of scale, it is not realistic to connect more than a few LANs by means
of bridges, where in practice “few” typically means “tens of.” One reason for this is that
the spanning tree algorithm scales linearly, that is, there is no provision for imposing a
hierarchy on the extended LAN. A second reason is that bridges forward all broadcast
frames. While it is reasonable for all hosts within a limited setting (say, a department) to
see each other’s broadcast messages, it is unlikely that all the hosts in a larger environment
(say, a large company or university) would want to have to be bothered by each other’s
broadcast messages. Said another way, broadcast does not scale, and as a consequence,
extended LANs do not scale.

One approach to increasing the scalability of extended LANs is the virtual LAN
(VLAN). VLANs allow a single extended LAN to be partitioned into several seemingly
separate LANs. Each virtual LAN is assigned an identifier (sometimes called a color),
and packets can only travel from one segment to another if both segments have the same
identifier. This has the effect of limiting the number of segments in an extended LAN
that will receive any given broadcast packet.

We can see how VLANs work with an example. Figure 3.15 shows four hosts on
four different LAN segments. In the absence of VLANs, any broadcast packet from
any host will reach all the other hosts. Now let’s suppose that we define the segments
connected to hosts W and X as being in one VLAN, which we’ll call VLAN 100. We
also define the segments that connect to hosts Y and Z as being in VLAN 200. To do
this, we need to configure a VLAN ID on each port of bridges B1 and B2. The link
between B1 and B2 is considered to be in both VLANs.

When a packet sent by host X arrives at bridge B2, the bridge observes that it came
in a port that was configured as being in VLAN 100. It inserts a VLAN header between

Figure 3.15 Two virtual LANs share a common backbone.
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the Ethernet header and its payload. The interesting part of the VLAN header is the
VLAN ID; in this case, that ID is set to 100. The bridge now applies its normal rules
for forwarding to the packet, with the extra restriction that the packet may not be sent
out an interface that is not part of VLAN 100. Thus, under no circumstances will the
packet—even a broadcast packet—be sent out the interface to host Z, which is in VLAN
200. The packet is, however, forwarded on to bridge B1, which follows the same rules,
and thus may forward the packet to host W but not to host Y.

An attractive feature of VLANs is that it is possible to change the logical topology
without moving any wires or changing any addresses. For example, if we wanted to make
the segment that connects to host Z be part of VLAN 100, and thus enable X, W, and Z
to be on the same virtual LAN, we would just need to change one piece of configuration
on bridge B2.

On the issue of heterogeneity, bridges are fairly limited in the kinds of networks
they can interconnect. In particular, bridges make use of the network’s frame header and
so can support only networks that have exactly the same format for addresses. Thus,
bridges can be used to connect Ethernets to Ethernets, 802.5 to 802.5, and Ethernets to
802.5 rings, since both networks support the same 48-bit address format. Bridges do not
readily generalize to other kinds of networks, such as ATM.4

Despite their limitations, bridges are a very important part of the complete net-
working picture. Their main advantage is that they allow multiple LANs to be transpar-
ently connected, that is, the networks can be connected without the end hosts having
to run any additional protocols (or even be aware, for that matter). The one potential
exception is when the hosts are expected to announce their membership in a multicast
group, as described in Section 3.2.3.

Notice, however, that this transparency can be dangerous. If a host, or more pre-
cisely, the application and transport protocol running on that host, is programmed under
the assumption that it is running on a single LAN, then inserting bridges between the
source and destination hosts can have unexpected consequences. For example, if a bridge
becomes congested, it may have to drop frames; in contrast, it is rare that a single Ether-
net ever drops a frame. As another example, the latency between any pair of hosts on an
extended LAN becomes both larger and more highly variable; in contrast, the physical
limitations of a single Ethernet make the latency both small and predictable. As a final
example, it is possible (although unlikely) that frames will be reordered in an extended
LAN; in contrast, frame order is never shuffled on a single Ethernet. The bottom line is
that it is never safe to design network software under the assumption that it will run over
a single Ethernet segment. Bridges happen.

4As we will see in Section 3.3, there are techniques to make ATM networks look more like “conventional” LANs, such as
Ethernets, and bridges do have a role in this environment.
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3.3 Cell Switching (ATM)
Another switching technology that deserves special attention is asynchronous transfer mode
(ATM). ATM became an important technology in the 1980s and early 1990s for a variety
of reasons, not the least of which is that it was embraced by the telephone industry, which
has historically been less than active in data communications except as a supplier of links
on top of which other people have built networks. ATM also happened to be in the right
place at the right time, as a high-speed switching technology that appeared on the scene
just when shared media like Ethernet and 802.5 were starting to look a bit too slow for
many users of computer networks. In some ways ATM is a competing technology with
Ethernet switching, but the areas of application for these two technologies only partially
overlap.

ATM is a connection-oriented, packet-switched technology, which is to say, it uses
virtual circuits very much in the manner described in Section 3.1.2. In ATM terminol-
ogy, the connection setup phase is called signalling. The main ATM signalling protocol
is known as Q.2931. In addition to discovering a suitable route across an ATM network,
Q.2931 is also responsible for allocating resources at the switches along the circuit. This
is done in an effort to ensure the circuit a particular quality of service. Indeed, the QoS
capabilities of ATM are one of its greatest strengths. We return to this topic in Chapter 6,
where we discuss it in the context of similar efforts to implement QoS.

When any virtual connection is set up, it is necessary to put the address of the
destination in the signalling message. In ATM, this address can be in one of several
formats, the most common ones being E.164 and NSAP (network service access point);
the details are not terribly important here, except to note that they are different from the
MAC addresses used in traditional LANs.

One thing that makes ATM really unusual is that the packets that are switched
in an ATM network are of fixed length. That length happens to be 53 bytes—5 bytes
of header followed by 48 bytes of payload—a rather interesting choice that is discussed
in more detail below. To distinguish these fixed-length packets from the more common
variable-length packets normally used in computer networks, they are given a special
name: cells. ATM may be thought of as the canonical example of cell switching.

3.3.1 Cells
All the packet-switching technologies we have looked at so far have used variable-length
packets. Variable-length packets are normally constrained to fall within some bounds.
The lower bound is usually set by the minimum amount of information that needs to
be contained in the packet, which is typically a header with no optional extensions. The
upper bound may be set by a variety of factors; the maximum FDDI packet size, for
example, determines how long each station is allowed to transmit without passing on the
token, and thus determines how long a station might have to wait for the token to reach
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it. Cells, in contrast, are both fixed in length and small in size. While this seems like a
simple enough design choice, there are actually a lot of factors involved, as explained in
the following paragraphs.

Cell Size
Variable-length packets have some nice characteristics. If you only have 1 byte to send
(e.g., to acknowledge the receipt of a packet), you put it in a minimum-sized packet. If
you have a large file to send, however, you break it up into as many maximum-sized pack-
ets as you need. You do not need to send any extraneous padding in the first case, and in
the second, you drive down the ratio of header to data bytes, thus increasing bandwidth
efficiency. You also minimize the total number of packets sent, thereby minimizing the
total processing incurred by per-packet operations. This can be particularly important in
obtaining high throughput, since many network devices are limited not by how many
bits per second they can process but rather by the number of packets per second.

So, why use fixed-length cells? One of the main reasons was to facilitate the im-
plementation of hardware switches. When ATM was being created in the mid- and late
1980s, 10-Mbps Ethernet was the cutting-edge technology in terms of speed. To go
much faster, most people thought in terms of hardware. Also, in the telephone world,
people think big when they think of switches—telephone switches often serve tens of
thousands of customers. Fixed-length packets turn out to be a very helpful thing if you
want to build fast, highly scalable switches. There are two main reasons for this:

1 It is easier to build hardware to do simple jobs, and the job of processing packets
is simpler when you already know how long each one will be;

2 If all packets are the same length, then you can have lots of switching elements
all doing much the same thing in parallel, each of them taking the same time to
do its job.

This second reason, the enabling of parallelism, greatly improves the scalability of switch
designs. It would be overstating the case to say that fast parallel hardware switches can
only be built using fixed-length cells. However, it is certainly true that cells ease the task
of building such hardware and that there was a lot of knowledge available about how to
build cell switches in hardware at the time the ATM standards were being defined.

Another nice property of cells relates to the behavior of queues. Queues build up in
a switch when traffic from several inputs may be heading for a single output. In general,
once you extract a packet from a queue and start transmitting it, you need to continue
until the whole packet is transmitted; it is not practical to preempt the transmission of
a packet. The longest time that a queue output can be tied up is equal to the time it
takes to transmit a maximum-sized packet. Fixed-length cells mean that a queue output
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is never tied up for more than the time it takes to transmit one cell, which is almost
certainly shorter than the maximum-sized packet on a variable-length packet network.
Thus, if tight control over the latency that is being experienced by cells when they pass
through a queue is important, cells provide some advantage. Of course, long queues can
still build up, and there is no getting around the fact that some cells will have to wait
their turn. What you get from cells is not much-shorter queues but potentially finer
control over the behavior of queues.

An example will help to clarify this idea. Imagine a network with variable-length
packets, where the maximum packet length is 4 KB and the link speed is 100 Mbps. The
time to transmit a maximum-sized packet is 4,096 × 8/100 = 327.68 µs. Thus, a high-
priority packet that arrives just after the switch starts to transmit a 4-KB packet will have
to sit in the queue 327.68 µs waiting for access to the link. In contrast, if the switch
were forwarding 53-byte cells, the longest wait would be 53 × 8/100 = 4.24 µs. This
may not seem like a big deal, but the ability to control delay and especially to control its
variation with time (jitter) can be important for some applications.

Queues of cells also tend to be a little shorter than queues of packets, for the follow-
ing reason. When a packet begins to arrive in an empty queue, it is typical for the switch
to have to wait for the whole packet to arrive before it can start transmitting the packet
on an outgoing link. This means that the link sits idle while the packet arrives. However,
if you imagine a large packet being replaced by a “train” of small cells, then as soon as
the first cell in the train has entered the queue, the switch can transmit it. Imagine in
the example above what would happen if two 4-KB packets arrived in a queue at about
the same time. The link would sit idle for 327.68 µs while these two packets arrive, and
at the end of that period we would have 8 KB in the queue. Only then could the queue
start to empty. If those same two packets were sent as trains of cells, then transmission of
the cells could start 4.24 µs after the first train started to arrive. At the end of 327.68 µs,
the link would have been active for a little over 323 µs, and there would be just over
4 KB of data left in the queue, not 8 KB as before. Shorter queues mean less delay for all
the traffic.

Having decided to use small, fixed-length packets, the next question is, what is
the right length to fix them at? If you make them too short, then the amount of header
information that needs to be carried around relative to the amount of data that fits in one
cell gets larger, so the percentage of link bandwidth that is actually used to carry data goes
down. Even more seriously, if you build a device that processes cells at some maximum
number of cells per second, then as cells get shorter, the total data rate drops in direct
proportion to cell size. An example of such a device might be a network adaptor that
reassembles cells into larger units before handing them up to the host. The performance
of such a device depends directly on cell size. On the other hand, if you make the cells too
big, then there is a problem of wasted bandwidth caused by the need to pad transmitted
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data to fill a complete cell. If the cell payload size is 48 bytes and you want to send 1 byte,
you’ll need to send 47 bytes of padding. If this happens a lot, then the utilization of the
link will be very low.

Efficient link utilization is not the
only factor that influences cell size. For ex-
ample, cell size has a particular effect on
voice traffic, and since ATM grew out of
the telephony community, one of the ma-
jor concerns was that it be able to carry
voice effectively. The standard digital en-
coding of voice is done at 64 Kbps (8-bit
samples taken at 8 KHz). To maximize ef-
ficiency, you want to collect a full cell’s
worth of voice samples before transmitting
a cell. A sampling rate of 8 KHz means
that 1 byte is sampled every 125 µs, so
the time it takes to fill an n-byte cell with
samples is n × 125 µs. If cells are, say,
1,000 bytes long, it would take 125 ms
just to collect a full cell of samples be-
fore you even start to transmit it to the re-
ceiver. That amount of latency starts to be
quite noticeable to a human listener. Even
considerably smaller latencies create prob-
lems for voice, particularly in the form
of echoes. Echoes can be eliminated by
a piece of technology called an echo can-
celer, but this adds cost to a telephone net-
work that many network operators would
rather avoid.

All of the above factors caused a great
deal of debate in the international stan-
dards bodies when ATM was being stan-
dardized, and the fact that no length was
perfect in all cases was used by those op-
posed to ATM to argue that fixed-length
cells were a bad idea in the first place.
As is so often the case with standards, the
end result was a compromise that pleased

A Compromise of 48 Bytes

The explanation for why the payload
of an ATM cell is 48 bytes is an in-
teresting one and is an excellent case
study in the process of standardiza-
tion. As the ATM standard was evolv-
ing, the U.S. telephone companies
were pushing for a 64-byte cell size,
while the European companies were
advocating 32-byte cells. The reason
that the Europeans wanted the smaller
size was that since the countries they
served were of a small enough size,
they would not have to install echo
cancelers if they were able to keep the
latency induced by generating a com-
plete cell small enough. Thirty-two-
byte cells were adequate for this pur-
pose. In contrast, the United States is
a large enough country that the phone
companies had to install echo can-
celers anyway, and so the larger cell
size reflected a desire to improve the
header-to-payload ratio.

Averaging is a classic form of
compromise—48 bytes is simply the
average of 64 bytes and 32 bytes. So as
not to leave the false impression that
this use of compromise-by-averaging
is an isolated incident, we note that
the seven-layer OSI model was actu-
ally a compromise between six and
eight layers.
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Figure 3.16 ATM cell format at the UNI.

almost no one: 48 bytes was chosen as the length for the ATM cell payload. Probably the
greatest tragedy of this choice is that it is not a power of two, which means that it is quite
a mismatch to most things that computers handle, like pages and cache lines. Rather less
controversially, the header was fixed at 5 bytes. The format of an ATM cell is shown in
Figure 3.16; note that this figure shows the field lengths in bits.

Cell Format

The ATM cell actually comes in two different formats, depending on where you look in
the network. The one shown in Figure 3.16 is called the UNI (user-network interface)
format; the alternative is the NNI (network-network interface). The UNI format is used,
of course, at the user-to-network interface. This is likely to be the interface between
a telephone company and one of its customers. The network-to-network interface is
likely to be between a pair of phone companies. The only significant difference in cell
formats is that the NNI format replaces the GFC field with 4 extra bits of VPI. Clearly,
understanding all the three-letter acronyms (TLAs) is a key part of understanding ATM.

Starting from the leftmost byte of the cell (which is the first one transmitted), the
UNI cell has 4 bits for generic flow control (GFC). These bits have not been widely
used, but they were intended to have local significance at a site and could be overwritten
in the network. The basic idea behind the GFC bits was to provide a means to arbitrate
access to the link if the local site used some shared medium to connect to ATM.

The next 24 bits contain an 8-bit virtual path identifier (VPI) and a 16-bit virtual
circuit identifier (VCI). The difference between the two is explained below, but for now
it is adequate to think of them as a single 24-bit identifier that is used to identify a virtual
connection, just as in Section 3.1.2. Following the VPI/VCI is a 3-bit Type field that
has eight possible values. Four of them, when the first bit in the field is set, relate to
management functions. When that bit is clear, it means that the cell contains user data.
In this case, the second bit is the explicit forward congestion indication (EFCI) bit and
the third is the “user signalling” bit. The former can be set by a congested switch to tell an
end node that it is congested—it has its roots in the DECbit described in Section 6.4.1—
in ATM, it is used for congestion control in conjunction with the available bit rate (ABR)
service class described in Section 6.5.3. The third bit is used primarily in conjunction
with ATM Adaptation Layer 5 to delineate frames, as discussed below.
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Next is a bit to indicate cell loss priority (CLP); a user or network element may set
this bit to indicate cells that should be dropped preferentially in the event of overload.
For example, a video coding application could set this bit for cells that, if dropped, would
not dramatically degrade the quality of the video. A network element might set this bit
for cells that have been transmitted by a user in excess of the amount that was negotiated.

The last byte of the header is an 8-bit CRC, known as the header error check
(HEC). It uses the CRC-8 polynomial given in Section 2.4.3 and provides error detec-
tion and single-bit error correction capability on the cell header only. Protecting the cell
header is particularly important because an error in the VCI will cause the cell to be
misdelivered.

3.3.2 Segmentation and Reassembly
Up to this point, we have assumed that a low-level protocol could just accept the packet
handed down to it by a high-level protocol, attach its own header, and pass the packet
on down. This is not possible with ATM, however, since the packets handed down from
above are often larger than 48 bytes, and thus, will not fit in the payload of an ATM
cell. The solution to this problem is to fragment the high-level message into low-level
packets at the source, transmit the individual low-level packets over the network, and
then reassemble the fragments back together at the destination. This general technique
is usually called fragmentation and reassembly. In the case of ATM, however, it is often
called segmentation and reassembly (SAR).

Segmentation is not unique to ATM, but it is much more of a problem than in a
network with a maximum packet size of, say, 1,500 bytes. To address the issue, a protocol
layer was added that sits between ATM and the variable-length packet protocols that
might use ATM, such as IP. This layer is called the ATM Adaptation Layer (AAL), and
to a first approximation, the AAL header simply contains the information needed by
the destination to reassemble the individual cells back into the original message. The
relationship between the AAL and ATM is illustrated in Figure 3.17.

Because ATM was designed to support all sorts of services, including voice, video,
and data, it was felt that different services would have different AAL needs. Thus, four
adaptation layers were originally defined: 1 and 2 were designed to support applications,
like voice, that require guaranteed bit rates, while 3 and 4 were intended to provide
support for packet data running over ATM. The idea was that AAL3 would be used by
connection-oriented packet services (such as X.25) and AAL4 would be used by connec-
tionless services (such as IP). Eventually, the reasons for having different AALs for these
two types of service were found to be insufficient, and the AALs merged into one that is
inconveniently known as AAL3/4. Meanwhile, some perceived shortcomings in AAL3/4
caused a fifth AAL to be proposed, called AAL5. Thus, there are now four AALs: 1, 2,
3/4, and 5. The two that support computer communications are described below.
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Figure 3.17 Segmentation and reassembly in ATM.

ATM Adaptation Layer 3/4

The main function of AAL3/4 is to provide enough information to allow variable-length
packets to be transported across the ATM network as a series of fixed-length cells. That is,
the AAL supports the segmentation and reassembly process. Since we are now working at
a new layer of the network hierarchy, convention requires us to introduce a new name for
a packet—in this case, we call it a protocol data unit (PDU). The task of segmentation/
reassembly involves two different packet formats. The first of these is the convergence
sublayer protocol data unit (CS-PDU), as depicted in Figure 3.18. The CS-PDU defines
a way of encapsulating variable-length PDUs prior to segmenting them into cells. The
PDU passed down to the AAL layer is encapsulated by adding a header and a trailer, and
the resultant CS-PDU is segmented into ATM cells.

The CS-PDU format begins with an 8-bit common part indicator (CPI), which
indicates which version of the CS-PDU format is in use. Only the value 0 is currently
defined. The next 8 bits contain the beginning tag (Btag), which is supposed to match
the end tag (Etag) for a given PDU. This protects against the situation in which the
loss of the last cell of one PDU and the first cell of another causes two PDUs to be
inadvertently joined into a single PDU and passed up to the next layer in the protocol
stack. The buffer allocation size (BASize) field is not necessarily the length of the PDU
(which appears in the trailer); it is supposed to be a hint to the reassembly process as
to how much buffer space to allocate for the reassembly. The reason for not including

Figure 3.18 ATM Adaptation Layer 3/4 packet format.
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Figure 3.19 ATM cell format for AAL3/4.

the actual length here is that the sending host might not have known how long the CS-
PDU was when it transmitted the header. Before adding the CS-PDU trailer, the user
data is padded to one byte less than a multiple of 4 bytes, by adding up to 3 bytes of
padding. This padding, plus the 0-filled byte, ensures that the trailer is aligned on a 32-
bit boundary, making for more efficient processing. The CS-PDU trailer itself contains
the Etag and the real length of the PDU (Len).

In addition to the CS-PDU header and trailer, AAL3/4 specifies a header and trailer
that are carried in each cell, as depicted in Figure 3.19. Thus, the CS-PDU is actually
segmented into 44-byte chunks; an AAL3/4 header and trailer is attached to each one,
bringing it up to 48 bytes, which is then carried as the payload of an ATM cell.

The first two bits of the AAL3/4 header contain the Type field, which indicates
if this is the first cell of a CS-PDU, the last cell of a CS-PDU, a cell in the middle of a
CS-PDU, or a single-cell PDU (in which case it is both first and last). The official names
for these four conditions are shown in Table 3.5, along with the bit encodings.

Next is a 4-bit sequence number (SEQ), which is intended simply to detect cell
loss or misordering so that reassembly can be aborted. Clearly, a sequence number this
small can miss cell losses if the number of lost cells is large enough. This is followed by
a multiplexing identifier (MID), which can be used to multiplex several PDUs onto a
single connection. The 6-bit Length field shows the number of bytes of PDU that are
contained in the cell; it must equal 44 for BOM and COM cells. Finally, a 10-bit CRC
is used to detect errors anywhere in the 48-byte cell payload.

Figure 3.20 shows the entire encapsulation and segmentation process for AAL3/4.
At the top, the user data is encapsulated with the CS-PDU header and trailer. The CS-

Value Name Meaning

10 BOM Beginning of message

00 COM Continuation of message

01 EOM End of message

11 SSM Single-segment message

Table 3.5 AAL3/4 Type field.
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Figure 3.20 Encapsulation and segmentation for AAL3/4.

PDU is then segmented into 44-byte payloads, which are encapsulated as ATM cells by
adding the AAL3/4 header and trailer as well as the 5-byte ATM header. Note that the
last cell is only partially filled whenever the CS-PDU is not an exact multiple of 44 bytes.

One thing to note about AAL3/4 is that it exacerbates the fixed per-cell overhead
that we discussed above. With 44 bytes of data to 9 bytes of header, the best possible
bandwidth utilization would be 83%. Note that the efficiency can be considerably less
than that, as illustrated by Figure 3.20, because of the CS-PDU encapsulation and the
partial filling of the last cell.

ATM Adaptation Layer 5
One thing you may have noticed in the discussion of AAL3/4 is that it seems to take a
lot of fields and thus a lot of overhead to perform the conceptually simple function of
segmentation and reassembly. This observation was, in fact, made by several people in
the early days of ATM, and numerous competing proposals arose for an AAL to support
computer communications over ATM. There was a movement, known informally as
“Back the Bit,” that argued that if we could just have 1 bit in the ATM header (as
opposed to the AAL header) to delineate the end of a frame, then segmentation and
reassembly could be accomplished without using any of the 48-byte ATM payload for
segmentation/reassembly information. This movement eventually led to the definition
of the user signalling bit described above and to the standardization of AAL5.

What AAL5 does is replace the 2-bit Type field of AAL3/4 with 1 bit of framing
information in the ATM cell header. By setting that 1 bit, we can identify the last cell of
a PDU; the next cell is assumed to be the first cell of the next PDU, and subsequent cells
are assumed to be COM cells until another cell is received with the user signalling bit
set. All the pieces of AAL3/4 that provide protection against lost, corrupt, or misordered
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Figure 3.21 ATM Adaptation Layer 5 packet format.

Figure 3.22 Encapsulation and segmentation for AAL5.

cells, including the loss of an EOM cell, are provided by the AAL5 CS-PDU packet
format depicted in Figure 3.21.

The AAL5 CS-PDU consists simply of the data portion (the PDU handed down
by the higher-layer protocol) and an 8-byte trailer. To make sure that the trailer always
falls at the tail end of an ATM cell, there may be up to 47 bytes of padding between
the data and the trailer. It is necessary to force the trailer to be at the end of a cell, as
otherwise there would be no way for the entity performing reassembly of the CS-PDU
to find the trailer. The first 2 bytes of the trailer are currently reserved and must be 0.
The length field (Len) is the number of bytes carried in the PDU, not including the
trailer or any padding before the trailer. Finally, there is a 32-bit CRC.

Figure 3.22 shows the encapsulation and segmentation process for AAL5. Just like
AAL3/4, the user data is encapsulated to form a CS-PDU (although using only a trailer
in this case). The resulting PDU is then cut up into 48-byte chunks, which are carried
directly inside the payload of ATM cells without any further encapsulation.

Somewhat surprisingly, AAL5 provides almost the same functionality as AAL3/4
without using an extra 4 bytes out of every cell. For example, the CRC-32 detects lost or
misordered cells as well as bit errors in the data. In fact, having a checksum over the entire
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PDU rather than doing it on a per-cell basis as in AAL3/4 provides stronger protection.
For example, it protects against the loss of 16 consecutive cells, an event that would not
be picked up by the sequence number checking of AAL3/4. Also, a 32-bit CRC protects
against longer burst errors than a 10-bit CRC.

The main feature missing from AAL5 is the ability to provide an additional layer
of multiplexing onto one virtual circuit using the MID. It is not clear whether this is
a significant loss. It is still possible to multiplex traffic from many applications and
higher-layer protocols onto a single VC using AAL5 by carrying a demux key of the
sort described in Section 1.3.1. It just becomes necessary to do the multiplexing on a
packet-by-packet, rather than a cell-by-cell, basis.

There are positive and negative aspects to multiplexing traffic from a lot of differ-
ent applications onto a single VC. For example, if you are being charged for every virtual
circuit you set up across a network, then multiplexing traffic from lots of different appli-
cations onto one connection might be a plus. However, this approach has the drawback
that all applications will have to live with whatever quality of service (e.g., delay and
bandwidth guarantees) has been chosen for that one connection, which may mean that
some applications are not receiving appropriate service.

In general, AAL5 has been wholeheartedly embraced by the computer communi-
cations community (at least by that part of the community that has embraced ATM at
all). For example, it is the preferred AAL in the IETF for transmitting IP datagrams over
ATM. Its more efficient use of bandwidth and simple design are the main features that
make it more appealing than AAL3/4.

3.3.3 Virtual Paths
As mentioned above, ATM uses a 24-bit identifier for virtual circuits, and these circuits
operate almost exactly like the ones described in Section 3.1.2. The one twist is that the
24-bit identifier is split into two parts: an 8-bit virtual path identifier (VPI) and a 16-bit
virtual circuit identifier (VCI). This effectively creates a two-level hierarchy of virtual
connections. To understand how such a hierarchy might work, consider the following
example. (We ignore the fact that in some places there might be a network-network
interface with a different-sized VPI; just assume that 8-bit VPIs are used everywhere.)

Suppose that a corporation has two sites that connect to a public ATM network,
and that at each site the corporation has a network of ATM switches. We could imagine
establishing a virtual path between two sites using only the VPI field. Thus, the switches
in the public network would use the VPI as the only field on which to make forwarding
decisions. From their point of view, this is a virtual circuit network with 8-bit circuit
identifiers. The 16-bit VCI is of no interest to these public switches, and they neither
use the field for switching nor remap it. Within the corporate sites, however, the full
24-bit space is used for switching. Any traffic that needs to flow between the two sites is
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Figure 3.23 Example of a virtual path.

routed to a switch that has a connection to the public network, and its top 8 bits (the
VPI) are mapped onto the appropriate value to get the data to the other site. This idea
is illustrated in Figure 3.23. Note that the virtual path acts like a fat pipe that contains a
bundle of virtual circuits, all of which have the same 8 bits in their most significant byte.

The advantage of this approach is clear: Although there may be thousands or mil-
lions of virtual connections across the public network, the switches in the public network
behave as if there is only one connection. This means that there needs to be much less
connection-state information stored in the switches, avoiding the need for big, expensive
tables of per-VCI information.

Where Are They Now ????
ATM in the LAN

ATM grew out of the telephony com-
munity, who envisioned it as a way to
build large public networks that could
transport voice, video, and data traf-
fic. However, it was subsequently em-
braced by segments of the computer
and data communications industries
as a technology to be used in LANs—
a replacement for Ethernet and 802.5.
Its popularity in this realm at a partic-
ular point in time can be attributed to
two main factors:

■ ATM is a switched technol-
ogy, whereas Ethernet and
802.5 were originally envi-
sioned as shared-media tech-
nologies.

3.3.4 Physical Layers for
ATM

While the layered approach to protocol
design might lead you to think that we
do not need to worry about what type of
point-to-point link ATM runs on top of,
this turns out not to be the case. From a
simple pragmatic point of view, when you
buy an ATM switch it comes with some
physical medium over which ATM cells
will be sent. Of course, this is also true for
other networking protocols such as 802.5
and Ethernet. Like these protocols, ATM
can also run over several different physi-
cal media and physical-layer protocols.

From early in the process of stan-
dardizing ATM, it was assumed that
ATM would run on top of a SONET
physical layer (see Section 2.3.3). While
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Where Are They Now ????
■ ATM was designed to op-

erate on links with speeds
of 155 Mbps and above,
compared to the original
10 Mbps of Ethernet and 4
or 16 Mbps of token rings.

When ATM switches first be-
came available, these were significant
advantages over the existing solutions.
However, it should be apparent that
the distinction between shared-media
and switched networks is no longer
clear-cut. A bridge that connects a
number of shared-media networks to-
gether is also a switch, and it is pos-
sible (and now common) to connect
only one host to each segment, giv-
ing it dedicated access to that band-
width. At the same time as ATM
switches were appearing on the scene,
high-performance Ethernet switches
became available. These devices have
large numbers of ports and high total
throughput. The 100-Mbps Ethernet
standard was defined, and so the link
speed of Ethernet—which could be
achieved over copper—began to ap-
proach that of ATM (and ultimately
surpassed it).

Initially this was not enough to
kill off ATM in the LAN. In fact,
significant effort went into develop-
ing a technology called ATM LAN
emulation, or LANE. The key chal-
lenge faced in LANE was the fact

it is true that standard ways of carrying
ATM cells inside a SONET frame have
been defined, and that you can buy ATM-
over-SONET products, the two are en-
tirely separable. For example, you can lease
a SONET link from a phone company and
send whatever you want over it, including
variable-length packets, and this is widely
done today.

Also, you can send ATM cells over
many other physical layers instead of
SONET, and standards have been de-
fined for these encapsulations. A notable
early physical layer for ATM was TAXI,
the physical layer used in FDDI (see Sec-
tion 2.7). ATM today is widely used over
Digital Subscriber Line (DSL) links of var-
ious types, and wireless physical layers for
ATM are also defined.

When you send ATM cells over some
physical medium, the main issue is how to
find the boundaries of the ATM cells; this
is exactly the framing problem described
in Chapter 2. With SONET, there are two
easy ways to find the boundaries. One of
the overhead bytes in the SONET frame
can be used as a pointer into the SONET
payload to the start of an ATM cell. Hav-
ing found the start of one cell, it is known
that the next cell starts 53 bytes further
on in the SONET payload, and so on. In
theory, you only need to read this pointer
once, but in practice, it makes sense to read
it every time the SONET overhead goes by
so that you can detect errors or resynchro-
nize if needed.

The other way to find the bound-
aries of ATM cells takes advantage of the
fact that every cell has a CRC in the fifth
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Where Are They Now ????
that ATM doesn’t behave like a “tradi-
tional” shared media LAN like Eth-
ernet or token ring. On traditional
LANs it is easy to implement broad-
cast (sending to everybody) and multi-
cast (sending to a group). Thus, many
of the protocols that people depend
on in their LANs—for example, the
Address Resolution Protocol (ARP)
described in Section 4.1.5—depend
in turn on the ability of the LAN
to support multicast and broadcast.
However, because of its connection-
oriented and switched nature, ATM
lacks a simple broadcast mechanism.
For example, how can you broadcast
to all nodes on an ATM LAN if you
don’t know all their addresses and set
up VCs to all of them?

LANE (which might be more
correctly called “shared-media emu-
lation”) adds functionality to ATM
LANs so that anything that runs over
a shared-media LAN can operate over
an ATM LAN. While LANE might
now be considered something of a his-
torical curiosity, it is an interesting ex-
ample of how protocol layering can
work. By making the “ATM layer”
look more like an Ethernet, higher-
layer protocols that worked well over
Ethernet continued to work without
modification.

To emulate the shared media be-
havior of traditional LANs, LANE
introduced a number of servers into

byte of the cell. Thus, if you run a CRC
calculation over the last 5 bytes received
and the answer comes out to indicate no
errors, then it is probably true that you
have just read an ATM header. If this
happens several times in a row at 53-byte
intervals, you can be pretty sure you have
found the cell boundary.

3.4 Implementation
and Performance

So far, we have talked about what a switch
must do without discussing how to do
it. There is a very simple way to build
a switch: Buy a general-purpose worksta-
tion and equip it with a number of net-
work interfaces. Such a device, running
suitable software, can receive packets on
one of its interfaces, perform any of the
switching functions described above, and
send packets out another of its interfaces.
This is, in fact, a popular way to build
experimental switches when you want to
be able to do things like develop new
routing protocols because it offers ex-
treme flexibility and a familiar program-
ming environment. It is also not too far
removed from the architecture of many
low-end routers (which, as we will see in
the next chapter, have much in common
with switches).

Figure 3.24 shows a workstation
with three network interfaces used as a
switch. The figure shows a path that a
packet might take from the time it arrives
on interface 1 until it is output on inter-
face 2. We have assumed here that the
workstation has a mechanism to move
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Where Are They Now ????
each LAN, called the LAN emula-
tion configuration server (LECS), the
LAN emulation server (LES), and
the broadcast and unknown server
(BUS). The first two servers play roles
in bootstrapping and configuring the
network, while the BUS has the crit-
ical job of emulating the broadcast
functionality of a traditional LAN.
The BUS is normally the root of a
point-to-multipoint VC, with all the
other nodes on the LAN as the leaves.
Thus, to send a packet to all nodes on
an ATM LAN, you need only send it
to the BUS, which then forwards it on
to the multipoint VC.

It should be clear that ATM
LAN emulation is fairly complex, and
the BUS in particular presents a scal-
ability bottleneck. Perhaps as a re-
sult of these factors, plus the fact that
ATM ultimately offered few real ad-
vantages over Ethernet, LANE is no
longer widely used.

data directly from an interface to its main
memory without having to be directly
copied by the CPU, that is, direct mem-
ory access (DMA) as described in Sec-
tion 2.1.1. Once the packet is in memory,
the CPU examines its header to determine
on which interface the packet should be
sent out. It then uses DMA to move the
packet out to the appropriate interface.
Note that Figure 3.24 does not show the
packet going to the CPU because the CPU
inspects only the header of the packet; it
does not have to read every byte of data in
the packet.

The main problem with using a
workstation as a switch is that its perfor-
mance is limited by the fact that all pack-
ets must pass through a single point of
contention: In the example shown, each
packet crosses the I/O bus twice and is
written to and read from main mem-
ory once. The upper bound on aggregate
throughput of such a device (the total
sustainable data rate summed over all in-
puts) is, thus, either half the main memory
bandwidth or half the I/O bus bandwidth,
whichever is less. (Usually, it’s the I/O bus
bandwidth.) For example, a workstation

with a 133-MHz, 64-bit wide I/O bus can transmit data at a peak rate of a little over
8 Gbps. Since forwarding a packet involves crossing the bus twice, the actual limit is
4 Gbps—enough to build a switch with a fair number of 100 Mbps Ethernet ports,
for example, but hardly enough for a high-end router in the core of the Internet. (We’ll
return to the subject of router implementation in Section 4.2.6.)

Moreover, this upper bound also assumes that moving data is the only problem—a
fair approximation for long packets but a bad one when packets are short. In the latter
case, the cost of processing each packet—parsing its header and deciding which output
link to transmit it on—is likely to dominate. Suppose, for example, that a workstation
can perform all the necessary processing to switch 1 million packets each second. This
is sometimes called the packet per second (pps) rate. (This number is representative of
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Figure 3.24 A workstation used as a packet switch.

what is achievable on today’s high-end PCs.) If the average packet is short, say, 64 bytes,
this would imply

Throughput = pps × (BitsPerPacket)

= 1 × 106 × 64 × 8

= 512 × 106

that is, a throughput of 512 Mbps—substantially below the range that users are demand-
ing from their networks today. Bear in mind that this 512 Mbps would be shared by all
users connected to the switch, just as the 10 Mbps of an Ethernet is shared among all
users connected to the shared medium. Thus, for example, a 10-port switch with this
aggregate throughput would only be able to cope with an average data rate of 51.2 Mbps
on each port.

To address this problem, hardware designers have come up with a large array
of switch designs that reduce the amount of contention and provide high aggregate
throughput. Note that some contention is unavoidable: If every input has data to send
to a single output, then they cannot all send it at once. However, if data destined for
different outputs is arriving at different inputs, a well-designed switch will be able to
move data from inputs to outputs in parallel, thus increasing the aggregate throughput.

3.4.1 Ports
Most switches look conceptually similar to the one shown in Figure 3.25. They consist
of a number of input ports and output ports, and a fabric. There is usually at least one
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Figure 3.25 A 4 × 4 switch.

control processor in charge of the whole switch that communicates with the ports either
directly or, as shown here, via the switch fabric. The ports communicate with the outside
world. They may contain fiber-optic receivers and lasers, buffers to hold packets that are
waiting to be switched or transmitted, and often a significant amount of other circuitry
that enables the switch to function. The fabric has a very simple and well-defined job:
When presented with a packet, deliver it to the right output port.

One of the jobs of the ports, then, is to deal with the complexity of the real world
in such a way that the fabric can do its relatively simple job. For example, suppose that
this switch is supporting a virtual circuit model of communication. In general, the virtual

Defining Throughput

It turns out to be difficult to de-
fine precisely the throughput of a
switch. Intuitively, we might think
that if a switch has n inputs that
each support a link speed of si , then
the throughput would just be the
sum of all the si . This is actually the
best possible throughput that such a
switch could provide, but in prac-
tice almost no real switch can guar-
antee that level of performance. One
reason for this is simple to under-
stand. Suppose that, for some period

circuit mapping tables described in Sec-
tion 3.1.2 are located in the ports. The
ports maintain lists of virtual circuit iden-
tifiers that are currently in use, with in-
formation about what output a packet
should be sent out on for each VCI and
how the VCI needs to be remapped to
ensure uniqueness on the outgoing link.
Similarly, the ports of an Ethernet switch
store tables that map between Ether-
net addresses and output ports (bridge
forwarding tables as described in Sec-
tion 3.2). In general, when a packet is
handed from an input port to the fabric,
the port has figured out where the packet
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needs to go, and either the port sets up
the fabric accordingly by communicating
some control information to it, or it at-
taches enough information to the packet
itself (e.g., an output port number) to al-
low the fabric to do its job automatically.
Fabrics that switch packets by looking only
at the information in the packet are re-
ferred to as “self-routing,” since they re-
quire no external control to route packets.
An example of a self-routing fabric is dis-
cussed below.

The input port is the first place to
look for performance bottlenecks. The in-
put port has to receive a steady stream of
packets, analyze information in the header
of each one to determine which output
port (or ports) the packet must be sent to,
and pass the packet on to the fabric. The
type of header analysis that it performs
can range from a simple table lookup on
a VCI to complex matching algorithms
that examine many fields in the header.
This is the type of operation that some-
times becomes a problem when the average
packet size is very small. Consider, for ex-
ample, 64-byte packets arriving on a port
connected to an OC-48 (2.48-Gbps) link.
Such a port needs to process packets at a
rate of

2.48 × 109 ÷ (64 × 8) = 4.83 × 106 pps

In other words, when small packets are
arriving as fast as possible on this link
(the worst-case scenario that most ports
are engineered to handle), the input port
has approximately 200 ns to process each
packet.

of time, all the traffic arriving at the
switch needed to be sent to the same
output. As long as the bandwidth of
that output is less than the sum of the
input bandwidths, then some of the
traffic will need to be either buffered
or dropped. With this particular traf-
fic pattern, the switch could not pro-
vide a sustained throughput higher
than the link speed of that one out-
put. However, a switch might be able
to handle traffic arriving at the full
link speed on all inputs if it is distrib-
uted across all the outputs evenly; this
would be considered optimal.

Another factor that affects the
performance of switches is the size of
packets arriving on the inputs. For
an ATM switch, this is normally not
an issue because all “packets” (cells)
are the same length. But for Ether-
net switches or IP routers, packets
of widely varying sizes are possible.
Some of the operations that a switch
must perform have a constant over-
head per packet, so a switch is likely
to perform differently depending on
whether all arriving packets are very
short, very long, or mixed. For this
reason, routers or switches that for-
ward variable-length packets are of-
ten characterized by a packet per second
(pps) rate as well as a throughput in
bits per second. The pps rate is usually
measured with minimum-sized pack-
ets. The first thing to notice about this
discussion is that the throughput of
the switch is a function of the traffic
to which it is subjected. One of the
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things that switch designers spend a
lot of their time doing is trying to
come up with traffic models that ap-
proximate the behavior of real data
traffic. It turns out that it is extremely
difficult to achieve accurate models.
There are several elements to a traffic
model. The main ones are (1) when
do packets arrive, (2) what outputs are
they destined for, and (3) how big are
they.

Traffic modeling is a well-estab-
lished science that has been extremely
successful in the world of telephony,
enabling telephone companies to en-
gineer their networks to carry ex-
pected loads quite efficiently. This is
partly because the way people use the
phone network does not change that
much over time: The frequency with
which calls are placed, the amount of
time taken for a call, and the tendency
of everyone to make calls on Mother’s
Day have stayed fairly constant for
many years.5 By contrast, the rapid
evolution of computer communica-
tions, where a new application like
Napster can change the traffic patterns
almost overnight, has made effective
modeling of computer networks much
more difficult. Nevertheless, there are
some excellent books and articles on
the subject that we list at the end of
the chapter.

Another key function of ports is
buffering. Observe that buffering can hap-
pen in either the input or the output port;
it can also happen within the fabric (some-
times called internal buffering). Simple in-
put buffering has some serious limitations.
Consider an input buffer implemented as
a FIFO. As packets arrive at the switch,
they are placed in the input buffer. The
switch then tries to forward the packets at
the front of each FIFO to their appropri-
ate output port. However, if the packets
at the front of several different input ports
are destined for the same output port at
the same time, then only one of them can
be forwarded;6 the rest must stay in their
input buffers. The drawback of this feature
is that those packets left at the front of the
input buffer prevent other packets further
back in the buffer from getting a chance
to go to their chosen outputs, even though
there may be no contention for those out-
puts. This phenomenon is called head-of-
line blocking. A simple example of head-
of-line blocking is given in Figure 3.26,
where we see a packet destined for port 1
blocked behind a packet contending for
port 2. It can be shown that when traffic
is uniformly distributed among outputs,
head-of-line blocking limits the through-
put of an input-buffered switch to 59%
of the theoretical maximum (which is
the sum of the link bandwidths for the
switch). Thus, the majority of switches
use either pure output buffering or a mix-

5The advent of dial-up connections to the Internet did however cause a significant change in the average length of calls.
6For a simple input-buffered switch, exactly one packet at a time can be sent to a given output port. It is possible to
design switches that can forward more than one packet to the same output at once, at a cost of higher switch complexity,
but there is always some upper limit on the number.
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Figure 3.26 Simple illustration of head-of-line blocking.

ture of internal and output buffering.
Those that do rely on input buffers use
sophisticated buffer management schemes
to avoid head-of-line blocking.

Buffers actually perform a more com-
plex task than just holding onto packets
that are waiting to be transmitted. Buffers
are the main source of delay in a switch,
and also the place where packets are most
likely to get dropped due to lack of space
to store them. The buffers therefore are
the main place where the quality of service
characteristics of a switch are determined.
For example, if a certain packet has been
sent along a VC that has a guaranteed de-

To give you a sense of the
range of throughputs that designers
need to be concerned about, a high-
end router used in the Internet at
the time of writing might support
10 OC-768 links for a throughput
of approximately 400 Gbps. A 400-
Gbps switch, if called upon to han-
dle a steady stream of 64-byte packets,
would need a packet per second rate
of

400×109 ÷(64×8) = 781×106 pps

lay, it cannot afford to sit in a buffer for very long. This means that the buffers, in
general, must be managed using packet scheduling and discard algorithms that meet a
wide range of QoS requirements. We talk more about these issues in Chapter 6.

3.4.2 Fabrics
While there has been an abundance of impressive research conducted on the design of
efficient and scalable fabrics, it is sufficient for our purposes here to understand only the
high-level properties of a switch fabric. A switch fabric should be able to move pack-
ets from input ports to output ports with minimal delay and in a way that meets the
throughput goals of the switch. That usually means that fabrics display some degree of
parallelism. A high-performance fabric with n ports can often move one packet from
each of its n ports to one of the output ports at the same time. A sample of fabric types
includes the following:

■ Shared Bus. This is the type of “fabric” found in a conventional workstation
used as a switch, as described above. Because the bus bandwidth determines
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the throughput of the switch, high-performance switches usually have specially
designed busses rather than the standard busses found in PCs.

■ Shared Memory. In a shared memory switch, packets are written into a memory
location by an input port and then read from memory by the output ports.
Here it is the memory bandwidth that determines switch throughput, so wide
and fast memory is typically used in this sort of design. A shared memory switch
is similar in principle to the shared bus switch, except it usually uses a specially
designed, high-speed memory bus rather than an I/O bus.

■ Crossbar. A crossbar switch is a matrix of pathways that can be configured to
connect any input port to any output port. Figure 3.27 shows a 4 × 4 crossbar
switch. The main problem with crossbars is that, in their simplest form, they
require each output port to be able to accept packets from all inputs at once,
implying that each port would have a memory bandwidth equal to the total
switch throughput. In reality, more complex designs are typically used to address
this issue (see, for example, the Knockout switch and McKeown’s virtual output-
buffered approach in the Further Reading section).

■ Self-routing. As noted above, self-routing fabrics rely on some information in
the packet header to direct each packet to its correct output. Usually a special
“self-routing header” is appended to the packet by the input port after it has de-
termined which output the packet needs to go to, as illustrated in Figure 3.28;
this extra header is removed before the packet leaves the switch. Self-routing fab-

Figure 3.27 A 4 × 4 crossbar switch.
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Figure 3.28 A self-routing header is applied to a packet at input to enable the fabric to

send the packet to the correct output, where it is removed. (a) Packet arrives at input

port; (b) input port attaches self-routing header to direct packet to correct output;

(c) self-routing header is removed at output port before packet leaves switch.

rics are often built from large numbers of very simple 2 × 2 switching elements
interconnected in regular patterns, such as the banyan switching fabric shown
in Figure 3.29. For some examples of self-routing fabric designs see the Further
Reading section at the end of this chapter.

Self-routing fabrics are among the most scalable approaches to fabric design, and
there has been a wealth of research on the topic, some of which is listed in the Further
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Figure 3.29 Routing packets through a banyan network. The 3-bit numbers represent

values in the self-routing headers of four arriving packets.

Reading section. Many self-routing fabrics resemble the one shown in Figure 3.29, con-
sisting of regularly interconnected 2 × 2 switching elements. For example, the 2 × 2
switches in the banyan network perform a simple task: They look at 1 bit in each self-
routing header and route packets toward the upper output if it is zero or toward the
lower output if it is one. Obviously, if two packets arrive at a banyan element at the same
time and both have the bit set to the same value, then they want to be routed to the same
output and a collision will occur. Either preventing or dealing with these collisions is a
main challenge for self-routing switch design. The banyan network is a clever arrange-
ment of 2 × 2 switching elements that routes all packets to the correct output without
collisions if the packets are presented in ascending order.

We can see how this works in an example, as shown in Figure 3.29, where the self-
routing header contains the output port number encoded in binary. The switch elements
in the first column look at the most significant bit of the output port number and route
packets to the top if that bit is a 0 or the bottom if it is a 1. Switch elements in the second
column look at the second bit in the header, and those in the last column look at the least
significant bit. You can see from this example that the packets are routed to the correct
destination port without collisions. Notice how the top outputs from the first column of
switches all lead to the top half of the network, thus getting packets with port numbers
0–3 into the right half of the network. The next column gets packets to the right quarter
of the network, and the final column gets them to the right output port. The clever part
is the way switches are arranged to avoid collisions. Part of the arrangement includes the
“perfect shuffle” wiring pattern at the start of the network. To build a complete switch
fabric around a banyan network would require additional components to sort packets
before they are presented to the banyan. The Batcher-banyan switch design is a notable
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example of such an approach. The Batcher network, which is also built from a regular
interconnection of 2 × 2 switching elements, sorts packets into descending order. On
leaving the Batcher network, the packets are then ready to be directed to the correct
output, with no risk of collisions, by the banyan network.

One of the interesting things about switch design is the wide range of different
types of switches that can be built using the same basic technology. For example, both
the Ethernet switches and ATM switches discussed in this chapter, as well as Internet
routers discussed in the next chapter, are all built using designs such as those outlined in
this section.

3.5 Summary
This chapter has started to look at some of the issues involved in building large scalable
networks by using switches, rather than just links, to interconnect hosts. There are several
different ways to decide how to switch packets; the two main ones are the datagram
(connectionless) model and the virtual circuit (connection-oriented) model.

An important application of switching is the interconnection of shared-media
LANs. LAN switches, or bridges, use techniques such as source address learning to
improve forwarding efficiency, and spanning tree algorithms to avoid looping. These
switches are extensively used in data centers, campuses, and corporate networks.

The most widespread uses of virtual circuit switching are in Frame Relay and ATM
switches. ATM introduces some particular challenges through the use of cells—short,
fixed-length packets. The availability of relatively high-throughput ATM switches has
contributed to the acceptance of the technology, although it has certainly not swept all
other technologies aside as some predicted. One of the main uses of ATM today is as a
multiplexing technology in DSL access networks.

Independent of the specifics of the switching technology, switches need to for-
ward packets from inputs to outputs at a high rate, and in some circumstances, switches
need to grow to a large size to accommodate hundreds or thousands of ports. Building
switches that both scale and offer high performance at acceptable cost is complicated by
the problem of contention, and as a consequence, switches often employ special-purpose
hardware rather than being built from general-purpose workstations.

In addition to the issues of contention discussed here, we observe that the related
problem of congestion has come up throughout this chapter. We will postpone our dis-
cussion of congestion control until Chapter 6, after we have seen more of the network
architecture. We do this because it is impossible to fully appreciate congestion (both the
problem and how to address it) without understanding both what happens inside the
network (the topic of this and the next chapter) and what happens at the edges of the
network (the topic of Chapter 5).
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ATM was originally envisioned
by many of its proponents as the
foundation for the “Broadband Inte-
grated Services Digital Network,” and
it was predicted in some quarters that
ATM would displace all other net-
working technologies. Hosts would

O P E N I S S U E

The Future of Switching

acquire ATM adaptors instead of Ethernet ports, enabling “ATM to the desktop.” Phone
companies everywhere would deploy ATM, and as the technology that supports all media
types—voice, video, and data—it would remove the need for any other type of network.

It is now apparent that this scenario is unlikely to play out. The success of Eth-
ernet switches in particular has killed off the ATM-to-the-desktop movement. Gigabit
Ethernet and 10-gigabit Ethernet technologies have successfully addressed the need for
high-speed LAN connections where ATM might once have been used. Meanwhile, the
Internet Protocol (IP) has become the dominant network layer protocol in wide area
networks. In fact one now hears ATM referred to as a “legacy protocol,” a term once
used by proponents of ATM to refer to protocols that predated it.

The more interesting question at this stage is “How far can Ethernet go?” Once
confined to local area networks, Ethernet has now become quite popular as an access
technology in metropolitan area networks. This application of Ethernet has been en-
abled by the ubiquity (and relatively low cost) of Ethernet switching, and increases in
the distances over which Ethernet frames can be transmitted (e.g., by sending the frames
over fiber).

One place where ATM has had continued success is in DSL access networks, where
it is typically used to connect residential customers to the Internet. However, even this
market is beginning to be addressed by Ethernet switching.

Thus, Ethernet appears likely to be the dominant switching technology of the fu-
ture. As we will see in the next chapter, the chief limitation of Ethernet-based networks
is their scalability to very large numbers of nodes. Even that limitation is something that
is now being tackled by the current generation of researchers, suggesting even broader
applicability of Ethernet in the future.

F U R T H E R R E A D I N G
The seminal paper on bridges, in particular the spanning tree algorithm, is the arti-
cle by Perlman listed below. There is a wealth of survey papers on ATM; the article
by Turner, an ATM pioneer, is one of the earliest to propose the use of a cell-based
network for integrated services. The third paper describes the Sunshine switch and
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is especially interesting because it provides insights into the important role of traffic
analysis in switch design. In particular, the Sunshine designers were among the first
to realize that cells were unlikely to arrive at a switch in a totally uncorrelated way
and thus were able to factor these correlations into their design. Finally, McKeown’s
paper describes an approach to switch design that uses cells internally but has been
used commercially as the basis for high-performance routers forwarding variable-length
packets.

■ Perlman, R. “An Algorithm for Distributed Computation of Spanning Trees in
an Extended LAN.” Proceedings of the Ninth Data Communications Symposium,
pp. 44–53, September 1985.

■ Turner, J. S. “Design of an Integrated Services Packet Network.” Proceedings of
the Ninth Data Communications Symposium, pp. 124–133, September 1985.

■ Giacopelli, J. N., et al. “Sunshine: A High-Performance Self-Routing Broad-
band Packet-Switched Architecture.” IEEE Journal of Selected Areas in Commu-
nications (JSAC) 9(8):1289–1298, October 1991.

■ McKeown, N. “The iSLIP Scheduling Algorithm for Input-Queued Switches.”
IEEE Transactions on Networking 7(2):188–201, April 1999.

A good general overview of bridges can be found in another work by Perlman
[Per00]. For a detailed description of many aspects of ATM, with a focus on building
real networks, we recommend the book by Ginsburg [Gin99], even though the world
has moved on somewhat since its publication. Also, as one of the key ATM standards-
setting bodies, the ATM Forum, now part of the MFA Forum, produced many of the
specifications for ATM; the User Network Interface (UNI) specification, version 4.1, is
the most recent at the time of this writing. (See the live reference below.)

There have been literally thousands of papers published on switch architectures.
One early paper that explains Batcher networks well is, not surprisingly, one by Batcher
himself [Bat68]. Sorting networks are explained by Drysdale and Young [DY75], and
an interesting form of crossbar switch is described by Yeh et al. [YHA87]. A survey of
ATM switch architectures appears in Partridge [Par94], and a good overview of the per-
formance of different switching fabrics can be found in Robertazzi [Rob93]. An example
of the design of a switch based on variable-length packets can be found in Gopal and
Guerin [GG94].

Optical networking is a rich field in its own right, with its own journals, confer-
ences, and so on. We recommend Ramaswami and Sivarajan [RS01] as a good introduc-
tory text in that field.
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An excellent text to read if you want to learn about the mathematical analysis of
network performance is by Kleinrock [Kle75], one of the pioneers of the ARPANET.
Many papers have been published on the applications of queuing theory to packet
switching. We recommend the article by Paxson and Floyd [PF94] as a significant con-
tribution focused on the Internet, and one by Leland et al. [LTWW94], a paper that in-
troduces the important concept of “long-range dependence” and shows the inadequacy
of many traditional approaches to traffic modeling.

Finally, we recommend the following live references:

■ http://www.metroethernetforum.com: The home page of the Metro
Ethernet Forum, which promotes the use of Ethernet as a Metropolitan Area
Network technology.

■ http://www.mfaforum.org: The organization that promotes Frame Relay,
ATM, and MPLS; the site contains tutorials and specifications on all these
switching technologies.

E X E R C I S E S
1 Using the example network given in Figure 3.30, give the virtual circuit ta-

bles for all the switches after each of the following connections is established.
Assume that the sequence of connections is cumulative, that is, the first con-
nection is still up when the second connection is established, and so on. Also
assume that the VCI assignment always picks the lowest unused VCI on each
link, starting with 0.

(a) Host A connects to host B.

(b) Host C connects to host G.

(c) Host E connects to host I.

(d) Host D connects to host B.

(e) Host F connects to host J.

(f ) Host H connects to host A.

✓ 2 Using the example network given in Figure 3.30, give the virtual circuit ta-
bles for all the switches after each of the following connections is established.
Assume that the sequence of connections is cumulative, that is, the first con-
nection is still up when the second connection is established, and so on. Also
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Figure 3.30 Example network for Exercises 1 and 2.

assume that the VCI assignment always picks the lowest unused VCI on each
link, starting with 0.

(a) Host D connects to host H.

(b) Host B connects to host G.

(c) Host F connects to host A.

(d) Host H connects to host C.

(e) Host I connects to host E.

(f ) Host H connects to host J.

3 For the network given in Figure 3.31, give the datagram forwarding table for
each node. The links are labeled with relative costs; your tables should forward
each packet via the lowest-cost path to its destination.

4 Give forwarding tables for switches S1–S4 in Figure 3.32. Each switch should
have a “default” routing entry, chosen to forward packets with unrecognized
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Figure 3.31 Network for Exercise 3.

Figure 3.32 Diagram for Exercise 4.

Figure 3.33 Diagram for Exercise 5.

destination addresses toward OUT. Any specific-destination table entries du-
plicated by the default entry should then be eliminated.

5 Consider the virtual circuit switches in Figure 3.33. Table 3.6 lists, for each
switch, what 〈port, VCI〉 (or 〈VCI, interface〉) pairs are connected to other.
Connections are bidirectional. List all endpoint-to-endpoint connections.

6 In the source routing example of Section 3.1.3, the address received by B is
not reversible and doesn’t help B know how to reach A. Propose a modification
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Switch S1

Port VCI Port VCI

1 2 3 1

1 1 2 3

2 1 3 2

Switch S2

Port VCI Port VCI

1 1 3 3

1 2 3 2

Switch S3

Port VCI Port VCI

1 3 2 1

1 2 3 1

Table 3.6 VCI tables for switches in Figure 3.33 (Exercise 5).

to the delivery mechanism that does allow for reversibility. Your mechanism
should not require giving all switches globally unique names.

7 Propose a mechanism that virtual circuit switches might use so that if one
switch loses all its state regarding connections, then a sender of packets along a
path through that switch is informed of the failure.

8 Propose a mechanism that might be used by datagram switches so that if one
switch loses all or part of its forwarding table, affected senders are informed of
the failure.

9 The virtual circuit mechanism described in Section 3.1.2 assumes that each
link is point-to-point. Extend the forwarding algorithm to work in the case
that links are shared-media connections, for example, Ethernet.

10 Suppose, in Figure 3.4, that a new link has been added, connecting switch 3
port 1 (where G is now) and switch 1 port 0 (where D is now); neither switch
is “informed” of this link. Furthermore, switch 3 mistakenly thinks that host B
is reached via port 1.

(a) What happens if host A attempts to send to host B, using datagram for-
warding?

(b) What happens if host A attempts to connect to host B, using the virtual
circuit setup mechanism discussed in the text?

11 Give an example of a working virtual circuit whose path traverses some link
twice. Packets sent along this path should not, however, circulate indefinitely.

12 In Section 3.1.2, each switch chose the VCI value for the incoming link. Show
that it is also possible for each switch to choose the VCI value for the outbound
link, and that the same VCI values will be chosen by each approach. If each
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Figure 3.34 Network for Exercises 13 and 14.

switch chooses the outbound VCI, is it still necessary to wait one RTT before
data is sent?

13 Given the extended LAN shown in Figure 3.34, indicate which ports are not
selected by the spanning tree algorithm.

✓ 14 Given the extended LAN shown in Figure 3.34, assume that bridge B1 suffers
catastrophic failure. Indicate which ports are not selected by the spanning tree
algorithm after the recovery process and a new tree has been formed.

15 Consider the arrangement of learning bridges shown in Figure 3.35. Assuming
all are initially empty, give the forwarding tables for each of the bridges B1–B4
after the following transmissions:

■ A sends to C.

■ C sends to A.

■ D sends to C.

Identify ports with the unique neighbor reached directly from that port, that
is, the ports for B1 are to be labeled “A” and “B2.”
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Figure 3.35 Network for Exercises 15 and 16.

Figure 3.36 Diagram for Exercise 17.

✓ 16 As in the previous problem, consider the arrangement of learning bridges
shown in Figure 3.35. Assuming all are initially empty, give the forwarding
tables for each of the bridges B1–B4 after the following transmissions:

■ D sends to C.

■ C sends to D.

■ A sends to C.

17 Consider hosts X, Y, Z, W and learning bridges B1, B2, B3, with initially
empty forwarding tables, as in Figure 3.36.

(a) Suppose X sends to Z. Which bridges learn where X is? Does Y’s network
interface see this packet?

(b) Suppose Z now sends to X. Which bridges learn where Z is? Does Y’s
network interface see this packet?
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Figure 3.37 Extended LAN for Exercise 18.

Figure 3.38 Loop for Exercises 19 and 20.

,

(c) Suppose Y now sends to X. Which bridges learn where Y is? Does Z’s net-
work interface see this packet?

(d) Finally, suppose Z sends to Y. Which bridges learn where Z is? Does W’s
network interface see this packet?

18 Give the spanning tree generated for the extended LAN shown in Figure 3.37,
and discuss how any ties are resolved.

19 Suppose two learning bridges B1 and B2 form a loop as shown in Figure 3.38,
and do not implement the spanning tree algorithm. Each bridge maintains a
single table of 〈address, interface〉 pairs.

(a) What will happen if M sends to L?

(b) Suppose a short while later L replies to M. Give a sequence of events that
leads to one packet from M and one packet from L circling the loop in
opposite directions.

20 Suppose that M in Figure 3.38 sends to itself (this normally would never hap-
pen). State what would happen, assuming
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(a) The bridges’ learning algorithm is to install (or update) the new 〈sourcead-
dress, interface〉 entry before searching the table for the destination address.

(b) The new source address was installed after destination address lookup.

21 Consider the extended LAN of Figure 3.12. What happens in the spanning
tree algorithm if bridge B1 does not participate and

(a) Simply forwards all spanning tree algorithm messages?

(b) Drops all spanning tree messages?

22 Suppose some repeaters (hubs), rather than bridges, are connected into a loop.

(a) What will happen when somebody transmits?

(b) Why would the spanning tree mechanism be difficult or impossible to
implement for repeaters?

(c) Propose a mechanism by which repeaters might detect loops and shut down
some ports to break the loop. Your solution is not required to work 100%
of the time.

23 Suppose a bridge has two of its ports on the same network. How might the
bridge detect and correct this?

24 What percentage of an ATM link’s total bandwidth is consumed by the ATM
cell headers? What percentage of the total bandwidth is consumed by all non-
payload bits in AAL3/4 and AAL5, when the user data is 512 bytes long?

25 Explain why AAL3/4 will not detect the loss of 16 consecutive cells of a single
PDU.

26 The IP datagram for a TCP ACK message is 40 bytes long: it contains 20 bytes
of TCP header and 20 bytes of IP header. Assume that this ACK is traversing
an ATM network that uses AAL5 to encapsulate IP packets. How many ATM
packets will it take to carry the ACK? What if AAL3/4 is used instead?

27 The CS-PDU for AAL5 contains up to 47 bytes of padding, while the AAL3/4
CS-PDU only contains up to 3 bytes of padding. Explain why the effective
bandwidth of AAL5 is always the same as, or higher than, that of AAL3/4,
given a PDU of a particular size.
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28 How reliable does an ATM connection have to be in order to maintain a loss
rate of less than one per million for a higher-level PDU of size 20 cells? Assume
AAL5.

29 Assuming the 20-cell AAL5 packet from the previous problem, suppose a final
cell is tacked on the end of the PDU, and that this cell is the XOR of all the
previous cells in the PDU. This allows recovery from any one lost cell. What
cell loss rate now would yield a net one-per-million loss rate for 20 data-cell
PDUs?

★ 30 Recall that AAL3/4 has a CRC-10 checksum at the end of each cell, while
AAL5 has a single CRC-32 checksum at the end of the PDU. If a PDU is
carried in 12 AAL3/4 cells, then AAL3/4 devotes nearly four times as many
bits to error detection as AAL5.

(a) Suppose errors are known to come in bursts, where each burst is small
enough to be confined to a single cell. Find the probability that AAL3/4
fails to detect an error, given that it is known that exactly two cells are
affected. Do the same for three cells. Under these conditions is AAL3/4
more or less reliable than AAL5? Assume that an N -bit CRC fails to detect
an error with probability 1/2N (which is strictly true only when all errors
are equally likely).

(b) Can you think of any error distribution in which the AAL3/4 would be
more likely than AAL5 to detect an error? Do you think such circumstances
are likely?

31 Cell switching methods essentially always use virtual circuit routing rather than
datagram routing. Give a specific argument why this is so.

32 Suppose a workstation has an I/O bus speed of 800 Mbps and memory band-
width of 2 Gbps. Assuming DMA in and out of main memory, how many
interfaces to 45-Mbps T3 links could a switch based on this workstation
handle?

✓ 33 Suppose a workstation has an I/O bus speed of 1 Gbps and memory bandwidth
of 2 Gbps. Assuming DMA in and out of main memory, how many interfaces
to 45 Mbps T3 links could a switch based on this workstation handle?

34 Suppose a switch can forward packets at a rate of 100,000 per second, regard-
less (within limits) of size. Assuming the workstation parameters described in
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the previous problem, at what packet size would the bus bandwidth become
the limiting factor?

35 Suppose that a switch is designed to have both input and output FIFO buffer-
ing. As packets arrive on an input port they are inserted at the tail of the FIFO.
The switch then tries to forward the packets at the head of each FIFO to the
tail of the appropriate output FIFO.

(a) Explain under what circumstances such a switch can lose a packet destined
for an output port whose FIFO is empty.

(b) What is this behavior called?

(c) Assume that the FIFO buffering memory can be redistributed freely. Sug-
gest a reshuffling of the buffers that avoids the above problem, and explain
why it does so.

★ 36 A stage of an n×n banyan network consists of (n/2) 2×2 switching elements.
The first stage directs packets to the correct half of the network, the next stage
to the correct quarter, and so on, until the packet is routed to the correct out-
put. Derive an expression for the number of 2 × 2 switching elements needed
to make an n × n banyan network. Verify your answer for n = 8.

★ 37 Describe how a Batcher network works. (See the Further Reading section.)
Explain how a Batcher network can be used in combination with a banyan
network to build a switching fabric.

38 An Ethernet switch is simply a bridge that has the ability to forward some
number of packets in parallel, assuming the input and output ports are all dis-
tinct. Supposes two such N -port switches, for a large value of N , are each able
to forward individually up to three packets in parallel. They are then connected
to one another in series by joining a pair of ports, one from each switch; the
joining link is the bottleneck as it can, of course, carry only one packet at a
time.

(a) Suppose we choose two connections through this combined switch at ran-
dom. What is the probability that both connections can be forwarded in
parallel? (Hint: This is the probability that at most one of the connections
crosses the link.)

(b) What if three connections are chosen at random?
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39 Suppose a 10-Mbps Ethernet hub (repeater) is replaced by a 10-Mbps switch,
in an environment where all traffic is between a single server and N “clients.”
Because all traffic must still traverse the server-switch link, nominally there is
no improvement in bandwidth.

(a) Would you expect any improvement in bandwidth? If so, why? Hint: See
Exercises 43 and 44 in Chapter 2.

(b) What would your answer be if the original hub were token ring rather than
Ethernet?

(c) What other advantages and drawbacks might a switch offer versus a hub?
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Every seeming equality conceals a hierarchy.

—Mason Cooley

e have now seen how to build a single network using point-to-point links,Wshared media, and switches. The problem is that lots of people have built
networks with these various technologies and they all want to be able to

communicate with each other, not just with the other users of a single network. This
chapter is about the problem of interconnecting different networks.

P R O B L E M

There Is More Than One
Network

There are two important prob-
lems that must be addressed when
connecting networks: heterogeneity and
scale. Simply stated, the problem of
heterogeneity is that users on one type
of network want to be able to com-
municate with users on other types of

networks. To further complicate matters, establishing connectivity between hosts on two
different networks may require traversing several other networks in between, each of
which may be of yet another type. These different networks may be Ethernets, token
rings, point-to-point links, or switched networks of various kinds, and each of them is
likely to have its own addressing scheme, media access protocols, service model, and so
on. The challenge of heterogeneity is to provide a useful and fairly predictable host-to-
host service over this hodgepodge of different networks. To understand the problem of
scaling, it is worth considering the growth of the Internet, which has roughly doubled in
size each year for 20 years. This sort of growth forces us to face a number of challenges.
One of these is routing : How can you find an efficient path through a network with mil-
lions, or perhaps billions, of nodes? Closely related to this is the problem of addressing,
the task of providing suitable identifiers for all those nodes.

This chapter looks at a series of approaches to interconnecting networks, and the
problems that must be solved. In doing so, we trace the evolution of the TCP/IP Internet
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4
in an effort to understand the problems of heterogeneity and scale
in detail, along with the general techniques that can be applied to
them.

The first section introduces the Internet Protocol (IP) and
shows how it can be used to build a scalable, heterogeneous inter-
network. This section includes a discussion of the Internet’s ser-
vice model, which is the key to its ability to handle heterogeneity.
It also describes how the Internet’s hierarchical addressing scheme
has helped the Internet to scale to a relatively large size.

A central aspect of building large heterogeneous internet-
works is the problem of finding efficient, loop-free paths through
the constituent networks. The second section introduces the prin-
ciples of routing and explores the scaling issues of routing proto-
cols, using some of the Internet’s routing protocols as examples.

The third section discusses several of the problems (growing
pains) that the Internet has experienced over the past several years
and introduces a variety of techniques that have been employed to
address these problems. The experience gained from using these
techniques has led to the design of a new version of IP, which is
IP version 6 (IPv6). Throughout all these discussions, we see the
importance of hierarchy in building scalable networks.

The chapter concludes by considering a pair of significant
enhancements to the Internet’s capabilities. The first, multicast,
is an enhancement of the basic service model. We show how
multicast—the ability to deliver the same packets to a group of
receivers efficiently—can be incorporated into an internet, and
we describe several of the routing protocols that have been devel-
oped to support multicast. The second enhancement, multiproto-
col label switching (MPLS), modifies the forwarding mechanism
of IP networks. This modification has enabled some changes in
the way IP routing is performed and in the services offered by IP
networks.
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4.1 Simple Internetworking (IP)
In the previous chapter, we saw that it was possible to build reasonably large LANs us-
ing bridges and LAN switches, but that such approaches were limited in their ability to
scale and to handle heterogeneity. In this chapter, we explore some ways to go beyond
the limitations of bridged networks, enabling us to build large, highly heterogeneous
networks with reasonably efficient routing. We refer to such networks as internetworks.
In the following sections, we make a steady progression toward larger and larger inter-
networks. We start with the basic functionality of the currently deployed version of the
Internet Protocol (IP), and then we examine various techniques that have been developed
to extend the scalability of the Internet in Section 4.3. This discussion culminates with a
description of IP version 6 (IPv6), also known as the next generation IP. Before delving
into the details of an internetworking protocol, however, let’s consider more carefully
what the word “internetwork” means.

4.1.1 What Is an Internetwork?
We use the term “internetwork,” or sometimes just “internet” with a lowercase i, to refer
to an arbitrary collection of networks interconnected to provide some sort of host-to-
host packet delivery service. For example, a corporation with many sites might construct
a private internetwork by interconnecting the LANs at their different sites with point-
to-point links leased from the phone company. When we are talking about the widely
used, global internetwork to which a large percentage of networks are now connected, we
call it the “Internet” with a capital I . In keeping with the first-principles approach of this
book, we mainly want you to learn about the principles of “lowercase i” internetworking,
but we illustrate these ideas with real-world examples from the “big I” Internet.

Another piece of terminology that can be confusing is the difference between net-
works, subnetworks, and internetworks. We are going to avoid subnetworks (or subnets)
altogether until Section 4.3. For now, we use network to mean either a directly con-
nected or a switched network of the kind that was discussed in the last two chapters.
Such a network uses one technology, such as 802.5, Ethernet, or ATM. An internetwork
is an interconnected collection of such networks. Sometimes, to avoid ambiguity, we
refer to the underlying networks that we are interconnecting as physical networks. An in-
ternet is a logical network built out of a collection of physical networks. In this context, a
collection of Ethernets connected by bridges or switches would still be viewed as a single
network.

Figure 4.1 shows an example internetwork. An internetwork is often referred to as
a network of networks because it is made up of lots of smaller networks. In this figure,
we see Ethernets, an FDDI ring, and a point-to-point link. Each of these is a single-
technology network. The nodes that interconnect the networks are called routers. They
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Figure 4.1 A simple internetwork. Hn = host; Rn = router.

are also sometimes called gateways, but since this term has several other connotations, we
restrict our usage to router.

The Internet Protocol is the key tool used today to build scalable, heterogeneous
internetworks. It was originally known as the Kahn-Cerf protocol after its inventors.1

One way to think of IP is that it runs on all the nodes (both hosts and routers) in a
collection of networks and defines the infrastructure that allows these nodes and net-
works to function as a single logical internetwork. For example, Figure 4.2 shows how
hosts H1 and H8 are logically connected by the internet in Figure 4.1, including the
protocol graph running on each node. Note that higher-level protocols, such as TCP
and UDP, typically run on top of IP on the hosts.

Most of the rest of this chapter is about various aspects of IP. While it is certainly
possible to build an internetwork that does not use IP—for example, Novell created
an internetworking protocol called IPX, which was in turn based on the XNS internet
designed by Xerox—IP is the most interesting case to study simply because of the size of
the Internet. Said another way, it is only the IP Internet that has really faced the issue of
scale, thus, it provides the best case study of a scalable internetworking protocol.

1Robert Kahn and Vint Cerf received the A.M. Turing award, often referred to as the Nobel Prize of computer science,
in 2005 for their efforts.
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Figure 4.2 A simple internetwork, showing the protocol layers used to connect H1 to

H8 in Figure 4.1. ETH is the protocol that runs over Ethernet.

4.1.2 Service Model
A good place to start when you build an internetwork is to define its service model, that
is, the host-to-host services you want to provide. The main concern in defining a service
model for an internetwork is that we can provide a host-to-host service only if this service
can somehow be provided over each of the underlying physical networks. For example,
it would be no good deciding that our internetwork service model was going to provide
guaranteed delivery of every packet in 1 ms or less if there were underlying network
technologies that could arbitrarily delay packets. The philosophy used in defining the
IP service model, therefore, was to make it undemanding enough that just about any
network technology that might turn up in an internetwork would be able to provide the
necessary service.

The IP service model can be thought of as having two parts: an addressing scheme,
which provides a way to identify all hosts in the internetwork, and a datagram (con-
nectionless) model of data delivery. This service model is sometimes called best effort
because, although IP makes every effort to deliver datagrams, it makes no guarantees.
We postpone a discussion of the addressing scheme for now and look first at the data
delivery model.

Datagram Delivery

The IP datagram is fundamental to the Internet Protocol. Recall from Section 3.1.1 that
a datagram is a type of packet that happens to be sent in a connectionless manner over
a network. Every datagram carries enough information to let the network forward the
packet to its correct destination; there is no need for any advance setup mechanism to
tell the network what to do when the packet arrives. You just send it, and the network
makes its best effort to get it to the desired destination. The “best-effort” part means that
if something goes wrong and the packet gets lost, corrupted, misdelivered, or in any way
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fails to reach its intended destination, the network does nothing—it made its best effort,
and that is all it has to do. It does not make any attempt to recover from the failure. This
is sometimes called an unreliable service.

Best-effort, connectionless service is about the simplest service you could ask for
from an internetwork, and this is a great strength. For example, if you provide best-effort
service over a network that provides a reliable service, then that’s fine—you end up with
a best-effort service that just happens to always deliver the packets. If, on the other hand,
you had a reliable service model over an unreliable network, you would have to put lots
of extra functionality into the routers to make up for the deficiencies of the underlying
network. Keeping the routers as simple as possible was one of the original design goals
of IP.

The ability of IP to “run over anything” is frequently cited as one of its most
important characteristics. It is noteworthy that many of the technologies over which IP
runs today did not exist when IP was invented. So far, no networking technology has
been invented that has proven too bizarre for IP; it has even been claimed that IP can
run over a network that transports messages using carrier pigeons.

Best-effort delivery does not just mean that packets can get lost. Sometimes they
can get delivered out of order, and sometimes the same packet can get delivered more
than once. The higher-level protocols or applications that run above IP need to be aware
of all these possible failure modes.

Packet Format

Clearly, a key part of the IP service model is the type of packets that can be carried. The
IP datagram, like most packets, consists of a header followed by a number of bytes of
data. The format of the header is shown in Figure 4.3. Note that we have adopted a
different style of representing packets than the one we used in previous chapters. This is
because packet formats at the internetworking layer and above, where we will be focusing
our attention for the next few chapters, are almost invariably designed to align on 32-bit
boundaries to simplify the task of processing them in software. Thus, the common way
of representing them (used in Internet Requests for Comments, for example) is to draw
them as a succession of 32-bit words. The top word is the one transmitted first, and the
leftmost byte of each word is the one transmitted first. In this representation, you can
easily recognize fields that are a multiple of 8 bits long. On the odd occasion when fields
are not an even multiple of 8 bits, you can determine the field lengths by looking at the
bit positions marked at the top of the packet.

Looking at each field in the IP header, we see that the “simple” model of best-effort
datagram delivery still has some subtle features. The Version field specifies the version
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Figure 4.3 IPv4 packet header.

of IP. The current version of IP is 4, and it is sometimes called IPv4.2 Observe that
putting this field right at the start of the datagram makes it easy for everything else in
the packet format to be redefined in subsequent versions; the header processing software
starts off by looking at the version and then branches off to process the rest of the packet
according to the appropriate format. The next field, HLen, specifies the length of the
header in 32-bit words. When there are no options, which is most of the time, the header
is 5 words (20 bytes) long. The 8-bit type of service (TOS) field has had a number of
different definitions over the years, but its basic function is to allow packets to be treated
differently based on application needs. For example, the TOS value might determine
whether or not a packet should be placed in a special queue that receives low delay. We
discuss the use of this field (and a new name for it) in more detail in Section 6.5.3.

The next 16 bits of the header contain the Length of the datagram, including the
header. Unlike the HLen field, the Length field counts bytes rather than words. Thus,
the maximum size of an IP datagram is 65,535 bytes. The physical network over which
IP is running, however, may not support such long packets. For this reason, IP supports a
fragmentation and reassembly process. The second word of the header contains informa-
tion about fragmentation, and the details of its use are presented under “Fragmentation
and Reassembly” below.

Moving on to the third word of the header, the next byte is the time to live (TTL)
field. Its name reflects its historical meaning rather than the way it is commonly used

2The next major version of IP, which is discussed later in this chapter, has a new version number 6 and is known as IPv6.
The version number 5 was used for an experimental protocol called ST-II that was not widely used.
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today. The intent of the field is to catch packets that have been going around in routing
loops and discard them, rather than let them consume resources indefinitely. Originally,
TTL was set to a specific number of seconds that the packet would be allowed to live,
and routers along the path would decrement this field until it reached 0. However, since
it was rare for a packet to sit for as long as 1 second in a router, and routers did not
all have access to a common clock, most routers just decremented the TTL by 1 as they
forwarded the packet. Thus, it became more of a hop count than a timer, which is still
a perfectly good way to catch packets that are stuck in routing loops. One subtlety is
in the initial setting of this field by the sending host: Set it too high and packets could
circulate rather a lot before getting dropped; set it too low and they may not reach their
destination. The value 64 is the current default.

The Protocol field is simply a demultiplexing key that identifies the higher-level
protocol to which this IP packet should be passed. There are values defined for TCP (6),
UDP (17), and many other protocols that may sit above IP in the protocol graph.

The Checksum is calculated by considering the entire IP header as a sequence of
16-bit words, adding them up using ones complement arithmetic, and taking the ones
complement of the result. This is the IP checksum algorithm described in Section 2.4.
Thus, if any bit in the header is corrupted in transit, the checksum will not contain
the correct value upon receipt of the packet. Since a corrupted header may contain an
error in the destination address—and, as a result, may have been misdelivered—it makes
sense to discard any packet that fails the checksum. It should be noted that this type of
checksum does not have the same strong error detection properties as a CRC, but it is
much easier to calculate in software.

The last two required fields in the header are the SourceAddr and the Desti-
nationAddr for the packet. The latter is the key to datagram delivery: Every packet
contains a full address for its intended destination so that forwarding decisions can be
made at each router. The source address is required to allow recipients to decide if they
want to accept the packet and to enable them to reply. IP addresses are discussed in
Section 4.1.3—for now, the important thing to know is that IP defines its own global
address space, independent of whatever physical networks it runs over. As we will see,
this is one of the keys to supporting heterogeneity.

Finally, there may be a number of options at the end of the header. The pres-
ence or absence of options may be determined by examining the header length (HLen)
field. While options are used fairly rarely, a complete IP implementation must handle
them all.

Fragmentation and Reassembly

One of the problems of providing a uniform host-to-host service model over a hetero-
geneous collection of networks is that each network technology tends to have its own
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idea of how large a packet can be. For example, an Ethernet can accept packets up to
1,500 bytes long, while FDDI packets may be 4,500 bytes long. This leaves two choices
for the IP service model: make sure that all IP datagrams are small enough to fit inside
one packet on any network technology, or provide a means by which packets can be frag-
mented and reassembled when they are too big to go over a given network technology.
The latter turns out to be a good choice, especially when you consider the fact that new
network technologies are always turning up, and IP needs to run over all of them; this
would make it hard to pick a suitably small bound on datagram size. This also means
that a host will not send needlessly small packets, which wastes bandwidth and consumes
processing resources by requiring more headers per byte of data sent. For example, two
hosts connected to FDDI networks that are interconnected by a point-to-point link
would not need to send packets small enough to fit on an Ethernet.

The central idea here is that every network type has a maximum transmission unit
(MTU), which is the largest IP datagram that it can carry in a frame. Note that this value
is smaller than the largest packet size on that network because the IP datagram needs to
fit in the payload of the link-layer frame.3

When a host sends an IP datagram, therefore, it can choose any size that it wants.
A reasonable choice is the MTU of the network to which the host is directly attached.
Then, fragmentation will only be necessary if the path to the destination includes a
network with a smaller MTU. Should the transport protocol that sits on top of IP give
IP a packet larger than the local MTU, however, then the source host must fragment it.

Fragmentation typically occurs in a router when it receives a datagram that it wants
to forward over a network that has an MTU that is smaller than the received datagram.
To enable these fragments to be reassembled at the receiving host, they all carry the same
identifier in the Ident field. This identifier is chosen by the sending host and is intended
to be unique among all the datagrams that might arrive at the destination from this
source over some reasonable time period. Since all fragments of the original datagram
contain this identifier, the reassembling host will be able to recognize those fragments
that go together. Should all the fragments not arrive at the receiving host, the host gives
up on the reassembly process and discards the fragments that did arrive. IP does not
attempt to recover from missing fragments.

To see what this all means, consider what happens when host H1 sends a datagram
to host H8 in the example internet shown in Figure 4.1. Assuming that the MTU is
1,500 bytes for the two Ethernets, 4,500 bytes for the FDDI network, and 532 bytes
for the point-to-point network, then a 1,420-byte datagram (20-byte IP header plus
1,400 bytes of data) sent from H1 makes it across the first Ethernet and the FDDI
network without fragmentation but must be fragmented into three datagrams at router

3Note that in ATM networks, the “frame” is the CS-PDU, not the ATM cell; the fact that CS-PDUs get segmented into
cells is (fortunately) not visible to IP.
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Figure 4.4 IP datagrams traversing the sequence of physical networks graphed in

Figure 4.1.

R2. These three fragments are then forwarded by router R3 across the second Ethernet
to the destination host. This situation is illustrated in Figure 4.4. This figure also serves
to reinforce two important points:

1 Each fragment is itself a self-contained IP datagram that is transmitted over a
sequence of physical networks, independent of the other fragments;

2 Each IP datagram is reencapsulated for each physical network over which it
travels.

The fragmentation process can be understood in detail by looking at the header
fields of each datagram, as is done in Figure 4.5. The unfragmented packet, shown at the
top, has 1,400 bytes of data and a 20-byte IP header. When the packet arrives at router
R2, which has an MTU of 532 bytes, it has to be fragmented. A 532-byte MTU leaves
512 bytes for data after the 20-byte IP header, so the first fragment contains 512 bytes of
data. The router sets the M bit in the Flags field (see Figure 4.3), meaning that there are
more fragments to follow, and it sets the Offset to 0, since this fragment contains the
first part of the original datagram. The data carried in the second fragment starts with
the 513th byte of the original data, so the Offset field in this header is set to 64, which is
512 ÷ 8. Why the division by 8? Because the designers of IP decided that fragmentation
should always happen on 8-byte boundaries, which means that the Offset field counts
8-byte chunks, not bytes. (We leave it as an exercise for you to figure out why this design
decision was made.) The third fragment contains the last 376 bytes of data, and the offset
is now 2 × 512 ÷ 8 = 128. Since this is the last fragment, the M bit is not set.

Observe that the fragmentation process is done in such a way that it could
be repeated if a fragment arrived at another network with an even smaller MTU.
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Figure 4.5 Header fields used in IP fragmentation: (a) unfragmented packet;

(b) fragmented packets.

Fragmentation produces smaller, valid IP datagrams that can be readily reassembled into
the original datagram upon receipt, independent of the order of their arrival. Reassembly
is done at the receiving host and not at each router.

Implementation

We conclude this discussion of IP fragmentation and reassembly by giving a fragment of
code that performs reassembly. One reason we give this particular piece of code is that it
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is representative of a large proportion of networking software—it does little more than
tedious and unglamorous bookkeeping.

First, we define the key data structure (FragList) that is used to hold the individ-
ual fragments that arrive at the destination. Incoming fragments are saved in this data
structure until all the fragments in the original datagram have arrived, at which time they
are reassembled into a complete datagram and passed up to some higher-level protocol.
Note that each element in FragList contains either a fragment or a hole.

#define FRAGOFFMASK 0x1fff
#define FRAGOFFSET(fragflag) ((fragflag) & FRAGOFFMASK)
#define INFINITE_OFFSET 0xffff

/* structure to hold the fields that uniquely identify
fragments of the same IP datagram */

typedef struct fid {
IpHost source;
IpHost dest;
u_char prot;
u_char pad;
u_short ident;

} FragId;

typedef struct hole {
u_int first;
u_int last;

} Hole;

#define HOLE 1
#define FRAG 2

/* structure to hold a fragment or a hole */

typedef struct fragif {
u_char type;
union {

Hole hole;
Msg frag;

} u;
struct fragif *next, *prev;

} FragInfo;

/* structure to hold all the fragments and holes for a
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single IP datagram being reassembled */

typedef struct FragList {
u_short nholes;
FragInfo head; /* dummy header node */
Binding binding;
bool gcMark; /* garbage collection flag */

} FragList;

The reassembly routine, ipReassemble, takes an incoming datagram (dg) and
the IP header for that datagram (hdr) as arguments. The third argument, fragMap, is
a Map structure (which supports mapBind, mapRemove, and MapResolve op-
erations) used to efficiently map the incoming datagram into the appropriate FragList.
(Recall that the group of fragments that are being reassembled together are uniquely
identified by several fields in the IP header, as defined by structure FragId given above.)

The actual work done in ipReassemble is straightforward; as stated above, it
is mostly bookkeeping. First, the routine extracts the fields from the IP header that
uniquely identify the datagram to be reassembled, constructs a key from these fields,
and looks this key up in fragMap to find the appropriate FragList. If this is the first
fragment for the datagram, a new FragList must be created and initialized. Next, the
routine inserts the new fragment into this FragList. This involves comparing the sum
of the offset and length of this fragment with the offset of the next fragment in the list.
Some of this work is done in subroutine hole_create, which is given below. Finally,
ipReassemble checks to see if all the holes are filled. If all the fragments are present, it
calls the routine msgReassemble to actually reassemble the fragments into a whole
datagram and then calls deliver to pass this datagram up the protocol graph to some
high-level protocol identified as HLP.

ipReassemble(Msg *dg, IpHdr *hdr, Map fragMap)
{

FragId fragid;
FragList *list;
FragInfo *fi, *prev;
Hole *hole;
u_short offset, len;

/* extract fragmentation info from header
(offset and fragment length) */

offset = FRAGOFFSET(hdr->frag)*8;
len = hdr->dlen - GET_HLEN(hdr) * 4;

/* Create the unique id for this fragment */
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bzero((char *)&fragid, sizeof(FragId));
fragid.source = hdr->source;
fragid.dest = hdr->dest;
fragid.prot = hdr->prot;
fragid.ident = hdr->ident;

/* find reassembly list for this frag;
create one if none exists */

if (mapResolve( fragMap, &fragid, (void **)&list)
== FALSE )

{
/* first fragment of datagram -

need new FragList */
list = NEW(FragList);

/* insert it into the Map structure */
list->binding = mapBind( fragMap, &fragid, list );

/* initialize list with a single hole spanning
the whole datagram */

list->nholes = 1;
list->head.next = fi = NEW(FragInfo);
fi->next = 0;
fi->type = HOLE;
fi->u.hole.first = 0;
fi->u.hole.last = INFINITE_OFFSET;

}

/* mark the current FragList as ineligible
for garbage collection */

list->gcMark = FALSE;

/* walk through the FragList to find the right hole
for this frag */

prev = &list->head;
for ( fi = prev->next; fi != 0; prev = fi,

fi = fi->next )
{

if ( fi->type == FRAG )
{

continue;
}
hole = &fi->u.hole;
if ( (offset < hole->last) && ((offset + len)
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> hole->first) )
{

/* check to see if frag overlaps previously
received frags */

if ( offset < hole->first )
{

/* truncate message from left */
msgStripHdr(dg, hole->first - offset);
offset = hole->first;

}
if ( (offset + len) > hole->last )
{

/* truncate message from right */
msgTruncate(dg, hole->last - offset);
len = hole->last - offset;

}

/* now check to see if new hole(s)
need to be made */

if (((offset + len) < hole->last) &&
(hdr->frag & MOREFRAGMENTS))

{
/* creating new hole above */
hole_create(prev, fi, (offset+len),

hole->last);
list->nholes++;

}
if ( offset > hole->first )
{

/* creating new hole below */
hole_create(fi, fi->next, hole->first,

(offset));
list->nholes++;

}

/* change this FragInfo structure
to be FRAG */

list->nholes--;
fi->type = FRAG;
msgSaveCopy(&fi->u.frag, dg);
break;

} /* if found a hole */
} /* for loop */
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/* check to see if we’re done, and if so,
pass datagram up */

if ( list->nholes == 0 )
{

Msg fullMsg;

/* now have a full datagram */
for( fi = list->head.next; fi != 0;

fi = fi->next )
{

msgReassemble(&fullMsg, &fi->u.frag,
&fullMsg);

}

/* get rid of FragList and its Map entry */
mapRemove(fragMap, list->binding);
ipFreeFragList(list);
deliver(HLP, &fullMsg);
msgDestroy(&fullMsg);

}
return SUCCESS;

}

Subroutine hole_create creates a new hole in the fragment list that begins at
offset first and continues to offset last. It makes use of the utility NEW, which creates
an instance of the given structure.

static int
hole_create(FragInfo *prev, FragInfo *next,

u_int first, u_int last)
{

FragInfo *fi;

/* creating new hole from first to last */
fi = NEW(FragInfo);
fi->type = HOLE;
fi->u.hole.first = first;
fi->u.hole.last = last;
fi->next = next;
prev->next = fi;

}

Finally, note that these routines do not capture the entire picture of reassembly.
What is not shown is a background process that periodically checks to see if there has
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been any recent activity on this datagram (it looks at field gcMark), and if not, it deletes
the corresponding FragList. IP does not attempt to recover from the situation in which
one or more of the fragments does not arrive; it simply gives up and reclaims the memory
that was being used for reassembly.

One thing to notice from this code is that IP reassembly is far from a simple process.
Note, for example, that if a single fragment is lost, the receiver will still attempt to
reassemble the datagram, and it will eventually give up and have to garbage-collect the
resources that were used to perform the failed reassembly.4 For this reason, among others,
IP fragmentation is generally considered to avoid. Hosts are now strongly encouraged to
perform “path MTU discovery,” a process by which fragmentation is avoided by sending
packets that are small enough to traverse the link with the smallest MTU in the path
from sender to receiver.

4.1.3 Global Addresses
In the above discussion of the IP service model, we mentioned that one of the things that
it provides is an addressing scheme. After all, if you want to be able to send data to any
host on any network, there needs to be a way of identifying all the hosts. Thus, we need
a global addressing scheme—one in which no two hosts have the same address. Global
uniqueness is the first property that should be provided in an addressing scheme.

Ethernet addresses are globally unique, but that alone does not suffice for an ad-
dressing scheme in a large internetwork. Ethernet addresses are also flat, which means
that they have no structure and provide very few clues to routing protocols.5 In contrast,
IP addresses are hierarchical, by which we mean that they are made up of several parts
that correspond to some sort of hierarchy in the internetwork. Specifically, IP addresses
consist of two parts: a network part and a host part. This is a fairly logical structure for
an internetwork, which is made up of many interconnected networks. The network part
of an IP address identifies the network to which the host is attached; all hosts attached
to the same network have the same network part in their IP address. The host part then
identifies each host uniquely on that particular network. Thus, in the simple internet-
work of Figure 4.1, the addresses of the hosts on network 1, for example, would all have
the same network part and different host parts.

Note that the routers in Figure 4.1 are attached to two networks. They need to
have an address on each network, one for each interface. For example, router R1, which
sits between network 2 and network 3, has an IP address on the interface to network 2
that has the same network part as the hosts on network 2, and it has an IP address on the

4As we will see in Chapter 8, getting a host to tie up resources needlessly can be the basis of a denial-of-service attack.
5In fact, as we noted, Ethernet addresses do have a structure for the purposes of assignment—the first 24 bits identify the
manufacturer—but this provides no useful information to routing protocols since this structure has nothing to do with
network topology.
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Figure 4.6 IP addresses: (a) class A; (b) class B; (c) class C.

interface to network 3 that has the same network part as the hosts on network 3. Thus,
bearing in mind that a router might be implemented as a host with two network inter-
faces, it is more precise to think of IP addresses as belonging to interfaces than to hosts.

Now, what do these hierarchical addresses look like? Unlike some other forms of
hierarchical address, the sizes of the two parts are not the same for all addresses. Instead,
IP addresses are divided into three different classes, as shown in Figure 4.6, each of
which defines different-sized network and host parts. (There are also class D addresses
that specify a multicast group, discussed in Section 4.4, and class E addresses that are
currently unused.) In all cases, the address is 32 bits long.

The class of an IP address is identified in the most significant few bits. If the first
bit is 0, it is a class A address. If the first bit is 1 and the second is 0, it is a class B
address. If the first two bits are 1 and the third is 0, it is a class C address. Thus, of
the approximately 4 billion possible IP addresses, one-half are class A, one-quarter are
class B, and one-eighth are class C. Each class allocates a certain number of bits for the
network part of the address and the rest for the host part. Class A networks have 7 bits
for the network part and 24 bits for the host part, meaning that there can be only 126
class A networks (the values 0 and 127 are reserved), but each of them can accommodate
up to 224 − 2 (about 16 million) hosts (again, there are two reserved values). Class B
addresses allocate 14 bits for the network and 16 bits for the host, meaning that each
class B network has room for 65,534 hosts. Finally, class C addresses have only 8 bits for
the host and 21 for the network part. Therefore, a class C network can have only 256
unique host identifiers, which means only 254 attached hosts (one host identifier, 255,
is reserved for broadcast, and 0 is not a valid host number). However, the addressing
scheme supports 221 class C networks.

On the face of it, this addressing scheme has a lot of flexibility, allowing networks of
vastly different sizes to be accommodated fairly efficiently. The original idea was that the
Internet would consist of a small number of wide area networks (these would be class A
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networks), a modest number of site- (campus-) sized networks (these would be class B
networks), and a large number of LANs (these would be class C networks). However, as
we shall see in Section 4.3, additional flexibility has been needed, and some innovative
ways to provide it are now in use. Because one of these techniques actually removes the
distinction between address classes, the addressing scheme just described is now known
as “classful” addressing to distinguish it from the newer “classless” approach.

Before we look at how IP addresses get used, it is helpful to look at some practical
matters, such as how you write them down. By convention, IP addresses are written
as four decimal integers separated by dots. Each integer represents the decimal value
contained in 1 byte of the address, starting at the most significant. For example, the
address of the computer on which this sentence was typed is 171.69.210.245.

It is important not to confuse IP addresses with Internet domain names, which
are also hierarchical. Domain names tend to be ASCII strings separated by dots, such
as cs.princeton.edu. We will be talking about those in Section 9.1.3. The important
thing about IP addresses is that they are what is carried in the headers of IP packets, and
it is those addresses that are used in IP routers to make forwarding decisions.

4.1.4 Datagram Forwarding in IP
We are now ready to look at the basic mechanism by which IP routers forward data-
grams in an internetwork. Recall from Chapter 3 that forwarding is the process of taking
a packet from an input and sending it out on the appropriate output, while routing is
the process of building up the tables that allow the correct output for a packet to be de-
termined. The discussion here focuses on forwarding; we take up routing in Section 4.2.

The main points to bear in mind as we discuss the forwarding of IP datagrams are
the following:

■ Every IP datagram contains the IP address of the destination host;

■ The “network part” of an IP address uniquely identifies a single physical network
that is part of the larger Internet;

■ All hosts and routers that share the same network part of their address are con-
nected to the same physical network and can thus communicate with each other
by sending frames over that network;

■ Every physical network that is part of the Internet has at least one router that, by
definition, is also connected to at least one other physical network; this router
can exchange packets with hosts or routers on either network.

Forwarding IP datagrams can therefore be handled in the following way. A data-
gram is sent from a source host to a destination host, possibly passing through several
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routers along the way. Any node, whether it is a host or a router, first tries to establish
whether it is connected to the same physical network as the destination. To do this, it
compares the network part of the destination address with the network part of the ad-
dress of each of its network interfaces. (Hosts normally have only one interface, while
routers normally have two or more, since they are typically connected to two or more
networks.) If a match occurs, then that means that the destination lies on the same phys-
ical network as the interface, and the packet can be directly delivered over that network.
Section 4.1.5 explains some of the details of this process.

If the node is not connected to the same physical network as the destination node,
then it needs to send the datagram to a router. In general, each node will have a choice of
several routers, and so it needs to pick the best one, or at least one that has a reasonable
chance of getting the datagram closer to its destination. The router that it chooses is
known as the next hop router. The router finds the correct next hop by consulting its
forwarding table. The forwarding table is conceptually just a list of 〈NetworkNum,
NextHop〉 pairs. (As we will see below, forwarding tables in practice often contain some
additional information related to the next hop.) Normally, there is also a default router
that is used if none of the entries in the table match the destination’s network number.
For a host, it may be quite acceptable to have a default router and nothing else—this
means that all datagrams destined for hosts not on the physical network to which the
sending host is attached will be sent out through the default router.

We can describe the datagram forwarding algorithm in the following way:

if (NetworkNum of destination = NetworkNum of one of my interfaces) then
deliver packet to destination over that interface

else
if (NetworkNum of destination is in my forwarding table) then

deliver packet to NextHop route
else

deliver packet to default router

For a host with only one interface and only a default router in its forwarding table, this
simplifies to

if (NetworkNum of destination = my NetworkNum) then
deliver packet to destination directly

else
deliver packet to default router

Let’s see how this works in the example internetwork of Figure 4.1. First, sup-
pose that H1 wants to send a datagram to H2. Since they are on the same physical
network, H1 and H2 have the same network number in their IP address. Thus, H1
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deduces that it can deliver the datagram
directly to H2 over the Ethernet. The one
issue that needs to be resolved is how H1
finds out the correct Ethernet address for
H2—this is the address resolution mecha-
nism described in Section 4.1.5.

Now suppose H1 wants to send a
datagram to H8. Since these hosts are on
different physical networks, they have dif-
ferent network numbers, so H1 deduces
that it needs to send the datagram to a
router. R1 is the only choice—the default
router—so H1 sends the datagram over
the Ethernet to R1. Similarly, R1 knows
that it cannot deliver a datagram directly
to H8 because neither of R1’s interfaces
is on the same network as H8. Suppose
R1’s default router is R2; R1 then sends
the datagram to R2 over the token ring
network. Assuming R2 has the forward-
ing table shown in Table 4.1, it looks
up H8’s network number (network 1)
and forwards the datagram to R3. Fi-
nally, R3, since it is on the same network
as H8, forwards the datagram directly
to H8.

Note that it is possible to include the
information about directly connected net-
works in the forwarding table. For exam-
ple, we could label the network interfaces
of router R2 as interface 0 for the point-
to-point link (network 4) and interface 1

Bridges, Switches, and Routers

It is easy to become confused about
the distinction between bridges,
switches, and routers. There is good
reason for such confusion, since at
some level, they all forward messages
from one link to another. One distinc-
tion people make is based on layering:
Bridges are link-level nodes (they for-
ward frames from one link to another
to implement an extended LAN);
switches are network-level nodes (they
forward packets from one link to an-
other to implement a packet-switched
network); and routers are internet-
level nodes (they forward datagrams
from one network to another to im-
plement an internet).

The distinction between bridges
and switches is fast disappearing. For
example, we have already seen that a
multiport bridge is usually called an
Ethernet switch or LAN switch. For
this reason, bridges and switches are
often grouped together as layer 2 de-
vices, where layer 2 in this context
means “above the physical layer, below
the internet layer.”

There remain, however, some
important distinctions between
LAN switches (or bridges) and ATM

NetworkNum NextHop

1 R3

2 R1

Table 4.1 Example forwarding table for router R2 in Figure 4.1.
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NetworkNum NextHop

1 R3

2 R1

3 Interface 1

4 Interface 0

Table 4.2 Complete forwarding table for router R2 in Figure 4.1.

switches to learn the topology of the
whole network. This is an impor-
tant distinction because knowing the
whole network topology allows the
switches to discriminate among dif-
ferent routes, while in contrast, the
spanning tree algorithm locks in a sin-
gle tree over which messages are for-
warded. It is also the case that the
spanning tree approach does not scale
as well.

What about switches and
routers? Internally, they look quite
similar (as the section on router im-
plementation will illustrate). The key
distinction is the sort of packet they
forward: IP datagrams in the case of
routers, and layer 2 packets (Ethernet
frames or ATM cells) in the case of
switches.

One big difference between a
network built from switches and the
Internet built from routers is that
the Internet is able to accommo-
date heterogeneity, whereas switched
networks typically consists of ho-
mogeneous links. This support for

for the token ring (network 3). Then R2
would have the forwarding table shown in
Table 4.2.

Thus, for any network number that
R2 encounters in a packet, it knows what
to do. Either that network is directly con-
nected to R2, in which case the packet
can be delivered to its destination over that
network, or the network is reachable via
some next hop router that R2 can reach
over a network to which it is connected. In
either case, R2 will use ARP, described be-
low, to find the MAC address of the node
to which the packet is to be sent next.

The forwarding table used by R2 is
simple enough that it could be manually
configured. Usually, however, these tables
are more complex and would be built up
by running a routing protocol such as one
of those described in Section 4.2. Also note
that, in practice, the network numbers are
usually longer (e.g., 128.96).

We can now see how hierarchical
addressing—splitting the address into net-
work and host parts—has improved the
scalability of a large network. Routers now
contain forwarding tables that list only a
set of network numbers, rather than all
the nodes in the network. In our simple
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example, that meant that R2 could store
the information needed to reach all the
hosts in the network (of which there were
eight) in a four-entry table. Even if there
were 100 hosts on each physical net-
work, R2 would still only need those same
four entries. This is a good first step (al-
though by no means the last) in achieving
scalability.

heterogeneity is one of the key rea-
sons why the Internet is so widely de-
ployed. It is also the fact that IP runs
over virtually every other protocol (in-
cluding ATM and Ethernet) that now
causes those protocols to be viewed as
layer 2 technologies.

▲

This illustrates one of the most important principles of building scalable networks:
To achieve scalability, you need to reduce the amount of information that is stored in
each node and that is exchanged between nodes. The most common way to do that is
hierarchical aggregation. IP introduces a two-level hierarchy, with networks at the top
level and nodes at the bottom level. We have aggregated information by letting routers
deal only with reaching the right network; the information that a router needs to deliver
a datagram to any node on a given network is represented by a single aggregated piece of
information.

4.1.5 Address Translation (ARP)
In the previous section we talked about how to get IP datagrams to the right physical
network, but glossed over the issue of how to get a datagram to a particular host or
router on that network. The main issue is that IP datagrams contain IP addresses, but
the physical interface hardware on the host or router to which you want to send the
datagram only understands the addressing scheme of that particular network. Thus, we
need to translate the IP address to a link-level address that makes sense on this network
(e.g., a 48-bit Ethernet address). We can then encapsulate the IP datagram inside a frame
that contains that link-level address and send it either to the ultimate destination or to a
router that promises to forward the datagram toward the ultimate destination.

One simple way to map an IP address into a physical network address is to encode a
host’s physical address in the host part of its IP address. For example, a host with physical
address 00100001 01001001 (which has the decimal value 33 in the upper byte and
81 in the lower byte) might be given the IP address 128.96.33.81. While this solution
has been used on some networks, it is limited in that the network’s physical addresses can
be no more than 16 bits long in this example; they can be only 8 bits long on a class C
network. This clearly will not work for 48-bit Ethernet addresses.

A more general solution would be for each host to maintain a table of address pairs,
that is, the table would map IP addresses into physical addresses. While this table could
be centrally managed by a system administrator and then copied to each host on the
network, a better approach would be for each host to dynamically learn the contents
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of the table using the network. This can be accomplished using the Address Resolution
Protocol (ARP). The goal of ARP is to enable each host on a network to build up a table
of mappings between IP addresses and link-level addresses. Since these mappings may
change over time (e.g., because an Ethernet card in a host breaks and is replaced by a
new one with a new address), the entries are timed out periodically and removed. This
happens on the order of every 15 minutes. The set of mappings currently stored in a host
is known as the ARP cache or ARP table.

ARP takes advantage of the fact that many link-level network technologies, such as
Ethernet and token ring, support broadcast. If a host wants to send an IP datagram to a
host (or router) that it knows to be on the same network (i.e., the sending and receiving
node have the same IP network number), it first checks for a mapping in the cache. If no
mapping is found, it needs to invoke the Address Resolution Protocol over the network.
It does this by broadcasting an ARP query onto the network. This query contains the IP
address in question (the target IP address). Each host receives the query and checks to
see if it matches its IP address. If it does match, the host sends a response message that
contains its link-layer address back to the originator of the query. The originator adds
the information contained in this response to its ARP table.

The query message also includes the IP address and link-layer address of the send-
ing host. Thus, when a host broadcasts a query message, each host on the network can
learn the sender’s link-level and IP addresses and place that information in its ARP table.
However, not every host adds this information to its ARP table. If the host already has
an entry for that host in its table, it “refreshes” this entry, that is, it resets the length of
time until it discards the entry. If that host is the target of the query, then it adds the
information about the sender to its table, even if it did not already have an entry for that
host. This is because there is a good chance that the source host is about to send it an
application-level message, and it may eventually have to send a response or ACK back to
the source; it will need the source’s physical address to do this. If a host is not the target
and does not already have an entry for the source in its ARP table, then it does not add
an entry for the source. This is because there is no reason to believe that this host will
ever need the source’s link-level address; there is no need to clutter its ARP table with
this information.

Figure 4.7 shows the ARP packet format for IP-to-Ethernet address mappings. In
fact, ARP can be used for lots of other kinds of mappings—the major differences are in
the address sizes. In addition to the IP and link-layer addresses of both sender and target,
the packet contains

■ A HardwareType field, which specifies the type of physical network (e.g.,
Ethernet);

■ A ProtocolType field, which specifies the higher-layer protocol (e.g., IP);
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Figure 4.7 ARP packet format for mapping IP addresses into Ethernet addresses.

■ HLen (“hardware” address length) and PLen (“protocol” address length) fields,
which specify the length of the link-layer address and higher-layer protocol ad-
dress, respectively;

■ An Operation field, which specifies whether this is a request or a response;

■ The source and target hardware (Ethernet) and protocol (IP) addresses.

Note that the results of the ARP process can be added as an extra column in a
forwarding table like the one in Table 4.1. Thus, for example, when R2 needs to forward
a packet to network 2, it not only finds that the next hop is R1, but also finds the MAC
address to place on the packet to send it to R1.

ATMARP

It should be clear that if an ATM network is to operate as part of an IP internetwork, then
it too must provide a form of ARP. However, the procedure just described will clearly not
work on a simple ATM network, because it depends on the fact that ARP packets can
be broadcast to all hosts on a single network. One solution to this problem is to use the
LAN emulation procedures described in Section 3.3. Since the goal of these procedures is
to make an ATM network behave just like a shared-media LAN, which includes support
for broadcast, the effect is to reduce ARP to a previously solved problem.

There are, however, situations where it may not be desirable to treat an ATM net-
work as an emulated LAN. In particular, LAN emulation can be quite inefficient in a
large, wide area ATM network. Recall that in an emulated LAN many packets may need
to be sent to the broadcast and unknown server, which then floods those packets to
all nodes on the emulated LAN. Clearly there are limits to how far this can scale. The
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problem here is that adding broadcast capabilities to an intrinsically nonbroadcast net-
work, while useful in some circumstances, is really overkill if the only reason you need
broadcast is to enable address resolution.

For this reason, there is a different ARP procedure that may be used in an ATM
network and that does not depend on broadcast or LAN emulation. This procedure
is known as ATMARP, and is part of the classical IP over ATM model. The reason for
calling the model classical will become apparent shortly. Like LAN emulation, ATMARP
relies on the use of a server to resolve addresses—in this case, it is called an ARP server,
and its behavior is described below.

A key concept in the classical IP over ATM model is the logical IP subnet (LIS).
The LIS abstraction allows us to take one large ATM network and subdivide it into
several smaller subnets. (We define subnet precisely in Section 4.3.1, but in this case
a subnet behaves much like a single network.) All nodes on the same subnet have the
same IP network number. And just as in classical IP, two nodes (hosts or routers) that
are on the same subnet can communicate directly over the ATM network, whereas two
nodes that are on different subnets will have to communicate via one or more routers.
An example of an ATM network divided into two LISs appears in Figure 4.8. Note
that the IP address of host H1 has a network number of 10, as does the router in-
terface that connects to the left-hand LIS, while H2 has a network number of 12, as
does the right-hand interface on the router. That is, H1 and the router connect to the
same LIS (LIS 10) while H2 is on a different subnet (LIS 12) to which the router also
connects.

An advantage of the LIS model is that we can connect a large number of hosts and
routers to a big ATM network without necessarily giving them all addresses from the
same IP network. This may make it easier to manage address assignment, for example,
in the case where not all nodes connected to the ATM network are under the control of

Figure 4.8 Logical IP subnets.
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the same administrative entity. The division of the ATM network into a number of LISs
also improves scalability by limiting the number of nodes that must be supported by a
single ARP server.

The basic job of an ARP server is to enable nodes on a LIS to resolve IP addresses
to ATM addresses without using broadcast. Each node in the LIS must be configured
with the ATM address of the ARP server so that it can establish a VC to the server when
it boots. Once it has a VC to the server, the node sends a registration message to the
ARP server that contains both the IP and ATM addresses of the registering node. Thus,
the ARP server builds up a complete database of all the 〈IP address, ATM address〉
pairs. Once this is in place, any node that wants to send a packet to some IP address can
ask the ARP server to provide the corresponding ATM address. Once this is received, the
sending node can use ATM signalling to set up a VC to that ATM address, and then send
the packet. Just like conventional ARP, a cache of IP-to-ATM address mappings can be
maintained. In addition, the node can keep a VC established to that ATM destination as
long as there is enough traffic flowing to justify it, thus avoiding the delay of setting up
the VC again when the next packet arrives.

An interesting consequence of the classical IP over ATM model is that two nodes
on the same ATM network cannot establish a direct VC between themselves if they are
on different subnets. This would violate the rule that communication from one subnet
to another must pass through a router. For example, host H1 and host H2 in Figure 4.8
cannot establish a direct VC under the classical model. Instead, each needs to have a VC
to router R. The simple explanation for this rule is that IP routing is known to work well
when that rule is obeyed, as it is in non-ATM networks. New techniques to work around
that rule have been developed, but they have introduced considerable complexity and
problems of robustness.▲

We have now seen the basic mechanisms that IP provides for dealing with both
heterogeneity and scale. On the issue of heterogeneity, IP begins by defining a best-effort
service model that makes minimal assumptions about the underlying networks; most no-
tably, this service model is based on unreliable datagrams. IP then makes two important
additions to this starting point: (1) a common packet format (fragmentation/reassembly
is the mechanism that makes this format work over networks with different MTUs), and
(2) a global address space for identifying all hosts (ARP is the mechanism that makes this
global address space work over networks with different physical addressing schemes). On
the issue of scale, IP uses hierarchical aggregation to reduce the amount of information
needed to forward packets. Specifically, IP addresses are partitioned into network and
host components, with packets first routed toward the destination network and then
delivered to the correct host on that network.
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4.1.6 Host Configuration (DHCP)
In Section 2.6 we observed that Ethernet addresses are configured into the network adap-
tor by the manufacturer, and this process is managed in such a way to ensure that these
addresses are globally unique. This is clearly a sufficient condition to ensure that any col-
lection of hosts connected to a single Ethernet (including an extended LAN) will have
unique addresses. Furthermore, uniqueness is all we ask of Ethernet addresses.

IP addresses, by contrast, must be not only unique on a given internetwork, but also
must reflect the structure of the internetwork. As noted above, they contain a network
part and a host part, and the network part must be the same for all hosts on the same
network. Thus, it is not possible for the IP address to be configured once into a host
when it is manufactured, since that would imply that the manufacturer knew which
hosts were going to end up on which networks, and it would mean that a host, once
connected to one network, could never move to another. For this reason, IP addresses
need to be reconfigurable.

In addition to an IP address, there are some other pieces of information a host needs
to have before it can start sending packets. The most notable of these is the address of a
default router—the place to which it can send packets whose destination address is not
on the same network as the sending host.

Most host operating systems provide a way for a system administrator, or even a
user, to manually configure the IP information needed by a host. However, there are
some obvious drawbacks to such manual configuration. One is that it is simply a lot of
work to configure all the hosts in a large network directly, especially when you consider
that such hosts are not reachable over a network until they are configured. Even more
importantly, the configuration process is very error-prone, since it is necessary to ensure
that every host gets the correct network number and that no two hosts receive the same IP
address. For these reasons, automated configuration methods are required. The primary
method uses a protocol known as the Dynamic Host Configuration Protocol (DHCP).

DHCP relies on the existence of a DHCP server that is responsible for providing
configuration information to hosts. There is at least one DHCP server for an adminis-
trative domain. At the simplest level, the DHCP server can function just as a centralized
repository for host configuration information. Consider, for example, the problem of ad-
ministering addresses in the internetwork of a large company. DHCP saves the network
administrators from having to walk around to every host in the company with a list of
addresses and network map in hand and configuring each host manually. Instead, the
configuration information for each host could be stored in the DHCP server and auto-
matically retrieved by each host when it is booted or connected to the network. However,
the administrator would still pick the address that each host is to receive; he would just
store that in the server. In this model, the configuration information for each host is
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stored in a table that is indexed by some form of unique client identifier, typically the
hardware address (e.g., the Ethernet address of its network adaptor).

A more sophisticated use of DHCP saves the network administrator from even
having to assign addresses to individual hosts. In this model, the DHCP server maintains
a pool of available addresses that it hands out to hosts on demand. This considerably
reduces the amount of configuration an administrator must do, since now it is only
necessary to allocate a range of IP addresses (all with the same network number) to each
network.

Since the goal of DHCP is to minimize the amount of manual configuration re-
quired for a host to function, it would rather defeat the purpose if each host had to be
configured with the address of a DHCP server. Thus, the first problem faced by DHCP
is that of server discovery.

To contact a DHCP server, a newly booted or attached host sends a DHCPDIS-
COVER message to a special IP address (255.255.255.255) that is an IP broadcast ad-
dress. This means it will be received by all hosts and routers on that network. (Routers
do not forward such packets onto other networks, preventing broadcast to the entire
Internet.) In the simplest case, one of these nodes is the DHCP server for the network.
The server would then reply to the host that generated the discovery message (all the
other nodes would ignore it). However, it is not really desirable to require one DHCP
server on every network, because this still creates a potentially large number of servers
that need to be correctly and consistently configured. Thus, DHCP uses the concept of
a relay agent. There is at least one relay agent on each network, and it is configured with
just one piece of information: the IP address of the DHCP server. When a relay agent
receives a DHCPDISCOVER message, it unicasts it to the DHCP server and awaits the
response, which it will then send back to the requesting client. The process of relaying a
message from a host to a remote DHCP server is shown in Figure 4.9.

Figure 4.10 shows the format of a DHCP message. The message is actually sent
using a protocol called the User Datagram Protocol (UDP) that runs over IP. UDP is
discussed in detail in the next chapter, but the only interesting thing it does in this
context is to provide a demultiplexing key that says, “This is a DHCP packet.”

DHCP is derived from an earlier protocol called BOOTP, and some of the packet
fields are thus not strictly relevant to host configuration. When trying to obtain config-
uration information, the client puts its hardware address (e.g., its Ethernet address) in
the chaddr field. The DHCP server replies by filling in the yiaddr (“your” IP address)
field and sending it to the client. Other information such as the default router to be used
by this client can be included in the options field.

In the case where DHCP dynamically assigns IP addresses to hosts, it is clear that
hosts cannot keep addresses indefinitely, as this would eventually cause the server to
exhaust its address pool. At the same time, a host cannot be depended upon to give
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Figure 4.9 A DHCP relay agent receives a broadcast DHCPDISCOVER message from a

host and sends a unicast DHCPDISCOVER to the DHCP server.

Figure 4.10 DHCP packet format.

back its address, since it might have crashed, been unplugged from the network, or been
turned off. Thus, DHCP allows addresses to be “leased” for some period of time. Once
the lease expires, the server is free to return that address to its pool. A host with a leased
address clearly needs to renew the lease periodically if in fact it is still connected to the
network and functioning correctly.▲

DHCP illustrates an important aspect of scaling: the scaling of network manage-
ment. While discussions of scaling often focus on keeping the state in network devices
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from growing too fast, it is important to pay attention to growth of network manage-
ment complexity. By allowing network managers to configure a range of IP addresses per
network rather than one IP address per host, DHCP improves the manageability of a
network.

Note that DHCP may also introduce some more complexity into network man-
agement, since it makes the binding between physical hosts and IP addresses much more
dynamic. This may make the network manager’s job more difficult if, for example, it
becomes necessary to locate a malfunctioning host.

4.1.7 Error Reporting (ICMP)
The next issue is how the Internet treats errors. While IP is perfectly willing to drop
datagrams when the going gets tough—for example, when a router does not know how
to forward the datagram or when one fragment of a datagram fails to arrive at the
destination—it does not necessarily fail silently. IP is always configured with a com-
panion protocol, known as the Internet Control Message Protocol (ICMP), that defines
a collection of error messages that are sent back to the source host whenever a router or
host is unable to process an IP datagram successfully. For example, ICMP defines error
messages indicating that the destination host is unreachable (perhaps due to a link fail-
ure), that the reassembly process failed, that the TTL had reached 0, that the IP header
checksum failed, and so on.

ICMP also defines a handful of control messages that a router can send back to a
source host. One of the most useful control messages, called an ICMP-Redirect, tells the
source host that there is a better route to the destination. ICMP-Redirects are used in
the following situation. Suppose a host is connected to a network that has two routers
attached to it, called R1 and R2, where the host uses R1 as its default router. Should
R1 ever receive a datagram from the host, where based on its forwarding table it knows
that R2 would have been a better choice for a particular destination address, it sends
an ICMP-Redirect back to the host, instructing it to use R2 for all future datagrams
addressed to that destination. The host then adds this new route to its forwarding table.

4.1.8 Virtual Networks and Tunnels
We conclude our introduction to IP by considering an issue you might not have antici-
pated, but one that is becoming increasingly important. Our discussion up to this point
has focused on making it possible for nodes on different networks to communicate with
each other in an unrestricted way. This is usually the goal in the Internet—everybody
wants to be able to send email to everybody, and the creator of a new website wants to
reach the widest possible audience. However, there are many situations where more con-
trolled connectivity is required. An important example of such a situation is the virtual
private network (VPN).
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The term VPN is heavily overused and definitions vary, but intuitively we can de-
fine a VPN by considering first the idea of a private network. Corporations with many
sites often build private networks by leasing transmission lines from the phone compa-
nies and using those lines to interconnect sites. In such a network, communication is
restricted to take place only among the sites of that corporation, which is often desirable
for security reasons. To make a private network virtual, the leased transmission lines—
which are not shared with any other corporations—would be replaced by some sort of
shared network. A virtual circuit is a very reasonable replacement for a leased line be-
cause it still provides a logical point-to-point connection between the corporation’s sites.
For example, if corporation X has a VC from site A to site B, then clearly it can send
packets between sites A and B. But there is no way that corporation Y can get its packets
delivered to site B without first establishing its own virtual circuit to site B, and the es-
tablishment of such a VC can be administratively prevented, thus preventing unwanted
connectivity between corporation X and corporation Y.

Figure 4.11(a) shows two private networks for two separate corporations. In Fig-
ure 4.11(b) they are both migrated to a virtual circuit network. The limited connectivity
of a real private network is maintained, but since the private networks now share the
same transmission facilities and switches we say that two virtual private networks have
been created.

In Figure 4.11, a Frame Relay or ATM network is used to provide the controlled
connectivity among sites. It is also possible to provide a similar function using an IP
network—an internetwork—to provide the connectivity. However, we cannot just con-
nect the various corporations’ sites to a single internetwork because that would provide
connectivity between corporation X and corporation Y, which we wish to avoid. To solve
this problem, we need to introduce a new concept, the IP tunnel.

We can think of an IP tunnel as a virtual point-to-point link between a pair of
nodes that are actually separated by an arbitrary number of networks. The virtual link
is created within the router at the entrance to the tunnel by providing it with the IP
address of the router at the far end of the tunnel. Whenever the router at the entrance of
the tunnel wants to send a packet over this virtual link, it encapsulates the packet inside
an IP datagram. The destination address in the IP header is the address of the router at
the far end of the tunnel, while the source address is that of the encapsulating router.

In the forwarding table of the router at the entrance to the tunnel, this virtual
link looks much like a normal link. Consider, for example, the network in Figure 4.12.
A tunnel has been configured from R1 to R2 and assigned a virtual interface number
of 0. The forwarding table in R1 might therefore look like Table 4.3.

R1 has two physical interfaces. Interface 0 connects to network 1; interface 1 con-
nects to a large internetwork and is thus the default for all traffic that does not match
something more specific in the forwarding table. In addition, R1 has a virtual interface,
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Figure 4.11 An example of virtual private networks: (a) two separate private networks;

(b) two virtual private networks sharing common switches.

Figure 4.12 A tunnel through an internetwork.
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NetworkNum NextHop

1 Interface 0

2 Virtual interface 0

Default Interface 1

Table 4.3 Forwarding table for router R1 in Figure 4.12.

which is the interface to the tunnel. Suppose R1 receives a packet from network 1 that
contains an address in network 2. The forwarding table says this packet should be sent
out virtual interface 0. In order to send a packet out this interface, the router takes the
packet, adds an IP header addressed to R2, and then proceeds to forward the packet as
if it had just been received. R2’s address is 18.5.0.1; since the network number of this
address is 18, not 1 or 2, a packet destined for R2 will be forwarded out the default
interface into the internetwork.

Once the packet leaves R1, it looks to the rest of the world like a normal IP packet
destined to R2, and it is forwarded accordingly. All the routers in the internetwork for-
ward it using normal means, until it arrives at R2. When R2 receives the packet, it finds
that it carries its own address, so it removes the IP header and looks at the payload of the
packet. What it finds is an inner IP packet whose destination address is in network 2.
R2 now processes this packet like any other IP packet it receives. Since R2 is directly
connected to network 2, it forwards the packet on to that network. Figure 4.12 shows
the change in encapsulation of the packet as it moves across the network.

While R2 is acting as the endpoint of the tunnel, there is nothing to prevent it
from performing the normal functions of a router. For example, it might receive some
packets that are not tunneled, but which are addressed to networks that it knows how to
reach, and it would forward them in the normal way.

You might wonder why anyone would want to go to all the trouble of creating
a tunnel and changing the encapsulation of a packet as it goes across an internetwork.
One reason is security, which we will discuss in more detail in Chapter 8. Supplemented
with encryption, a tunnel can become a very private sort of link across a public network.
Another reason may be that R1 and R2 have some capabilities that are not widely avail-
able in the intervening networks, such as multicast routing. By connecting these routers
with a tunnel, we can build a virtual network in which all the routers with this capability
appear to be directly connected. This in fact is how the (MBone) multicast backbone is
built, as we will see in Section 4.4. A third reason to build tunnels is to carry packets
from protocols other than IP across an IP network. As long as the routers at either end
of the tunnel know how to handle these other protocols, the IP tunnel looks to them
like a point-to-point link over which they can send non-IP packets. Tunnels also provide
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a mechanism by which we can force a packet to be delivered to a particular place even
if its original header—the one that gets encapsulated inside the tunnel header—might
suggest that it should go somewhere else. We will see an application of this when we
consider mobile hosts in Section 4.2.5. Thus, we see that tunneling is a powerful and
quite general technique for building virtual links across internetworks.

Tunneling does have its downsides. One is that it increases the length of packets;
this might represent a significant waste of bandwidth for short packets. Longer packets
might be subject to fragmentation, which has its own set of drawbacks. There may also
be performance implications for the routers at either end of the tunnel, since they need to
do more work than normal forwarding as they add and remove the tunnel header. Finally,
there is a management cost for the administrative entity that is responsible for setting up
the tunnels and making sure they are correctly handled by the routing protocols.

4.2 Routing
In both this and the previous chapter we have assumed that the switches and routers have
enough knowledge of the network topology so they can choose the right port onto which
each packet should be output. In the case of virtual circuits, routing is an issue only for
the connection request packet; all subsequent packets follow the same path as the request.
In datagram networks, including IP networks, routing is an issue for every packet. In
either case, a switch or router needs to be able to look at the packet’s destination address
and then to determine which of the output ports is the best choice to get the packet to
that address. As we saw in Section 3.1.1, the switch makes this decision by consulting a
forwarding table. The fundamental problem of routing is, how do switches and routers
acquire the information in their forwarding tables?▲

We restate an important distinction, which is often neglected, between forward-
ing and routing. Forwarding consists of taking a packet, looking at its destination ad-
dress, consulting a table, and sending the packet in a direction determined by that table.
We saw several examples of forwarding in the preceding section. Routing is the process
by which forwarding tables are built. We also note that forwarding is a relatively sim-
ple and well-defined process performed locally at a node, whereas routing depends on
complex distributed algorithms that have continued to evolve throughout the history of
networking.

While the terms forwarding table and routing table are sometimes used interchange-
ably, we will make a distinction between them here. The forwarding table is used when
a packet is being forwarded and so must contain enough information to accomplish the
forwarding function. This means that a row in the forwarding table contains the map-
ping from a network number to an outgoing interface and some MAC information, such
as the Ethernet address of the next hop. The routing table, on the other hand, is the table



4.2 Routing 267

that is built up by the routing algorithms as a precursor to building the forwarding table.
It generally contains mappings from network numbers to next hops. It may also contain
information about how this information was learned, so that the router will be able to
decide when it should discard some information.

Whether the routing table and forwarding table are actually separate data structures
is something of an implementation choice, but there are numerous reasons to keep them
separate. For example, the forwarding table needs to be structured to optimize the process
of looking up a network number when forwarding a packet, while the routing table needs
to be optimized for the purpose of calculating changes in topology. In some cases, the
forwarding table may even be implemented in specialized hardware, whereas this is rarely
if ever done for the routing table. Table 4.4 provides an example of a row from each sort
of table. In this case, the routing table tells us that network number 10 is to be reached
by a next hop router with the IP address 171.69.245.10, while the forwarding table
contains the information about exactly how to forward a packet to that next hop: Send it
out interface number 0 with a MAC address of 8:0:2b:e4:b:1:2. Note that the last piece
of information is provided by the Address Resolution Protocol.

Before getting into the details of routing, we need to remind ourselves of the key
question we should be asking anytime we try to build a mechanism for the Internet:
Does this solution scale? The answer for the algorithms and protocols described in this
section is no. They are designed for networks of fairly modest size—fewer than a hun-
dred nodes, in practice. However, the solutions we describe do serve as a building block
for a hierarchical routing infrastructure that is used in the Internet today. Specifically, the
protocols described in this section are collectively known as intradomain routing proto-
cols, or interior gateway protocols (IGPs). To understand these terms, we need to define a
routing domain: A good working definition is an internetwork in which all the routers
are under the same administrative control (e.g., a single university campus, or the net-
work of a single Internet service provider). The relevance of this definition will become
apparent in the next section when we look at interdomain routing protocols. For now,

Network Number Next Hop

18 171.69.245.10

(a)

Network Number Interface MAC Address

18 if0 8:0:2b:e4:b:1:2

(b)

Table 4.4 Example rows from (a) routing and (b) forwarding tables.
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the important thing to keep in mind is that we are considering the problem of routing
in the context of small to midsized networks, not for a network the size of the Internet.

4.2.1 Network as a Graph
Routing is, in essence, a problem of graph theory. Figure 4.13 shows a graph representing
a network. The nodes of the graph, labeled A through F, may be either hosts, switches,
routers, or networks. For our initial discussion, we will focus on the case where the nodes
are routers. The edges of the graph correspond to the network links. Each edge has an
associated cost, which gives some indication of the desirability of sending traffic over that
link. A discussion of how edge costs are assigned is given in Section 4.2.4.6

The basic problem of routing is to find the lowest-cost path between any two
nodes, where the cost of a path equals the sum of the costs of all the edges that make
up the path. For a simple network like the one in Figure 4.13, you could imagine just
calculating all the shortest paths and loading them into some nonvolatile storage on each
node. Such a static approach has several shortcomings:

■ It does not deal with node or link failures;

■ It does not consider the addition of new nodes or links;

■ It implies that edge costs cannot change, even though we might reasonably wish
to temporarily assign a high cost to a link that is heavily loaded.

For these reasons, routing is achieved in most practical networks by running rout-
ing protocols among the nodes. These protocols provide a distributed, dynamic way
to solve the problem of finding the lowest-cost path in the presence of link and node
failures and changing edge costs. Note the word “distributed” in the last sentence: It is

Figure 4.13 Network represented as a graph.

6In the example networks (graphs) used throughout this chapter, we use undirected edges and assign each edge a single
cost. This is actually a slight simplification. It is more accurate to make the edges directed, which typically means that
there would be a pair of edges between each node—one flowing in each direction, and each with its own edge cost.
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difficult to make centralized solutions scalable, so all the widely used routing protocols
use distributed algorithms.

The distributed nature of routing algorithms is one of the main reasons why this
has been such a rich field of research and development—there are a lot of challenges
in making distributed algorithms work well. For example, distributed algorithms raise
the possibility that two routers will at one instant have different ideas about the shortest
path to some destination. In fact, each one may think that the other one is closer to the
destination, and decide to send packets to the other one. Clearly such packets will be
stuck in a loop until the discrepancy between the two routers is resolved, and it would
be good to resolve it as soon as possible. This is just one example of the type of problem
routing protocols must address.

To begin our analysis, we assume that the edge costs in the network are known. We
will examine the two main classes of routing protocols: distance vector and link state. In
Section 4.2.4 we return to the problem of calculating edge costs in a meaningful way.

4.2.2 Distance Vector (RIP)
The idea behind the distance-vector algorithm is suggested by its name:7 Each node con-
structs a one-dimensional array (a vector) containing the “distances” (costs) to all other
nodes and distributes that vector to its immediate neighbors. The starting assumption
for distance-vector routing is that each node knows the cost of the link to each of its
directly connected neighbors. A link that is down is assigned an infinite cost.

To see how a distance-vector routing algorithm works, it is easiest to consider an
example like the one depicted in Figure 4.14. In this example, the cost of each link is
set to 1, so that a least-cost path is simply the one with the fewest hops. (Since all edges
have the same cost, we do not show the costs in the graph.) We can represent each node’s

Figure 4.14 Distance-vector routing: an example network.

7The other common name for this class of algorithm is Bellman-Ford, after its inventors.
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Distance to Reach Node

A B C D E F G

Information

Stored at Node

A 0 1 1 ∞ 1 1 ∞
B 1 0 1 ∞ ∞ ∞ ∞
C 1 1 0 1 ∞ ∞ ∞
D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞
F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0

Table 4.5 Initial distances stored at each node (global view).

Destination Cost Next Hop

B 1 B

C 1 C

D ∞ —

E 1 E

F 1 F

G ∞ —

Table 4.6 Initial routing table at node A.

knowledge about the distances to all other nodes as a table like the one given in Table 4.5.
Note that each node only knows the information in one row of the table (the one that
bears its name in the left column). The global view that is presented here is not available
at any single point in the network.

We may consider each row in Table 4.5 as a list of distances from one node to
all other nodes, representing the current beliefs of that node. Initially, each node sets a
cost of 1 to its directly connected neighbors and ∞ to all other nodes. Thus, A initially
believes that it can reach B in one hop and that D is unreachable. The routing table stored
at A reflects this set of beliefs and includes the name of the next hop that A would use to
reach any reachable node. Initially, then, A’s routing table would look like Table 4.6.

The next step in distance-vector routing is that every node sends a message to its
directly connected neighbors containing its personal list of distances. For example, node
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Destination Cost Next Hop

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 2 F

Table 4.7 Final routing table at node A.

F tells node A that it can reach node G at a cost of 1; A also knows it can reach F at a
cost of 1, so it adds these costs to get the cost of reaching G by means of F. This total
cost of 2 is less than the current cost of infinity, so A records that it can reach G at a cost
of 2 by going through F. Similarly, A learns from C that D can be reached from C at a
cost of 1; it adds this to the cost of reaching C (1) and decides that D can be reached
via C at a cost of 2, which is better than the old cost of infinity. At the same time, A
learns from C that B can be reached from C at a cost of 1, so it concludes that the cost
of reaching B via C is 2. Since this is worse than the current cost of reaching B (1), this
new information is ignored.

At this point, A can update its routing table with costs and next hops for all nodes
in the network. The result is shown in Table 4.7.

In the absence of any topology changes, it only takes a few exchanges of informa-
tion between neighbors before each node has a complete routing table. The process of
getting consistent routing information to all the nodes is called convergence. Table 4.8
shows the final set of costs from each node to all other nodes when routing has con-
verged. We must stress that there is no one node in the network that has all the infor-
mation in this table—each node only knows about the contents of its own routing table.
The beauty of a distributed algorithm like this is that it enables all nodes to achieve a
consistent view of the network in the absence of any centralized authority.

There are a few details to fill in before our discussion of distance-vector routing is
complete. First, we note that there are two different circumstances under which a given
node decides to send a routing update to its neighbors. One of these circumstances is
the periodic update. In this case, each node automatically sends an update message every
so often, even if nothing has changed. This serves to let the other nodes know that this
node is still running. It also makes sure that they keep getting information that they may
need if their current routes become unviable. The frequency of these periodic updates
varies from protocol to protocol, but it is typically on the order of several seconds to
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Distance to Reach Node

A B C D E F G

Information

Stored at Node

A 0 1 1 2 1 1 2

B 1 0 1 2 2 2 3

C 1 1 0 1 2 2 2

D 2 2 1 0 3 2 1

E 1 2 2 3 0 2 3

F 1 2 2 2 2 0 1

G 2 3 2 1 3 1 0

Table 4.8 Final distances stored at each node (global view).

several minutes. The second mechanism, sometimes called a triggered update, happens
whenever a node receives an update from one of its neighbors that causes it to change
one of the routes in its routing table. That is, whenever a node’s routing table changes,
it sends an update to its neighbors, which may lead to a change in their tables, causing
them to send an update to their neighbors.

Now consider what happens when a link or node fails. The nodes that notice first
send new lists of distances to their neighbors, and normally the system settles down
fairly quickly to a new state. As to the question of how a node detects a failure, there
are a couple of different answers. In one approach, a node continually tests the link to
another node by sending a control packet and seeing if it receives an acknowledgment.
In another approach, a node determines that the link (or the node at the other end of
the link) is down if it does not receive the expected periodic routing update for the last
few update cycles.

To understand what happens when a node detects a link failure, consider what
happens when F detects that its link to G has failed. First, F sets its new distance to G to
infinity and passes that information along to A. Since A knows that its 2-hop path to G
is through F, A would also set its distance to G to infinity. However, with the next update
from C, A would learn that C has a 2-hop path to G. Thus, A would know that it could
reach G in 3 hops through C, which is less than infinity, and so A would update its table
accordingly. When it advertises this to F, node F would learn that it can reach G at a cost
of 4 through A, which is less than infinity, and the system would again become stable.

Unfortunately, slightly different circumstances can prevent the network from sta-
bilizing. Suppose, for example, that the link from A to E goes down. In the next round
of updates, A advertises a distance of infinity to E, but B and C advertise a distance of 2
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to E. Depending on the exact timing of events, the following might happen: Node B,
upon hearing that E can be reached in 2 hops from C, concludes that it can reach E
in 3 hops and advertises this to A; node A concludes that it can reach E in 4 hops and
advertises this to C; node C concludes that it can reach E in 5 hops; and so on. This cycle
stops only when the distances reach some number that is large enough to be considered
infinite. In the meantime, none of the nodes actually knows that E is unreachable, and
the routing tables for the network do not stabilize. This situation is known as the count
to infinity problem.

There are several partial solutions to this problem. The first one is to use some
relatively small number as an approximation of infinity. For example, we might decide
that the maximum number of hops to get across a certain network is never going to be
more than 16, and so we could pick 16 as the value that represents infinity. This at least
bounds the amount of time that it takes to count to infinity. Of course, it could also
present a problem if our network grew to a point where some nodes were separated by
more than 16 hops.

One technique to improve the time to stabilize routing is called split horizon. The
idea is that when a node sends a routing update to its neighbors, it does not send those
routes it learned from each neighbor back to that neighbor. For example, if B has the
route (E, 2, A) in its table, then it knows it must have learned this route from A, and
so whenever B sends a routing update to A, it does not include the route (E, 2) in that
update. In a stronger variation of split horizon, called split horizon with poison reverse, B
actually sends that route back to A, but it puts negative information in the route to ensure
that A will not eventually use B to get to E. For example, B sends the route (E, ∞) to A.
The problem with both of these techniques is that they only work for routing loops
that involve two nodes. For larger routing loops, more drastic measures are called for.
Continuing the above example, if B and C had waited for a while after hearing of the
link failure from A before advertising routes to E, they would have found that neither of
them really had a route to E. Unfortunately, this approach delays the convergence of the
protocol; speed of convergence is one of the key advantages of its competitor, link-state
routing, the subject of Section 4.2.3.

Implementation

The code that implements this algorithm is very straightforward; we give only some of
the basics here. Structure Route defines each entry in the routing table, and constant
MAX_TTL specifies how long an entry is kept in the table before it is discarded.

#define MAX_ROUTES 128 /* maximum size of routing table */
#define MAX_TTL 120 /* time (in seconds) until route

expires */
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typedef struct {
NodeAddr Destination; /* address of destination */
NodeAddr NextHop; /* address of next hop */
int Cost; /* distance metric */
u_short TTL; /* time to live */

} Route;

int numRoutes = 0;
Route routingTable[MAX_ROUTES];

The routine that updates the local node’s routing table based on a new route is
given by mergeRoute. Although not shown, a timer function periodically scans the
list of routes in the node’s routing table, decrements the TTL field of each route, and
discards any routes that have a time to live of 0. Notice, however, that the TTL field
is reset to MAX_TTL any time the route is reconfirmed by an update message from a
neighboring node.

void
mergeRoute (Route *new)
{

int i;

for (i = 0; i < numRoutes; ++i)
{

if (new->Destination
== routingTable[i].Destination)

{
if (new->Cost + 1 < routingTable[i].Cost)
{

/* found a better route: */
break;

} else if (new->NextHop
== routingTable[i].NextHop) {

/* metric for current next-hop
may have changed: */

break;
} else {

/* route is uninteresting---
just ignore it */

return;
}

}
}
if (i == numRoutes)
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{
/* this is a completely new route;

is there room for it? */
if (numRoutes < MAXROUTES)
{

++numRoutes;
} else {

/* can’t fit this route in table so give up */
return;

}
}
routingTable[i] = *new;
/* reset TTL */
routingTable[i].TTL = MAX_TTL;
/* account for hop to get to next node */
++routingTable[i].Cost;

}

Finally, the procedure updateRoutingTable is the main routine that calls
mergeRoute to incorporate all the routes contained in a routing update that is re-
ceived from a neighboring node.

void
updateRoutingTable (Route *newRoute, int numNewRoutes)
{

int i;

for (i=0; i < numNewRoutes; ++i)
{

mergeRoute(&newRoute[i]);
}

}

Routing Information Protocol (RIP)

One of the most widely used routing protocols in IP networks is the Routing Infor-
mation Protocol (RIP). Its widespread use is due in no small part to the fact that it
was distributed along with the popular Berkeley Software Distribution (BSD) version of
Unix, from which many commercial versions of Unix were derived. It is also extremely
simple. RIP is the canonical example of a routing protocol built on the distance-vector
algorithm just described.

Routing protocols in internetworks differ very slightly from the idealized graph
model described above. In an internetwork, the goal of the routers is to learn how to for-



276 4 Internetworking

Figure 4.15 Example network running RIP.

Figure 4.16 RIP packet format.

ward packets to various networks. Thus, rather than advertising the cost of reaching other
routers, the routers advertise the cost of reaching networks. For example, in Figure 4.15,
router C would advertise to router A the fact that it can reach networks 2 and 3 (to
which it is directly connected) at a cost of 0; networks 5 and 6 at cost 1; and network 4
at cost 2.

We can see evidence of this in the RIP packet format in Figure 4.16. The majority
of the packet is taken up with 〈network-address, distance〉 pairs. However, the
principles of the routing algorithm are just the same. For example, if router A learns
from router B that network X can be reached at a lower cost via B than via the existing
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next hop in the routing table, A updates the cost and next hop information for the
network number accordingly.

RIP is in fact a fairly straightforward implementation of distance-vector routing.
Routers running RIP send their advertisements every 30 seconds; a router also sends an
update message whenever an update from another router causes it to change its routing
table. One point of interest is that it supports multiple address families, not just IP.
The network-address part of the advertisements is actually represented as a 〈family,
address〉 pair. RIP version 2 (RIPv2) also has some features related to scalability that
we will discuss in the next section.

As we will see below, it is possible to use a range of different metrics or costs for
the links in a routing protocol. RIP takes the simplest approach, with all link costs being
equal to 1, just as in our example above. Thus, it always tries to find the minimum hop
route. Valid distances are 1 through 15, with 16 representing infinity. This also limits
RIP to running on fairly small networks—those with no paths longer than 15 hops.

4.2.3 Link State (OSPF)
Link-state routing is the second major class of intradomain routing protocol. The starting
assumptions for link-state routing are rather similar to those for distance-vector routing.
Each node is assumed to be capable of finding out the state of the link to its neigh-
bors (up or down) and the cost of each link. Again, we want to provide each node with
enough information to enable it to find the least-cost path to any destination. The ba-
sic idea behind link-state protocols is very simple: Every node knows how to reach its
directly connected neighbors, and if we make sure that the totality of this knowledge is
disseminated to every node, then every node will have enough knowledge of the network
to build a complete map of the network. This is clearly a sufficient condition (although
not a necessary one) for finding the shortest path to any point in the network. Thus,
link-state routing protocols rely on two mechanisms: reliable dissemination of link-state
information, and the calculation of routes from the sum of all the accumulated link-state
knowledge.

Reliable Flooding

Reliable flooding is the process of making sure that all the nodes participating in the
routing protocol get a copy of the link-state information from all the other nodes. As the
term “flooding” suggests, the basic idea is for a node to send its link-state information
out on all of its directly connected links, with each node that receives this information
forwarding it out on all of its links. This process continues until the information has
reached all the nodes in the network.

More precisely, each node creates an update packet, also called a link-state packet
(LSP), that contains the following information:
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■ The ID of the node that created the LSP;

■ A list of directly connected neighbors of that node, with the cost of the link to
each one;

■ A sequence number;

■ A time to live for this packet.

The first two items are needed to enable route calculation; the last two are used to make
the process of flooding the packet to all nodes reliable. Reliability includes making sure
that you have the most recent copy of the information, since there may be multiple,
contradictory LSPs from one node traversing the network. Making the flooding reliable
has proven to be quite difficult. (For example, an early version of link-state routing used
in the ARPANET caused that network to fail in 1981.)

Flooding works in the following way. First, the transmission of LSPs between ad-
jacent routers is made reliable using acknowledgments and retransmissions just as in the
reliable link-layer protocol described in Section 2.5. However, there are several more
steps needed to reliably flood an LSP to all nodes in a network.

Consider a node X that receives a copy of an LSP that originated at some other
node Y. Note that Y may be any other router in the same routing domain as X. X checks
to see if it has already stored a copy of an LSP from Y. If not, it stores the LSP. If
it already has a copy, it compares the sequence numbers; if the new LSP has a larger
sequence number, it is assumed to be the more recent, and that LSP is stored, replacing
the old one. A smaller (or equal) sequence number would imply an LSP older (or not
newer) than the one stored, so it would be discarded and no further action would be
needed. If the received LSP was the newer one, X then sends a copy of that LSP to all
of its neighbors except the neighbor from which the LSP was just received. The fact that
the LSP is not sent back to the node from which it was received helps to bring an end
to the flooding of an LSP. Since X passes the LSP on to all its neighbors, who then turn
around and do the same thing, the most recent copy of the LSP eventually reaches all
nodes.

Figure 4.17 shows an LSP being flooded in a small network. Each node becomes
shaded as it stores the new LSP. In Figure 4.17(a) the LSP arrives at node X, which sends
it to neighbors A and C in Figure 4.17(b). A and C do not send it back to X, but send it
on to B. Since B receives two identical copies of the LSP, it will accept whichever arrived
first and ignore the second as a duplicate. It then passes the LSP onto D, who has no
neighbors to flood it to, and the process is complete.

Just as in RIP, each node generates LSPs under two circumstances. Either the expiry
of a periodic timer or a change in topology can cause a node to generate a new LSP.
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Figure 4.17 Flooding of link-state packets. (a) LSP arrives at node X; (b) X floods LSP

to A and C; (c) A and C flood LSP to B (but not X); (d) flooding is complete.

However, the only topology-based reason for a node to generate an LSP is if one of its
directly connected links or immediate neighbors has gone down. The failure of a link
can be detected in some cases by the link-layer protocol. The demise of a neighbor or
loss of connectivity to that neighbor can be detected using periodic “hello” packets. Each
node sends these to its immediate neighbors at defined intervals. If a sufficiently long
time passes without receipt of a “hello” from a neighbor, the link to that neighbor will
be declared down, and a new LSP will be generated to reflect this fact.

One of the important design goals of a link-state protocol’s flooding mechanism is
that the newest information must be flooded to all nodes as quickly as possible, while
old information must be removed from the network and not allowed to circulate. In
addition, it is clearly desirable to minimize the total amount of routing traffic that is sent
around the network; after all, this is just “overhead” from the perspective of those who
actually use the network for their applications. The next few paragraphs describe some
of the ways that these goals are accomplished.

One easy way to reduce overhead is to avoid generating LSPs unless absolutely
necessary. This can be done by using very long timers—often on the order of hours—for
the periodic generation of LSPs. Given that the flooding protocol is truly reliable when
topology changes, it is safe to assume that messages saying “nothing has changed” do not
need to be sent very often.

To make sure that old information is replaced by newer information, LSPs carry
sequence numbers. Each time a node generates a new LSP, it increments the sequence
number by 1. Unlike most sequence numbers used in protocols, these sequence numbers
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are not expected to wrap, so the field needs to be quite large (say, 64 bits). If a node goes
down and then comes back up, it starts with a sequence number of 0. If the node was
down for a long time, all the old LSPs for that node will have timed out (as described
below); otherwise, this node will eventually receive a copy of its own LSP with a higher
sequence number, which it can then increment and use as its own sequence number.
This will ensure that its new LSP replaces any of its old LSPs left over from before the
node went down.

LSPs also carry a time to live. This is used to ensure that old link-state information
is eventually removed from the network. A node always decrements the TTL of a newly
received LSP before flooding it to its neighbors. It also “ages” the LSP while it is stored in
the node. When the TTL reaches 0, the node refloods the LSP with a TTL of 0, which
is interpreted by all the nodes in the network as a signal to delete that LSP.

Route Calculation

Once a given node has a copy of the LSP from every other node, it is able to compute
a complete map for the topology of the network, and from this map it is able to decide
the best route to each destination. The question, then, is exactly how it calculates routes
from this information. The solution is based on a well-known algorithm from graph
theory—Dijkstra’s shortest-path algorithm.

We first define Dijkstra’s algorithm in graph-theoretic terms. Imagine that a node
takes all the LSPs it has received and constructs a graphical representation of the network,
in which N denotes the set of nodes in the graph, and l(i, j) denotes the nonnegative
cost (weight) associated with the edge between nodes i, j ∈ N , and l(i, j) = ∞ if no
edge connects i and j. In the following description, we let s ∈ N denote this node, that
is, the node executing the algorithm to find the shortest path to all the other nodes in N .
Also, the algorithm maintains the following two variables: M denotes the set of nodes
incorporated so far by the algorithm, and C(n) denotes the cost of the path from s to
each node n. Given these definitions, the algorithm is defined as follows:

M = {s}
for each n in N − {s}
C(n) = l(s,n)

while (N �= M)

M = M ∪ {w} such that C(w) is the minimum for all w in (N − M)

for each n in (N − M)

C(n) = MIN(C(n), C(w) + l(w,n))

Basically, the algorithm works as follows. We start with M containing this node s
and then initialize the table of costs (the C(n)s) to other nodes using the known costs
to directly connected nodes. We then look for the node that is reachable at the lowest
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cost (w) and add it to M . Finally, we update the table of costs by considering the cost
of reaching nodes through w. In the last line of the algorithm, we choose a new route to
node n that goes through node w if the total cost of going from the source to w and then
following the link from w to n is less than the old route we had to n. This procedure is
repeated until all nodes are incorporated in M .

In practice, each switch computes its routing table directly from the LSPs it has
collected using a realization of Dijkstra’s algorithm called the forward search algorithm.
Specifically, each switch maintains two lists, known as Tentative and Confirmed.
Each of these lists contains a set of entries of the form (Destination, Cost, NextHop).
The algorithm works as follows:

1 Initialize the Confirmed list with an entry for myself; this entry has a cost of
0.

2 For the node just added to the Confirmed list in the previous step, call it node
Next, select its LSP.

3 For each neighbor (Neighbor) of Next, calculate the cost (Cost) to reach
this Neighbor as the sum of the cost from myself to Next and from Next to
Neighbor.

(a) If Neighbor is currently not on either the Confirmed or the Tentative
list, then add (Neighbor, Cost, NextHop) to the Tentative list, where
NextHop is the direction I go to reach Next.

(b) If Neighbor is currently on the Tentative list, and the Cost is less than
the currently listed cost for Neighbor, then replace the current entry with
(Neighbor, Cost, NextHop), where NextHop is the direction I go to
reach Next.

4 If the Tentative list is empty, stop. Otherwise, pick the entry from the Ten-
tative list with the lowest cost, move it to the Confirmed list, and return to
step 2.

This will become a lot easier to understand when we look at an example. Con-
sider the network depicted in Figure 4.18. Note that, unlike our previous example, this
network has a range of different edge costs. Table 4.9 traces the steps for building the
routing table for node D. We denote the two outputs of D by using the names of the
nodes to which they connect, B and C. Note the way the algorithm seems to head off on
false leads (like the 11-unit cost path to B that was the first addition to the Tentative
list) but ends up with the least-cost paths to all nodes.
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Figure 4.18 Link-state routing: an example network.

Step Confirmed Tentative Comments

1 (D,0,-) Since D is the only new member of the confirmed list,
look at its LSP.

2 (D,0,-) (B,11,B)
(C,2,C)

D’s LSP says we can reach B through B at cost 11, which
is better than anything else on either list, so put it on Ten-
tative list; same for C.

3 (D,0,-)
(C,2,C)

(B,11,B) Put lowest-cost member of Tentative (C) onto Con-
firmed list. Next, examine LSP of newly confirmed
member (C).

4 (D,0,-)
(C,2,C)

(B,5,C)
(A,12,C)

Cost to reach B through C is 5, so replace (B,11,B). C’s
LSP tells us that we can reach A at cost 12.

5 (D,0,-)
(C,2,C)
(B,5,C)

(A,12,C) Move lowest-cost member of Tentative (B) to Con-
firmed, then look at its LSP.

6 (D,0,-)
(C,2,C)
(B,5,C)

(A,10,C) Since we can reach A at cost 5 through B, replace the Ten-
tative entry.

7 (D,0,-)
(C,2,C)
(B,5,C)
(A,10,C)

Move lowest-cost member of Tentative (A) to Con-
firmed, and we are all done.

Table 4.9 Steps for building routing table for node D (Figure 4.18).

The link-state routing algorithm has many nice properties: It has been proven to
stabilize quickly, it does not generate much traffic, and it responds rapidly to topology
changes or node failures. On the downside, the amount of information stored at each
node (one LSP for every other node in the network) can be quite large. This is one of the
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fundamental problems of routing and is an instance of the more general problem of scal-
ability. Some solutions to both the specific problem (the amount of storage potentially
required at each node) and the general problem (scalability) will be discussed in the next
section.▲

Thus, the difference between the distance-vector and link-state algorithms can be
summarized as follows. In distance vector, each node talks only to its directly connected
neighbors, but it tells them everything it has learned (i.e., distance to all nodes). In link
state, each node talks to all other nodes, but it tells them only what it knows for sure
(i.e., only the state of its directly connected links).

Open Shortest Path First Protocol (OSPF)

One of the most widely used link-state routing protocols is OSPF. The first word,
“Open,” refers to the fact that it is an open, nonproprietary standard, created under
the auspices of the IETF. The “SPF” part comes from an alternative name for link-state
routing. OSPF adds quite a number of features to the basic link-state algorithm described
above, including the following:

■ Authentication of routing messages: This is a nice feature, since it is all too
common for some misconfigured host to decide that it can reach every host in
the universe at a cost of 0. When the host advertises this fact, every router in the
surrounding neighborhood updates its forwarding tables to point to that host,
and said host receives a vast amount of data that, in reality, it has no idea what
to do with. It typically drops it all, bringing the network to a halt. Such disasters
can be averted in many cases by requiring routing updates to be authenticated.
Early versions of OSPF used a simple 8-byte password for authentication. This
is not a strong enough form of authentication to prevent dedicated malicious
users, but it alleviates many problems caused by misconfiguration. (A similar
form of authentication was added to RIP in version 2.) Strong cryptographic
authentication of the sort discussed in Section 8.3 was later added.

■ Additional hierarchy: Hierarchy is one of the fundamental tools used to make
systems more scalable. OSPF introduces another layer of hierarchy into routing
by allowing a domain to be partitioned into areas. This means that a router
within a domain does not necessarily need to know how to reach every network
within that domain—it may be able to get by knowing only how to get to
the right area. Thus, there is a reduction in the amount of information that
must be transmitted to and stored in each node. We examine areas in detail in
Section 4.3.4.
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Figure 4.19 OSPF header format.

■ Load balancing: OSPF allows multiple routes to the same place to be assigned
the same cost and will cause traffic to be distributed evenly over those routes.

There are several different types of OSPF messages, but all begin with the same
header, as shown in Figure 4.19. The Version field is currently set to 2, and the Type
field may take the values 1 through 5. The SourceAddr identifies the sender of the
message, and the AreaId is a 32-bit identifier of the area in which the node is located.
The entire packet, except the authentication data, is protected by a 16-bit checksum
using the same algorithm as the IP header (see Section 2.4). The Authentication type
is 0 if no authentication is used; otherwise it may be 1, implying a simple password is
used, or 2, which indicates that a cryptographic authentication checksum, of the sort
described in Section 8.3, is used. In the latter cases the Authentication field carries the
password or cryptographic checksum.

Of the five OSPF message types, type 1 is the “hello” message, which a router
sends to its peers to notify them that it is still alive and connected as described above.
The remaining types are used to request, send, and acknowledge the receipt of link-state
messages. The basic building block of link-state messages in OSPF is known as the link-
state advertisement (LSA). One message may contain many LSAs. We provide a few
details of the LSA here.

Like any internetwork routing protocol, OSPF must provide information about
how to reach networks. Thus, OSPF must provide a little more information than the
simple graph-based protocol described above. Specifically, a router running OSPF may
generate link-state packets that advertise one or more of the networks that are directly
connected to that router. In addition, a router that is connected to another router by
some link must advertise the cost of reaching that router over the link. These two types
of advertisements are necessary to enable all the routers in a domain to determine the cost
of reaching all networks in that domain and the appropriate next hop for each network.
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Figure 4.20 OSPF link-state advertisement.

Figure 4.20 shows the packet format for a type 1 link-state advertisement. Type 1
LSAs advertise the cost of links between routers. Type 2 LSAs are used to advertise net-
works to which the advertising router is connected, while other types are used to support
additional hierarchy as described in the next section. Many fields in the LSA should be
familiar from the preceding discussion. The LS Age is the equivalent of a time to live,
except that it counts up and the LSA expires when the age reaches a defined maximum
value. The Type field tells us that this is a type 1 LSA.

In a type 1 LSA, the Link state ID and the Advertising router field are identi-
cal. Each carries a 32-bit identifier for the router that created this LSA. While a number
of assignment strategies may be used to assign this ID, it is essential that it be unique in
the routing domain and that a given router consistently uses the same router ID. One
way to pick a router ID that meets these requirements would be to pick the lowest IP
address among all the IP addresses assigned to that router. (Recall that a router may have
a different IP address on each of its interfaces.)

The LS sequence number is used exactly as described above, to detect old or
duplicate LSAs. The LS checksum is similar to others we have seen in Section 2.4
and in other protocols; it is of course used to verify that data has not been corrupted. It
covers all fields in the packet except LS Age, so that it is not necessary to recompute
a checksum every time LS Age is incremented. Length is the length in bytes of the
complete LSA.

Now we get to the actual link-state information. This is made a little complicated
by the presence of type of service (TOS) information. Ignoring that for a moment, each
link in the LSA is represented by a Link ID, some Link Data, and a metric. The
first two of these fields identify the link; a common way to do this would be to use
the router ID of the router at the far end of the link as the Link ID, and then use the
Link Data to disambiguate among multiple parallel links if necessary. The metric is of
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course the cost of the link. Type tells us something about the link, for example, if it is a
point-to-point link.

The TOS information is present to allow OSPF to choose different routes for IP
packets based on the value in their TOS field. Instead of assigning a single metric to a
link, it is possible to assign different metrics depending on the TOS value of the data. For
example, if we had a link in our network that was very good for delay-sensitive traffic, we
could give it a low metric for the TOS value representing low delay, and a high metric for
everything else. OSPF would then pick a different shortest path for those packets that
had their TOS field set to that value. It is worth noting that, at the time of writing, this
capability has not been widely deployed.8

4.2.4 Metrics
The preceding discussion assumes that link costs, or metrics, are known when we execute
the routing algorithm. In this section, we look at some ways to calculate link costs that
have proven effective in practice. One example that we have seen already, which is quite
reasonable and very simple, is to assign a cost of 1 to all links—the least-cost route
will then be the one with the fewest hops. Such an approach has several drawbacks,
however. First, it does not distinguish between links on a latency basis. Thus, a satellite
link with 250-ms latency looks just as attractive to the routing protocol as a terrestrial
link with 1-ms latency. Second, it does not distinguish between routes on a capacity
basis, making a 9.6-Kbps link look just as good as a 45-Mbps link. Finally, it does not
distinguish between links based on their current load, making it impossible to route
around overloaded links. It turns out that this last problem is the hardest because you
are trying to capture the complex and dynamic characteristics of a link in a single scalar
cost.

The ARPANET was the testing ground for a number of different approaches to
link-cost calculation. (It was also the place where the superior stability of link-state over
distance-vector routing was demonstrated; the original mechanism used distance vector
while the later version used link state.) The following discussion traces the evolution
of the ARPANET routing metric and, in so doing, explores the subtle aspects of the
problem.

The original ARPANET routing metric measured the number of packets that were
queued waiting to be transmitted on each link, meaning that a link with 10 packets
queued waiting to be transmitted was assigned a larger cost weight than a link with 5
packets queued for transmission. Using queue length as a routing metric did not work
well, however, since queue length is an artificial measure of load—it moves packets to-
ward the shortest queue rather than toward the destination, a situation all too familiar

8Note also that the meaning of the TOS field has changed since the OSPF specification was written. This topic is discussed
in Section 6.5.3.
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to those of us who hop from line to line at the grocery store. Stated more precisely, the
original ARPANET routing mechanism suffered from the fact that it did not take either
the bandwidth or the latency of the link into consideration.

A second version of the ARPANET routing algorithm, sometimes called the “new
routing mechanism,” took both link bandwidth and latency into consideration and
used delay, rather than just queue length, as a measure of load. This was done as fol-
lows. First, each incoming packet was timestamped with its time of arrival at the router
(ArrivalTime); its departure time from the router (DepartTime) was also recorded.
Second, when the link-level ACK was received from the other side, the node computed
the delay for that packet as

Delay = (DepartTime − ArrivalTime) + TransmissionTime + Latency

where TransmissionTime and Latency were statically defined for the link and
captured the link’s bandwidth and latency, respectively. Notice that in this case,
DepartTime − ArrivalTime represents the amount of time the packet was delayed
(queued) in the node due to load. If the ACK did not arrive, but instead the packet timed
out, then DepartTime was reset to the time the packet was retransmitted. In this case,
DepartTime − ArrivalTime captures the reliability of the link—the more frequent
the retransmission of packets, the less reliable the link, and the more we want to avoid it.
Finally, the weight assigned to each link was derived from the average delay experienced
by the packets recently sent over that link.

Although an improvement over the original mechanism, this approach also had a
lot of problems. Under light load, it worked reasonably well, since the two static factors
of delay dominated the cost. Under heavy load, however, a congested link would start to
advertise a very high cost. This caused all the traffic to move off that link, leaving it idle,
so then it would advertise a low cost, thereby attracting back all the traffic, and so on.
The effect of this instability was that, under heavy load, many links would in fact spend
a great deal of time being idle, which is the last thing you want under heavy load.

Another problem was that the range of link values was much too large. For example,
a heavily loaded 9.6-Kbps link could look 127 times more costly than a lightly loaded
56-Kbps link. This means that the routing algorithm would choose a path with 126 hops
of lightly loaded 56-Kbps links in preference to a 1-hop 9.6-Kbps path. While shedding
some traffic from an overloaded line is a good idea, making it look so unattractive that it
loses all its traffic is excessive. Using 126 hops when 1 hop will do is in general a bad use
of network resources. Also, satellite links were unduly penalized, so that an idle 56-Kbps
satellite link looked considerably more costly than an idle 9.6-Kbps terrestrial link, even
though the former would give better performance for high-bandwidth applications.

A third approach, called the revised ARPANET routing metric, addressed these
problems. The major changes were to compress the dynamic range of the metric
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Figure 4.21 Revised ARPANET routing metric versus link utilization.

considerably, to account for the link type, and to smooth the variation of the metric
with time.

The smoothing was achieved by several mechanisms. First, the delay measurement
was transformed to a link utilization, and this number was averaged with the last reported
utilization to suppress sudden changes. Second, there was a hard limit on how much the
metric could change from one measurement cycle to the next. By smoothing the changes
in the cost, the likelihood that all nodes would abandon a route at once is greatly reduced.

The compression of the dynamic range was achieved by feeding the measured uti-
lization, the link type, and the link speed into a function that is shown graphically in
Figure 4.21. Observe the following:

■ A highly loaded link never shows a cost of more than three times its cost when
idle;

■ The most expensive link is only seven times the cost of the least expensive;

■ A high-speed satellite link is more attractive than a low-speed terrestrial link;

■ Cost is a function of link utilization only at moderate to high loads.

All these factors mean that a link is much less likely to be universally abandoned, since
a threefold increase in cost is likely to make the link unattractive for some paths while
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letting it remain the best choice for others. The slopes, offsets, and breakpoints for the
curves in Figure 4.21 were arrived at by a great deal of trial and error, and they were
carefully tuned to provide good performance.

We end our discussion of routing metrics with a dose of reality. In the majority of
real-world network deployments at the time of writing, metrics change rarely if at all, and
only under the control of a network administrator, not automatically as was described
above. The reason for this is partly that conventional wisdom now holds that dynamically
changing metrics were too unstable, even though this probably need not be true. Perhaps
more significantly, many networks today lack the great disparity of link speeds and laten-
cies that prevailed in the ARPANET. Thus, static metrics are the norm. One common
approach to setting metrics is to use a constant multiplied by (1/link_bandwidth).

Monitoring Routing Behavior

Given the complexity of routing pack-
ets through a network of the scale of
the Internet, we might wonder how
well the system works. We know it
works some of the time because we
are able to connect to sites all over
the world. We suspect it doesn’t work
all the time, though, because some-
times we are unable to connect to
certain sites. The real problem is de-
termining what part of the system is
at fault when our connections fail:
Has some routing machinery failed to
work properly, is the remote server too
busy, or has some link or machine sim-
ply gone down?

This is really an issue of network
management, and while there are tools
that system administrators use to keep
tabs on their own networks—for ex-
ample, see the Simple Network Man-
agement Protocol (SNMP) described
in Section 9.1.4—it is a largely unre-
solved problem for the Internet as a
whole. In fact, the Internet has grown

4.2.5 Routing for Mobile Hosts
Looking back over the preceding discus-
sion of how IP addressing and routing
works, you might notice that there is an
implicit assumption about the mobility of
hosts, or rather the lack of it. A host’s ad-
dress consists of a network number and a
host part, and the network number tells us
which network the host is attached to. IP
routing algorithms tell the routers how to
get packets to the correct network, thus en-
hancing the scalability of the routing sys-
tem by keeping host-specific information
out of the routers. So what would hap-
pen if a host were disconnected from one
network and connected to another? If we
didn’t change the IP address of the host,
then it would become unreachable. Any
packet destined for this host would be sent
to the network that has the appropriate
network number, but when the router(s)
on that network tried to deliver the packet
to the host, the host would not be there to
receive it.

The obvious solution to this problem
is to provide the host with a new address
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when it attaches to a new network. Tech-
niques such as DHCP (described in Sec-
tion 4.1.6) can make this a relatively
simple process. In many situations this so-
lution is adequate, but in others it is not.
For example, suppose that a user of a PC
equipped with a wireless network inter-
face is running some application while she
roams the countryside. The PC might de-
tach itself from one network and attach to
another with some frequency, but the user
would want to be oblivious to this. In par-
ticular, the applications that were running
when the PC was attached to network A
should continue to run without interrup-
tion when it attaches to network B. If the
PC simply changes its IP address in the
middle of running the application, the ap-
plication may not continue to function
correctly, because the remote end has no
way of knowing that it must now send the
packets to a new IP address.

The question of whether an appli-
cation will continue to operate correctly
following a change of IP address of one
endpoint is a complex one. For example,
if the application is a client-server inter-
action (such as web browsing) and the
client’s address changes, it is likely that
nothing would break, except perhaps a re-
sponse from the server that was partially
complete at the time of the move. By con-
trast, a peer-to-peer application, such as a
voiceover IP telephone call, would quite
likely fail as a result of the address change
unless some special action was taken by the

so large and complex that, even
though it is constructed from a collec-
tion of man-made, largely determin-
istic parts, we have come to view it
almost as a living organism or nat-
ural phenomenon that is to be stud-
ied. That is, we try to understand
the Internet’s dynamic behavior by
performing experiments on it and
proposing models that explain our
observations.

An excellent example of this
kind of study has been conducted by
Vern Paxson. Paxson used the Unix
traceroute tool to study 40,000
end-to-end routes between 37 Inter-
net sites in 1995. He was attempting
to answer questions about how routes
fail, how stable routes are over time,
and whether or not they are sym-
metric. Among other things, Paxson
found that the likelihood of a user en-
countering a serious end-to-end rout-
ing problem was 1 in 30, and that
such problems usually lasted about
30 seconds. He also found that two-
thirds of the Internet’s routes persisted
for days or weeks, and that about one-
third of the time the route used to
get from host A to host B included
at least one different routing domain
than the route used to get from host B
to host A. Paxson’s overall conclusion
was that Internet routing was becom-
ing less and less predictable over time.

application.
Ideally, we would like all applications to keep working correctly when an endpoint

moves and for this process to be reasonably transparent to the applications. The proce-
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dures that are designed to address this problem are usually referred to as “Mobile IP”
(which is also the name of the IETF working group that defined them).

The Mobile IP working group made some important design decisions at the outset.
In particular, it was a requirement that the solution would work without any changes to
the software of nonmobile hosts or the majority of routers in the Internet. This sort
of approach is frequently adopted in the Internet. Any new technology that requires a
majority of routers or hosts to be modified before it can work is likely to face an uphill
battle for acceptance.

While the majority of routers remain unchanged, mobility support does require
some new functionality in at least one router, known as the home agent of the mobile
node. This router is located on the “home” network of the mobile host. The mobile host
is assumed to have a permanent IP address, called its home address, which has a network
number equal to that of the home network, and thus of the home agent. This is the
address that will be used by other hosts when they send packets to the mobile host; since
it does not change, it can be used by long-lived applications as the host roams.

In many cases, a second router with enhanced functionality, the foreign agent, is also
required. This router is located on a network to which the mobile node attaches itself
when it is away from its home network. We will consider first the operation of mobile IP
when a foreign agent is used. An example network with both home and foreign agents is
shown in Figure 4.22.

Both home and foreign agents periodically announce their presence on the net-
works to which they are attached using agent advertisement messages. A mobile host
may also solicit an advertisement when it attaches to a new network. The advertisement
by the home agent enables a mobile host to learn the address of its home agent before it
leaves its home network. When the mobile host attaches to a foreign network, it hears
an advertisement from a foreign agent and registers with the agent, providing the address
of its home agent. The foreign agent then contacts the home agent, providing a care-of
address. This is usually the IP address of the foreign agent.

Figure 4.22 Mobile host and mobility agents.
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At this point, we can see that any host that tries to send a packet to the mobile host
will send it with a destination address equal to the home address of that node. Normal
IP forwarding will cause that packet to arrive on the home network of the mobile node,
on which the home agent is sitting. Thus, we can divide the problem of delivering the
packet to the mobile node into three parts:

1 How does the home agent intercept a packet that is destined for the mobile
node?

2 How does the home agent then deliver the packet to the foreign agent?

3 How does the foreign agent deliver the packet to the mobile node?

The first problem might look easy if you just look at Figure 4.22, in which the
home agent is clearly the only path between the sending host and the home network,
and thus must receive packets that are destined to the mobile node. But what if the
sending node were on network 18, or what if there were another router connected to
network 18 that tried to deliver the packet without its passing through the home agent?
To address this problem, the home agent actually impersonates the mobile node, using
a technique called proxy ARP. This works just like ARP as described in Section 4.1.5,
except that the home agent inserts the IP address of the mobile node, rather than its
own, in the ARP messages. It uses its own hardware address, so that all the nodes on
the same network learn to associate the hardware address of the home agent with the
IP address of the mobile node. One subtle aspect of this process is the fact that ARP
information may be cached in other nodes on the network. To make sure that these
caches are invalidated in a timely way, the home agent issues an ARP message as soon
as the mobile node registers with a foreign agent. Because the ARP message is not a
response to a normal ARP request, it is termed a gratuitous ARP.

The second problem is the delivery of the intercepted packet to the foreign agent.
Here we use the tunneling technique described in Section 4.1.8. The home agent simply
“wraps” the packet inside an IP header that is destined for the foreign agent and transmits
it into the internetwork. All the intervening routers just see an IP packet destined for the
IP address of the foreign agent. Another way of looking at this is that an IP tunnel is
established between the home agent and the foreign agent, and the home agent just
drops packets destined for the mobile node into that tunnel.

When a packet finally arrives at the foreign agent, it strips the extra IP header and
finds inside an IP packet destined for the mobile node. Clearly the foreign agent cannot
treat this like any old IP packet because this would cause it to send it back to the home
network. Instead, it has to recognize the address as that of a registered mobile node. It
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then delivers the packet to the hardware address of the mobile node (e.g., its Ethernet
address), which was learned as part of the registration process.

One observation that can be made about these procedures is that it is possible for
the foreign agent and the mobile node to be in the same box, that is, a mobile node
can perform the foreign agent function itself. To make this work, however, the mobile
node must be able to dynamically acquire an IP address that is located in the address
space of the foreign network. This address will then be used as the care-of address. In
our example, this would have to be an address with a network number of 12. We have
already seen one way in which a host can dynamically acquire a correct IP address using
DHCP (Section 4.1.6). This approach has the desirable feature of allowing mobile nodes
to attach to networks that don’t have foreign agents; thus, mobility can be achieved with
only the addition of a home agent and some new software on the mobile node (assuming
DHCP is used on the foreign network).

What about traffic in the other direction (i.e., from mobile node to fixed node)?
This turns out to be much easier. The mobile node just puts the IP address of the fixed
node in the destination field of its IP packets, while putting its permanent address in the
source field, and the packets are forwarded to the fixed node using normal means. Of
course, if both nodes in a conversation are mobile, then the procedures described above
are used in each direction.

Route Optimization in Mobile IP

There is one significant drawback to the above approach, which may be familiar to users
of cellular telephones. The route from sending node to mobile node can be significantly
suboptimal. One of the most extreme examples is when a mobile node and the sending
node are on the same network, but the home network for the mobile node is on the far
side of the Internet. The sending node addresses all packets to the home network; they
traverse the Internet to reach the home agent, which then tunnels them back across the
Internet to reach the foreign agent. Clearly it would be nice if the sending node could
find out that the mobile node is actually on the same network and deliver the packet
directly. In the more general case, the goal is to deliver packets as directly as possible from
sending node to mobile node without passing through a home agent. This is sometimes
referred to as the triangle routing problem since the path from sender to mobile node via
home agent takes two sides of a triangle, rather than the third side that is the direct path.

The basic idea behind the solution to triangle routing is to let the sending node
know the care-of address of the mobile node. The sending node can then create its
own tunnel to the foreign agent. This is treated as an optimization of the process just
described. If the sender has been equipped with the necessary software to learn the care-
of address and create its own tunnel, then the route can be optimized; if not, packets just
follow the suboptimal route.



294 4 Internetworking

When a home agent sees a packet destined for one of the mobile nodes that it
supports, it can deduce that the sender is not using the optimal route. Therefore, it
sends a binding update message back to the source, in addition to forwarding the data
packet to the foreign agent. The source, if capable, uses this binding update to create an
entry in a binding cache, which consists of a list of mappings from mobile node addresses
to care-of addresses. The next time this source has a data packet to send to that mobile
node, it will find the binding in the cache and can tunnel the packet directly to the
foreign agent.

There is an obvious problem with this scheme, which is that the binding cache may
become out-of-date if the mobile host moves to a new network. If an out-of-date cache
entry is used, the foreign agent will receive tunneled packets for a mobile node that is no
longer registered on its network. In this case, it sends a binding warning message back
to the sender to tell it to stop using this cache entry. This scheme works only in the case
where the foreign agent is not the mobile node itself, however. For this reason, cache
entries need to be deleted after some period of time; the exact amount is specified in the
binding update message.

Mobile routing provides some interesting security challenges. For example, an at-
tacker wishing to intercept the packets destined to some other node in an internetwork
could contact the home agent for that node and announce itself as the new foreign agent
for the node. Thus, it is clear that some authentication mechanisms are required. We
discuss such mechanisms in Chapter 8.

Finally, we note that there are many open issues in mobile networking. The security
and performance aspects of mobile networks might require routing algorithms to take
account of several factors when finding a route to a mobile host; for example, it might be
desirable to find a route that doesn’t pass through some untrusted network. There is also
the problem of ad hoc mobile networks—enabling a group of mobile nodes to form a
network in the absence of any fixed nodes. These continue to be areas of active research.

4.2.6 Router Implementation
In Section 3.4 we saw a variety of ways to build a switch, ranging from a general-purpose
workstation with a suitable number of network interfaces to some sophisticated hardware
designs. In general, the same range of options are available for building routers, many of
which look something like Figure 4.23. The control processor is responsible for running
the routing protocols discussed above, among other things, and generally acts as the
central point of control of the router. The switching fabric transfers packets from one
port to another, just as in a switch; and the ports provide a range of functionality to
allow the router to interface to links of various types (e.g., Ethernet or SONET).

A few points are worth noting about router design and how it differs from switch
design. First, routers must be designed to handle variable-length packets, a constraint that
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Figure 4.23 Block diagram of a router.

does not apply to ATM switches but is certainly applicable to Ethernet or Frame Relay
switches. It turns out that many high-performance routers are designed using a switching
fabric that is cell-based. In such cases the ports must be able to convert variable length
packets into cells and back again. This is very much like the standard ATM segmentation
and reassembly (SAR) problem described in Section 3.3.2.

Another consequence of the variable length of IP datagrams is that it can be harder
to characterize the performance of a router than a switch that forwards only cells. Routers
can usually forward a certain number of packets per second, and this implies that the
total throughput in bits per second depends on packet size. Router designers generally
have to make a choice as to what packet length they will support at line rate. That is, if
(pps) packets per second is the rate at which packets arriving on a particular port can be
forwarded, and linerate is the physical speed of the port in bits per second, then there
will be some packetsize in bits such that:

packetsize × pps = linerate

This is the packet size at which the router can forward at line rate; it is likely to be
able to sustain line rate for longer packets but not for shorter packets. Sometimes a
designer might decide that the right packet size to support is 40 bytes, since that is
the minimum size of an IP packet that has a TCP header attached. Another choice
might be the expected average packet size, which can be determined by studying traces
of network traffic. For example, measurements of the Internet backbone suggest that the
average IP packet is around 300 bytes long. However, such a router would fall behind
and perhaps start dropping packets when faced with a long sequence of short packets,
which is statistically likely from time to time and also very possible if the router is subject
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to an active attack (see Chapter 8). Design decisions of this type depend heavily on cost
considerations and the intended application of the router.

When it comes to the task of forwarding IP packets, routers can be broadly charac-
terized as having either a centralized or distributed forwarding model. In the centralized
model, the IP forwarding algorithm, outlined earlier in this chapter, is done in a single
processing engine that handles the traffic from all ports. In the distributed model, there
are several processing engines, perhaps one per port, or more often one per line card
where a line card may serve one or more physical ports. Each model has advantages and
disadvantages. All things being equal, a distributed forwarding model should be able to
forward more packets per second through the router as a whole, because there is more
processing power in total. But a distributed model also complicates the software archi-
tecture, because each forwarding engine typically needs its own copy of the forwarding
table, and thus it is necessary for the control processor to ensure that the forwarding
tables are updated consistently and in a timely manner.

Another aspect of router implementation that is significantly different than that of
switches is the IP forwarding algorithm itself. In bridges and most ATM switches, the
forwarding algorithm simply involves looking up a fixed length identifier (MAC address
or VCI) in a table, finding the correct output port in the table, and sending the packet
to that port. We have already seen in Section 4.1.4 that the IP forwarding algorithm
is a little more complicated than that, in part because of the need to decide whether a
particular IP address is directly reachable out to an interface of this router or whether
the packet needs to be sent to another router. We also saw that the relevant number
of bits that need to be examined when forwarding a packet is not fixed but variable,
depending on whether the address in question is from a class A, B, or C network. As we
will see in the next section, the situation is even more complicated in today’s Internet,
where “classless” addressing is the norm, and the number of bits that must be examined
to make the forwarding decision can be anything from 1 to 32 bits.

Because of the relatively high complexity of the IP forwarding algorithm, there have
been periods of time when it seemed IP routers might be running up against fundamen-
tal upper limits of performance. However, as we discuss in the Further Reading section
of this chapter, there have been many innovative approaches to IP forwarding developed
over the years, and at the time of writing there are commercial routers that can forward
40 Gbps of IP traffic per interface. By combining many such high-performance IP for-
warding engines with the sort of very scalable switch fabrics discussed in Section 3.4, it
has now become possible to build routers with many terabits of total throughput. That
is more than enough to see us through the next few years of growth in Internet traffic.

Another technology of interest in the field of router implementation is the network
processor. A network processor is intended to be a device that is just about as program-
mable as a standard workstation or PC processor, but that is more highly optimized for
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networking tasks. For example, a network processor might have instructions that are par-
ticularly well suited to performing lookups on IP addresses, or calculating checksums on
IP datagrams. Such devices could be used in routers and other networking devices (e.g.,
firewalls).

One of the interesting and ongoing debates about network processors is whether
they can do a better job than the alternatives. For example, given the continuous and
remarkable improvements in performance of conventional processors, and the huge in-
dustry that drives those improvements, can network processors keep up? And can a device
that strives for generality do as good a job as a custom-designed ASIC that does nothing
except, say, IP forwarding? Part of the answer to questions like these depend on what
you mean by “do a better job.” For example, there will always be trade-offs to be made
between cost of hardware, time to market, performance, and flexibility—the ability to
change the features supported by a router after it is built. We will see in the rest of this
chapter and in later chapters just how diverse the requirements for router functionality
can be. It is safe to assume that a wide range of router designs will exist for the foreseeable
future and that network processors will have some role to play.

4.3 Global Internet
At this point, we have seen how to connect a heterogeneous collection of networks to cre-
ate an internetwork and how to use the simple hierarchy of the IP address to make rout-
ing in an internet somewhat scalable. We say “somewhat” scalable because even though
each router does not need to know about all the hosts connected to the internet, it does,
in the model described so far, need to know about all the networks connected to the
internet. Today’s Internet has tens of thousands of networks connected to it. Routing
protocols such as those we have just discussed do not scale to those kinds of numbers.
This section looks at a variety of techniques that greatly improve scalability and that have
enabled the Internet to grow as far as it has.

Before getting to these techniques, we need to have a general picture in our heads of
what the global Internet looks like. It is not just a random interconnection of Ethernets,
but instead it takes on a shape that reflects the fact that it interconnects many different
organizations. Figure 4.24 gives a simple depiction of the state of the Internet in 1990.
Since that time, the Internet’s topology has grown much more complex than this figure
suggests—we present a more accurate picture of the current Internet in Section 4.3.3
and Figure 4.29—but this picture will do for now.

One of the salient features of this topology is that it consists of “end user” sites
(e.g., Stanford University) that connect to “service provider” networks (e.g., BARRNET
was a provider network that served sites in the San Francisco Bay area). In 1990, many
providers served a limited geographic region and were thus known as regional networks.
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Figure 4.24 The tree structure of the Internet in 1990.

The regional networks were, in turn, connected by a nationwide backbone. In 1990,
this backbone was funded by the National Science Foundation (NSF) and was there-
fore called the NSFNET backbone. Although the detail is not shown in this figure, the
provider networks are typically built from a large number of point-to-point links (e.g.,
DS-3 or OC-3 links) that connect to routers; similarly, each end user site is typically not
a single network, but instead consists of multiple physical networks connected by routers
and bridges.

Notice in Figure 4.24 that each provider and end user is likely to be an admin-
istratively independent entity. This has some significant consequences on routing. For
example, it is quite likely that different providers will have different ideas about the best
routing protocol to use within their network, and on how metrics should be assigned to
links in their network. Because of this independence, each provider’s network is usually
a single autonomous system (AS). We will define this term more precisely in Section 4.3.3,
but for now it is adequate to think of an AS as a network that is administered indepen-
dently of other ASs.

The fact that the Internet has a discernible structure can be used to our advantage
as we tackle the problem of scalability. In fact, we need to deal with two related scaling
issues. The first is the scalability of routing. We need to find ways to minimize the
number of network numbers that get carried around in routing protocols and stored in
the routing tables of routers. The second is address utilization, that is, making sure that
the IP address space does not get consumed too quickly.

Throughout this section we will see the principle of hierarchy used again and again
to improve scalability. We begin with subnetting, which primarily deals with address
space utilization. Next we introduce classless routing or supernetting, which tackles both
address utilization and routing scalability. We then look at how hierarchy can be used
to improve the scalability of routing, both through interdomain routing and within a
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single domain. Our final subsection looks at the emerging standards for IP version 6, the
invention of which was largely the result of scalability concerns.

4.3.1 Subnetting
The original intent of IP addresses was that the network part would uniquely identify
exactly one physical network. It turns out that this approach has a couple of drawbacks.
Imagine a large campus that has lots of internal networks and that decides to connect
to the Internet. For every network, no matter how small, the site needs at least a class C
network address. Even worse, for any network with more than 255 hosts, they need a
class B address. This may not seem like a big deal, and indeed it wasn’t when the Internet
was first envisioned, but there are only a finite number of network numbers, and there
are far fewer class B addresses than class C’s. Class B addresses tend to be in particularly
high demand because you never know if your network might expand beyond 255 nodes,
so it is easier to use a class B address from the start than to have to renumber every
host when you run out of room on a class C network. The problem we observe here is
address assignment inefficiency: A network with two nodes uses an entire class C network
address, thereby wasting 253 perfectly useful addresses; a class B network with slightly
more than 255 hosts wastes over 64,000 addresses.

Assigning one network number per physical network, therefore, uses up the IP ad-
dress space potentially much faster than we would like. While we would need to connect
over 4 billion hosts to use up all the valid addresses, we only need to connect 214 (about
16,000) class B networks before that part of the address space runs out. Therefore, we
would like to find some way to use the network numbers more efficiently.

Assigning many network numbers has another drawback that becomes apparent
when you think about routing. Recall that the amount of state that is stored in a node
participating in a routing protocol is proportional to the number of other nodes, and
that routing in an internet consists of building up forwarding tables that tell a router
how to reach different networks. Thus, the more network numbers there are in use, the
bigger the forwarding tables get. Big forwarding tables add cost to routers, and they are
potentially slower to search than smaller tables for a given technology, so they degrade
router performance. This provides another motivation for assigning network numbers
carefully.

Subnetting provides an elegantly simple way to reduce the total number of network
numbers that are assigned. The idea is to take a single IP network number and allocate
the IP addresses with that network number to several physical networks, which are now
referred to as subnets. Several things need to be done to make this work. First, the subnets
should be close to each other. This is because at a distant point in the Internet, they will
all look like a single network, having only one network number between them. This
means that a router will only be able to select one route to reach any of the subnets,
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so they had better all be in the same general direction. A perfect situation in which to
use subnetting is a large campus or corporation that has many physical networks. From
outside the campus, all you need to know to reach any subnet inside the campus is where
the campus connects to the rest of the Internet. This is often at a single point, so one
entry in your forwarding table will suffice. Even if there are multiple points at which the
campus is connected to the rest of the Internet, knowing how to get to one point in the
campus network is still a good start.

The mechanism by which a single network number can be shared among multiple
networks involves configuring all the nodes on each subnet with a subnet mask. With
simple IP addresses, all hosts on the same network must have the same network number.
The subnet mask enables us to introduce a subnet number; all hosts on the same physical
network will have the same subnet number, which means that hosts may be on different
physical networks but share a single network number.

What the subnet mask effectively does is introduce another level of hierarchy into
the IP address. For example, suppose that we want to share a single class B address among
several physical networks. We could use a subnet mask of 255.255.255.0. (Subnet masks
are written down just like IP addresses; this mask is therefore all 1s in the upper 24 bits
and 0s in the lower 8 bits.) In effect, this means that the top 24 bits (where the mask has
1s) are now defined to be the network number, and the lower 8 bits (where the mask has
0s) are the host number. Since the top 16 bits identify the network in a class B address,
we may now think of the address as having not two parts but three: a network part, a
subnet part, and a host part. That is, we have divided what used to be the host part into
a subnet part and a host part. This is shown in Figure 4.25.

What subnetting means to a host is that it is now configured with both an IP
address and a subnet mask for the subnet to which it is attached. For example, host
H1 in Figure 4.26 is configured with an address of 128.96.34.15 and a subnet mask of

Figure 4.25 Subnet addressing.
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Figure 4.26 An example of subnetting.

255.255.255.128. (All hosts on a given subnet are configured with the same mask; i.e.,
there is exactly one subnet mask per subnet.) The bitwise AND of these two numbers
defines the subnet number of the host and of all other hosts on the same subnet. In
this case, 128.96.34.15 AND 255.255.255.128 equals 128.96.34.0, so this is the subnet
number for the topmost subnet in the figure.

When the host wants to send a packet to a certain IP address, the first thing it
does is to perform a bitwise AND between its own subnet mask and the destination IP
address. If the result equals the subnet number of the sending host, then it knows that the
destination host is on the same subnet and the packet can be delivered directly over the
subnet. If the results are not equal, the packet needs to be sent to a router to be forwarded
to another subnet. For example, if H1 is sending to H2, then H1 ANDs its subnet mask
(255.255.255.128) with the address for H2 (128.96.34.139) to obtain 128.96.34.128.
This does not match the subnet number for H1 (128.96.34.0) so H1 knows that H2 is
on a different subnet. Since H1 cannot deliver the packet to H2 directly over the subnet,
it sends the packet to its default router R1.

Note that ARP is largely unaffected by the change in address structure. Once a host
or router figures out which node it needs to deliver a packet to on one of the networks to
which it is attached, it performs ARP to find the MAC address for that node if necessary.

The job of a router also changes when we introduce subnetting. Recall that,
for simple IP, a router has a forwarding table that consists of entries of the form
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SubnetNumber SubnetMask NextHop

128.96.34.0 255.255.255.128 Interface 0

128.96.34.128 255.255.255.128 Interface 1

128.96.33.0 255.255.255.0 R2

Table 4.10 Example forwarding table with subnetting for Figure 4.26.

〈NetworkNum, NextHop〉. To support subnetting, the table must now hold entries
of the form 〈SubnetNumber, SubnetMask, NextHop〉. To find the right entry in
the table, the router ANDs the packet’s destination address with the SubnetMask for
each entry in turn; if the result matches the SubnetNumber of the entry, then this is
the right entry to use, and it forwards the packet to the next hop router indicated. In the
example network of Figure 4.26, router R1 would have the entries shown in Table 4.10.

Continuing with the example of a datagram from H1 being sent to H2, R1
would AND H2’s address (128.96.34.139) with the subnet mask of the first entry
(255.255.255.128) and compare the result (128.96.34.128) with the network number
for that entry (128.96.34.0). Since this is not a match, it proceeds to the next entry. This
time a match does occur, so R1 delivers the datagram to H2 using interface 1, which is
the interface connected to the same network as H2.

We can now describe the datagram forwarding algorithm in the following way:

D = destination IP address
for each forwarding table entry 〈SubnetNumber, SubnetMask, NextHop〉

D1 = SubnetMask & D
if D1 = SubnetNumber
if NextHop is an interface
deliver datagram directly to destination

else
deliver datagram to NextHop (a router)

Although not shown in this example, a default router would usually be included in
the table and would be used if no explicit matches were found. We note in passing
that a naive implementation of this algorithm—one involving repeated ANDing of the
destination address with a subnet mask that may not be different every time, and a linear
table search—would be very inefficient.

A few fine points about subnetting need to be mentioned. We have already seen
that the subnet mask does not need to align with a byte boundary, with the example
mask of 255.255.255.128 (25 1s followed by 7 0s) used above. More confusingly, it is
not even necessary for all the 1s in a subnet mask to be contiguous. For example, it
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would be quite possible to use a subnet mask of 255.255.1.0. All of the mechanisms
described above should continue to work, but now you can’t look at a contiguous part
of the IP address and say, “That is the subnet number.” This makes administration more
difficult. It may also fail to work with implementations that assume that no one would
use noncontiguous masks, and so it is not recommended in practice.

We can also put multiple subnets on a single physical network. The effect of this
would be to force hosts on the same network to talk to each other through a router, which
might be useful for administrative purposes; for example, to provide isolation between
different departments sharing a LAN.

A third point to which we have alluded is that different parts of the internet see
the world differently. From outside our hypothetical campus, routers see a single net-
work. In the example above, routers outside the campus see the collection of networks
in Figure 4.26 as just the network 128.96, and they keep one entry in their forwarding
tables to tell them how to reach it. Routers within the campus, however, need to be able
to route packets to the right subnet. Thus, not all parts of the internet see exactly the
same routing information. The next section takes a closer look at how the propagation
of routing information is done in the Internet.▲

The bottom line is that subnetting helps solve our scalability problems in two ways.
First, it improves our address assignment efficiency by letting us not use up an entire
class C or class B address every time we add a new physical network. Second, it helps
us aggregate information. From a reasonable distance, a complex collection of physical
networks can be made to look like a single network, so that the amount of information
that routers need to store to deliver datagrams to those networks can be reduced.

4.3.2 Classless Routing (CIDR)
Classless interdomain routing (CIDR, pronounced “cider”) is a technique that addresses
two scaling concerns in the Internet: the growth of backbone routing tables as more
and more network numbers need to be stored in them, and the potential for the 32-
bit IP address space to be exhausted well before the 4 billionth host is attached to the
Internet. We have already mentioned the problem that would cause this address space
exhaustion: address assignment inefficiency. The inefficiency arises because the IP address
structure, with class A, B, and C addresses, forces us to hand out network address space
in fixed-sized chunks of three very different sizes. A network with two hosts needs a
class C address, giving an address assignment efficiency of 2/255 = 0.78%; a network
with 256 hosts needs a class B address, for an efficiency of only 256/65,535 = 0.39%.
Even though subnetting can help us to assign addresses carefully, it does not get around
the fact that any autonomous system with more than 255 hosts, or an expectation of
eventually having that many, wants a class B address.
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As it turns out, exhaustion of the IP address space centers on exhaustion of the
class B network numbers. One way to deal with that would seem to be saying no to any
AS that requests a class B address unless they can show a need for something close to
64K addresses, and instead giving them an appropriate number of class C addresses to
cover the expected number of hosts. Since we would now be handing out address space
in chunks of 256 addresses at a time, we could more accurately match the amount of
address space consumed to the size of the AS. For any AS with at least 256 hosts (which
means the majority of ASs), we can guarantee an address utilization of at least 50%, and
typically much more.

This solution, however, raises a problem that is at least as serious: excessive storage
requirements at the routers. If a single AS has, say, 16 class C network numbers assigned
to it, that means every Internet backbone router needs 16 entries in its routing tables
for that AS. This is true even if the path to every one of those networks is the same.
If we had assigned a class B address to the AS, the same routing information could be
stored in one table entry. However, our address assignment efficiency would then be only
16 × 255/65,536 = 6.2%.

CIDR, therefore, tries to balance the desire to minimize the number of routes that
a router needs to know against the need to hand out addresses efficiently. To do this,
CIDR helps us to aggregate routes. That is, it lets us use a single entry in a forwarding ta-
ble to tell us how to reach a lot of different networks. As you may have guessed from the
name, it does this by breaking the rigid boundaries between address classes. To under-
stand how this works, consider our hypothetical AS with 16 class C network numbers.
Instead of handing out 16 addresses at random, we can hand out a block of contigu-
ous class C addresses. Suppose we assign the class C network numbers from 192.4.16
through 192.4.31. Observe that the top 20 bits of all the addresses in this range are the
same (11000000 00000100 0001). Thus, what we have effectively created is a 20-bit
network number—something that is between a class B network number and a class C
number in terms of the number of hosts that it can support. In other words, we get both
the high address efficiency of handing out addresses in chunks smaller than a class B net-
work, and a single network prefix that can be used in forwarding tables. Observe that for
this scheme to work, we need to hand out blocks of class C addresses that share a com-
mon prefix, which means that each block must contain a number of class C networks
that is a power of two.

CIDR requires a new type of notation to represent network numbers, or prefixes as
they are known, because the prefixes can be of any length. The convention is to place a
/X after the prefix where X is the prefix length in bits. So, for the example above, the 20-
bit prefix for all the networks 192.4.16 through 192.4.31 is represented as 192.4.16/20.
By contrast, if we wanted to represent a single class C network number, which is 24
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bits long, we would write it 192.4.16/24. Today with CIDR being the norm it is more
common to hear people talk about “slash 24” prefixes than class C networks.

All we need now to make CIDR solve our problems is a routing protocol that can
deal with these “classless” addresses, which means that it must understand that a network
number may be of any length. Modern routing protocols (such as BGP-4, described
below) do exactly that. The network numbers that are carried in such a routing protocol
are represented simply by 〈length, value〉 pairs, where the length gives the number of
bits in the network prefix—20 in the above example. Note that representing a network
address in this way is similar to the 〈mask, value〉 approach used in subnetting, as long
as masks consist of contiguous bits starting from the most significant bit. Also note that
we used subnetting to share one address among multiple physical networks, while CIDR
aims to collapse the multiple addresses that would be assigned to a single AS onto one
address. The similarity between the two approaches is reflected in the original name for
CIDR—supernetting.

In fact, the ability to aggregate routes in the way that we have just shown is only the
first step. Imagine an Internet service provider network whose primary job is to provide
Internet connectivity to a large number of corporations and campuses (customers). If we
assign prefixes to the customers in such a way that many different customer networks
connected to the provider network share a common, shorter address prefix, then we can
get even greater aggregation of routes. Consider the example in Figure 4.27. Assume that
eight customers served by the provider network have each been assigned adjacent 24-bit

Figure 4.27 Route aggregation with CIDR.
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network prefixes. Those prefixes all start with the same 21 bits. Since all of the customer
are reachable through the same provider network, it can advertise a single route to all of
them by just advertising the common 21-bit prefix they share. And it can do this even
if not all the 24-bit prefixes have been handed out, as long as the provider ultimately
will have the right to hand out those prefixes to a customer. One way to accomplish that
is to assign a portion of address space to the provider in advance, and then to let the
network provider assign addresses from that space to its customers as needed. Note that,
in contrast to this simple example, there is no need for all customer prefixes to be the
same length.

IP Forwarding Revisited

In all our discussion of IP forwarding so far, we have assumed that we could find the
network number in a packet and then look up that number in a forwarding table. How-
ever, now that we have introduced CIDR, we need to reexamine this assumption. CIDR
means that prefixes may be of any length, from 2 to 32 bits. Furthermore, it is sometimes
possible to have prefixes in the forwarding table that “overlap,” in the sense that some
addresses may match more than one prefix. For example, we might find both 171.69 (a
16-bit prefix) and 171.69.10 (a 24-bit prefix) in the forwarding table of a single router. In
this case, a packet destined to, say, 171.69.10.5, clearly matches both prefixes. The rule
in this case is based on the principle of “longest match,” that is, the packet matches the
longest prefix, which would be 171.69.10 in this example. On the other hand, a packet
destined to 171.69.20.5 would match 171.69 and not 171.69.10, and in the absence of
any other matching entry in the routing table, 171.69 would be the longest match.

The task of efficiently finding the longest match between an IP address and the
variable-length prefixes in a forwarding table has been a fruitful field of research in recent
years, and the Further Reading section of this chapter provides some references. The most
well-known algorithm uses an approach known as a PATRICIA tree, which was actually
developed well in advance of CIDR.

4.3.3 Interdomain Routing (BGP)
At the beginning of this section we introduced the notion that the Internet is organized
as autonomous systems, each of which is under the control of a single administrative
entity. A corporation’s complex internal network might be a single AS, as may the net-
work of a single Internet service provider. Figure 4.28 shows a simple network with two
autonomous systems.

The basic idea behind autonomous systems is to provide an additional way to hi-
erarchically aggregate routing information in a large internet, thus improving scalability.
We now divide the routing problem into two parts: routing within a single autonomous
system and routing between autonomous systems. Since another name for autonomous
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Figure 4.28 A network with two autonomous systems.

systems in the Internet is routing domains, we refer to the two parts of the routing prob-
lem as interdomain routing and intradomain routing. In addition to improving scalabil-
ity, the AS model decouples the intradomain routing that takes place in one AS from that
taking place in another. Thus, each AS can run whatever intradomain routing protocols
it chooses. It can even use static routes or multiple protocols if desired. The interdomain
routing problem is then one of having different ASs share reachability information—
descriptions of the set of IP addresses that can be reached via a given AS—with each
other.

Perhaps the most important challenge of interdomain routing today is the need for
each AS to determine its own routing policies. A simple example routing policy imple-
mented at a particular AS might look like this: Whenever possible, I prefer to send traffic
via AS X than via AS Y, but I’ll use AS Y if it is the only path, and I never want to carry
traffic from AS X to AS Y or vice versa. Such a policy would be typical when I have paid
money to both AS X and AS Y to connect my AS to the rest of the Internet, and AS X is
my preferred provider of connectivity with AS Y being the fallback. Because I view both
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AS X and AS Y as providers (and presumably I paid them to play this role), I don’t ex-
pect to help them out by carrying traffic between them across my network (this is called
transit traffic). The more ASs I connect to, the more complex policies I might have, es-
pecially when you consider backbone providers, who may interconnect with dozens of
other providers and hundreds of customers, and have different economic arrangements
(which affect routing policies) with each one.

A key design goal of interdomain routing is that policies like the example above,
and much more complex ones, should be supported by the interdomain routing system.
To make the problem harder, I need to be able to implement such a policy without any
help from other ASs, and in the face of possible misconfiguration or malicious behavior
by other ASs.

There have been two major interdomain routing protocols in the recent history of
the Internet. The first was the Exterior Gateway Protocol (EGP). EGP had a number of
limitations, perhaps the most severe of which was that it constrained the topology of the
Internet rather significantly. EGP basically forced a treelike topology onto the Internet, or
to be more precise, it was designed when the Internet had a treelike topology, such as that
illustrated in Figure 4.24. EGP did not allow for the topology to become more general.
Note that in this simple treelike structure, there is a single backbone, and autonomous
systems are connected only as parents and children and not as peers.

The replacement for EGP is the Border Gateway Protocol (BGP), which is in its
fourth version at the time of this writing (BGP-4). BGP is also known for being rather
complex. This section presents the highlights of BGP-4.

As a starting position, BGP assumes that the Internet is an arbitrarily intercon-
nected set of ASs. This model is clearly general enough to accommodate nontree-
structured internetworks, like the simplified picture of today’s multibackbone Internet
shown in Figure 4.29.9

Unlike the simple tree-structured Internet shown in Figure 4.24, today’s Internet
consists of an interconnection of multiple backbone networks (they are usually called
service provider networks, and they are operated by private companies rather than the
government), and sites are connected to each other in arbitrary ways. Some large corpo-
rations connect directly to one or more of the backbones, while others connect to smaller,
nonbackbone service providers. Many service providers exist mainly to provide service
to “consumers” (i.e., individuals with PCs in their homes), and these providers must also
connect to the backbone providers. Often many providers arrange to interconnect with
each other at a single “peering point.” In short, it is hard to discern much structure at all
in today’s Internet.

9In an interesting stretch of metaphor, the Internet now has multiple backbones, having had only one for most of its early
life. The authors know of no other animal that has this characteristic.



4.3 Global Internet 309

Figure 4.29 Today’s multibackbone Internet.

Given this rough sketch of the Internet, if we define local traffic as traffic that
originates at or terminates on nodes within an AS, and transit traffic as traffic that passes
through an AS, we can classify ASs into three types:

■ Stub AS: an AS that has only a single connection to one other AS; such an AS
will only carry local traffic. The small corporation in Figure 4.29 is an example
of a stub AS.

■ Multihomed AS: an AS that has connections to more than one other AS but that
refuses to carry transit traffic; for example, the large corporation at the top of
Figure 4.29.

■ Transit AS: an AS that has connections to more than one other AS and that is
designed to carry both transit and local traffic, such as the backbone providers
in Figure 4.29.

Whereas the discussion of routing in Section 4.2 focused on finding optimal paths
based on minimizing some sort of link metric, the goals of interdomain routing are rather
more complex. First, it is necessary to find some path to the intended destination that is
loop-free. Second, paths must be compliant with the policies of the various ASs along the
path—and as we have already seen, those policies might be almost arbitrarily complex.
Thus, while intradomain focuses on a well-defined problem of optimizing the scalar
cost of the path, intradomain focuses on finding the best, nonlooping, policy-compliant
path—a much more complex optimization problem.

There are additional factors that make interdomain routing hard. The first is sim-
ply a matter of scale. An Internet backbone router must be able to forward any packet
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destined anywhere in the Internet. That means having a routing table that will provide
a match for any valid IP address. While CIDR has helped to control the number of dis-
tinct prefixes that are carried in the Internet’s backbone routing, there is inevitably a lot
of routing information to pass around—on the order of 200,000 prefixes at the time of
writing.

A second challenge in interdomain routing arises from the autonomous nature of
the domains. Note that each domain may run its own interior routing protocols, and
use any scheme they choose to assign metrics to paths. This means that it is impossible
to calculate meaningful path costs for a path that crosses multiple ASs. A cost of 1,000
across one provider might imply a great path, but it might mean an unacceptably bad
one from another provider. As a result, interdomain routing advertises only reachability.
The concept of reachability is basically a statement that “you can reach this network
through this AS.” This means that for interdomain routing to pick an optimal path is
essentially impossible.

The third challenge involves the issue of trust. Provider A might be unwilling to
believe certain advertisements from provider B for fear that provider B will advertise
erroneous routing information. For example, trusting provider B when he advertises a
great route to anywhere in the Internet can be a disastrous choice if provider B turns out
to have made a mistake configuring his routers or to have insufficient capacity to carry
the traffic.

The issue of trust is closely related to the need to support complex policies as
noted above. For example, I might be willing to trust a particular provider only when he
advertises reachability to certain prefixes, and thus I would have a policy that says “use
AS X to reach only prefixes p and q, if and only if AS X advertises reachability to those
prefixes.”

When configuring BGP, the administrator of each AS picks at least one node to
be a “BGP speaker,” which is essentially a spokesperson for the entire AS. That BGP
speaker establishes BGP sessions to other BGP speakers in other ASs. These sessions are
used to exchange reachability information among ASs.

In addition to the BGP speakers, the AS has one or more border gateways, which
need not be the same as the speakers. The border gateways are the routers through which
packets enter and leave the AS. In our simple example in Figure 4.28, routers R2 and R4
would be border gateways. Note that we have avoided using the word “gateway” until
this point because it tends to be confusing. We can’t avoid it here, given the name of
the protocol we are describing. The important point to understand here is that, in the
context of interdomain routing, a border gateway is simply an IP router that is charged
with the task of forwarding packets between ASs.

BGP does not belong to either of the two main classes of routing protocols
(distance-vector and link-state protocols) described in Section 4.2. Unlike these pro-
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Figure 4.30 Example of a network running BGP.

tocols, BGP advertises complete paths as an enumerated list of ASs to reach a particular
network. This is necessary to enable the sorts of policy decisions described above to be
made in accordance with the wishes of a particular AS. It also enables routing loops to
be readily detected.

To see how this works, consider the example network in Figure 4.30. Assume that
the providers are transit networks, while the customer networks are stubs. A BGP speaker
for the AS of provider A (AS 2) would be able to advertise reachability information
for each of the network numbers assigned to customers P and Q. Thus, it would say,
in effect, “The networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached di-
rectly from AS 2.” The backbone network, on receiving this advertisement, can advertise,
“The networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path
〈AS 1, AS 2〉.” Similarly, it could advertise, “The networks 192.12.69, 192.4.54, and
192.4.23 can be reached along the path 〈AS 1, AS 3〉.”

An important job of BGP is to prevent the establishment of looping paths. For
example, consider three interconnected ASs, 1, 2, and 3. Suppose AS 1 learns that it
can reach network 10.0.1 through AS 2, so it advertises this fact to AS 3, who in turn
advertises it back to AS 2. AS 2 could now decide that AS 3 was the place to send packets
destined for 10.0.1; AS 3 sends them to AS 1; AS 1 sends them back to AS 2; and they
would loop forever. This is prevented by carrying the complete AS path in the routing
messages. In this case, the advertisement received by AS 2 from AS 3 would contain an
AS path of 〈AS 3, AS 1, AS 2〉. AS 2 sees itself in this path, and thus concludes that this
is not a useful path for it to use.

It should be apparent that the AS numbers carried in BGP need to be unique.
For example, AS 2 can only recognize itself in the AS path in the above example if no
other AS identifies itself in the same way. AS numbers are 16-bit numbers assigned by
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a central authority to assure uniqueness. While 16 bits only allows about 65,000 ASs,
which might not seem like a lot, we note that stub ASs do not need a unique AS number,
and this covers the overwhelming majority of nonprovider networks.

We should note that a given AS will only advertise routes that it considers good
enough for itself. That is, if a BGP speaker has a choice of several different routes to a
destination, it will choose the best one according to its own local policies, and then that
will be the route it advertises. Furthermore, a BGP speaker is under no obligation to
advertise any route to a destination, even if it has one. This is how an AS can implement
a policy of not providing transit—by refusing to advertise routes to prefixes that are not
contained within that AS, even if it knows how to reach them.

In addition to advertising paths, BGP speakers need to be able to cancel previously
advertised paths if a critical link or node on a path goes down. This is done with a
form of negative advertisement known as a withdrawn route. Both positive and negative
reachability information are carried in a BGP update message, the format of which is
shown in Figure 4.31. (Note that the fields in this figure are multiples of 16 bits, unlike
other packet formats in this chapter.)

One point to note about BGP-4 is that it was designed to cope with the classless
addresses described in Section 4.3.2. This means that the “networks” that are advertised
in BGP are actually prefixes of any length. Thus, the updates contain both the prefix itself
and its length in bits. When writing these down, it is common to write prefix/length.
For example, a CIDR prefix that begins 192.4.16 and is 20 bits long would be written
as 192.4.16/20.

Figure 4.31 BGP-4 update packet format.
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A final point to note is that BGP is defined to run on top of TCP, the reliable
transport protocol described in Section 5.2. Because BGP speakers can count on TCP
to be reliable, this means that any information that has been sent from one speaker to
another does not need to be sent again. Thus, as long as nothing has changed, a BGP
speaker can simply send an occasional “keep alive” message that says, in effect “I’m still
here and nothing has changed.” If that router were to crash, it would stop sending the
keep alives, and the other routers that had learned routes from it would know that those
routes were no longer valid.

We will not delve further into the details of BGP-4, except to point out that all
the protocol does is specify how reachability information should be exchanged among
autonomous systems. BGP speakers obtain enough information by this exchange to cal-
culate loop-free routes to all reachable networks, but how they choose the “best” routes
is largely left to the policies of the AS.▲

Let’s return to the real question: How does all this help us to build scalable net-
works? First, the number of nodes participating in BGP is on the order of the number
of ASs, which is much smaller than the number of networks. Second, finding a good
interdomain route is only a matter of finding a path to the right border router, of which
there are only a few per AS. Thus, we have neatly subdivided the routing problem into
manageable parts, once again using a new level of hierarchy to increase scalability. The
complexity of interdomain routing is now on the order of the number of ASs, and the
complexity of intradomain routing is on the order of the number of networks in a single
AS.

Integrating Interdomain and Intradomain Routing

While the preceding discussion illustrates how a BGP speaker learns interdomain routing
information, the question still remains as to how all the other routers in a domain get
this information. There are several ways this problem can be addressed.

Let’s start with a very simple situation, which is also very common. In the case of a
stub AS that only connects to other ASs at a single point, the border router is clearly the
only choice for all routes that are outside the AS. Such a router can “inject” a default route
into the intradomain routing protocol. In effect, this is a statement that any network that
has not been explicitly advertised in the intradomain protocol is reachable through the
border router. Recall from the discussion of IP forwarding in Section 4.1 that the default
entry in the forwarding table comes after all the more specific entries, and it matches
anything that failed to match a specific entry.

The next step up in complexity is to have the border routers inject specific routes
they have learned from outside the AS. Consider, for example, the border router of a
provider AS that connects to a customer AS. That router could learn that the network
prefix 192.4.54/24 is located inside the customer AS, either through BGP or because the
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information is configured into the border router. It could inject a route to that prefix into
the routing protocol running inside the provider AS. This would be an advertisement of
the sort “I have a link to 192.4.54/24 of cost X.” This would cause other routers in the
provider AS to learn that this border router is the place to send packets destined for that
prefix.

The final level of complexity comes in backbone networks, which learn so much
routing information from BGP that it becomes too costly to inject it into the intrado-
main protocol. For example, if a border router wants to inject 10,000 prefixes that it
learned about from another AS, it will have to send very big link-state packets to the
other routers in that AS, and their shortest-path calculations are going to become very
complex. For this reason, the routers in a backbone network use a variant of BGP called
interior BGP (iBGP) to effectively redistribute the information that is learned by the
BGP speakers at the edges of the AS to all the other routers in the AS. (The other variant
of BGP, discussed above, runs between ASs and is called exterior BGP or eBGP.) iBGP
enables any router in the AS to learn the best border router to use when sending a packet
to any address. At the same time, each router in the AS keeps track of how to get to each
border router using a conventional intradomain protocol with no injected information.
By combining these two sets of information, each router in the AS is able to determine
the appropriate next hop for all prefixes.

To see how this all works, consider the simple example network, representing a
single AS, in Figure 4.32. There are three border routers, A, D, and E, that speak eBGP
to other ASs and learn how to reach various prefixes. These three border routers com-
municate with other, and with the interior routers B and C, by building a mesh of
iBGP sessions among all the routers in the AS. Let’s now focus in on how router B
builds up its complete view of how to forward packets to any prefix. Now look at the
table at the top left of Figure 4.33 that shows the information that router B learns from
its iBGP sessions. It learns that some prefixes are best reached via router A, some via
D, and some via E. At the same time, all the routers in the AS are also running some
intradomain routing protocol such as RIP or OSPF. (A generic term for intradomain
protocols is IGP—interior gateway protocol.) From this completely separate protocol,
B learns how to reach other nodes inside the domain, as shown in the top right table.
For example, to reach router E, B needs to send packets toward router C. Finally, in
the bottom table, B puts the whole picture together, combining the information about
external prefixes learned from iBGP with the information about interior routes to the
border routers learned from the IGP. Thus, if a prefix like 18.0/16 is reachable via border
router E, and the best interior path to E is via C, then it follows that any packet destined
for 18.0/16 should be forwarded toward C. In this way, any router in the AS can build
up a complete routing table for any prefix that is reachable via some border router of
the AS.
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Figure 4.32 Example of interdomain and intradomain routing. All routers run iBGP and

an intradomain routing protocol. Border routers (A, D, E) also run eBGP to other ASs.

Figure 4.33 BGP routing table, IGP routing table, and combined table at router B.
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4.3.4 Routing Areas
As if we didn’t already have enough hierarchy, link-state intradomain routing protocols
provide a means to partition a routing domain into subdomains called areas. (The ter-
minology varies somewhat among protocols—we use the OSPF terminology here.) By
adding this extra level of hierarchy, we enable single domains to grow larger without
overburdening the intradomain routing protocols.

An area is a set of routers that are administratively configured to exchange link-state
information with each other. There is one special area—the backbone area, also known
as area 0. An example of a routing domain divided into areas is shown in Figure 4.34.
Routers R1, R2, and R3 are members of the backbone area. They are also members of at
least one nonbackbone area; R1 is actually a member of both area 1 and area 2. A router
that is a member of both the backbone area and a nonbackbone area is an area border
router (ABR). Note that these are distinct from the routers that are at the edge of an AS,
which are referred to as AS border routers for clarity.

Routing within a single area is exactly as described in Section 4.2.3. All the routers
in the area send link-state advertisements to each other, and thus develop a complete,
consistent map of the area. However, the link-state advertisements of routers that are not
area border routers do not leave the area in which they originated. This has the effect
of making the flooding and route calculation processes considerably more scalable. For
example, router R4 in area 3 will never see a link-state advertisement from router R8 in
area 1. As a consequence, it will know nothing about the detailed topology of areas other
than its own.

Figure 4.34 A domain divided into areas.
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How, then, does a router in one area determine the right next hop for a packet
destined to a network in another area? The answer to this becomes clear if we imagine
the path of a packet that has to travel from one nonbackbone area to another as being
split into three parts. First, it travels from its source network to the backbone area, then it
crosses the backbone, then it travels from backbone to destination network. To make this
work, the area border routers summarize routing information that they have learned from
one area and make it available in their advertisements to other areas. For example, R1
receives link-state advertisements from all the routers in area 1 and can thus determine
the cost of reaching any network in area 1. When R1 sends link-state advertisements
into area 0, it advertises the costs of reaching the networks in area 1 much as if all those
networks were directly connected to R1. This enables all the area 0 routers to learn
the cost to reach all networks in area 1. The area border routers then summarize this
information and advertise it into the nonbackbone areas. Thus, all routers learn how to
reach all networks in the domain.

Note that in the case of area 2, there are two ABRs, and that routers in area 2 will
thus have to make a choice as to which one they use to reach the backbone. This is easy
enough, since both R1 and R2 will be advertising costs to various networks, so that it will
become clear which is the better choice as the routers in area 2 run their shortest-path
algorithm. For example, it is pretty clear that R1 is going to be a better choice than R2
for destinations in area 1.

When dividing a domain into areas, the network administrator makes a trade-off
between scalability and optimality of routing. The use of areas forces all packets traveling
from one area to another to go via the backbone area, even if a shorter path might have
been available. For example, even if R4 and R5 were directly connected, packets would
not flow between them because they are in different nonbackbone areas. It turns out that
the need for scalability is often more important than the need to use the absolute shortest
path.▲

This illustrates an important principle in network design. There is frequently a
trade-off between some sort of optimality and scalability. When hierarchy is introduced,
information is hidden from some nodes in the network, hindering their ability to make
perfectly optimal decisions. However, information hiding is essential to scalability, since
it saves all nodes from having global knowledge. It is invariably true in large networks
that scalability is a more pressing design goal than perfect optimality.

Finally, we note that there is a trick by which network administrators can more
flexibly decide which routers go in area 0. This trick uses the idea of a virtual link be-
tween routers. Such a virtual link is obtained by configuring a router that is not directly
connected to area 0 to exchange backbone routing information with a router that is.
For example, a virtual link could be configured from R8 to R1, thus making R8 part of
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the backbone. R8 would now participate in link-state advertisement flooding with the
other routers in area 0. The cost of the virtual link from R8 to R1 is determined by the
exchange of routing information that takes place in area 1. This technique can help to
improve the optimality of routing.

4.3.5 IP Version 6 (IPv6)
In many respects, the motivation for a new version of IP is the same as the motivation
for the techniques described so far in this section: to deal with scaling problems caused
by the Internet’s massive growth. Subnetting and CIDR have helped to contain the rate
at which the Internet address space is being consumed (the address depletion problem)
and have also helped to control the growth of routing table information needed in the
Internet’s routers (the routing information problem). However, there will come a point
at which these techniques are no longer adequate. In particular, it is virtually impossible
to achieve 100% address utilization efficiency, so the address space will be exhausted
well before the 4 billionth host is connected to the Internet. Even if we were able to
use all 4 billion addresses, it’s not too hard to imagine ways that that number could be
exhausted, such as the assignment of IP addresses to mobile phones, televisions, or other
household appliances. All of these possibilities argue that a bigger address space than that
provided by 32 bits will eventually be needed.

Historical Perspective

The IETF began looking at the problem of expanding the IP address space in 1991,
and several alternatives were proposed. Since the IP address is carried in the header of
every IP packet, increasing the size of the address dictates a change in the packet header.
This means a new version of the Internet Protocol, and as a consequence, a need for new
software for every host and router in the Internet. This is clearly not a trivial matter—it
is a major change that needs to be thought about very carefully.

The effort to define a new version of IP was known as IP Next Generation, or
IPng. As the work progressed, an official IP version number was assigned, so IPng is now
known as IPv6. Note that the version of IP discussed so far in this chapter is version 4
(IPv4). The apparent discontinuity in numbering is the result of version number 5 being
used for an experimental protocol some years ago.

The significance of the change to a new version of IP caused a snowball effect. The
general feeling among network designers was that if you are going to make a change of
this magnitude, you might as well fix as many other things in IP as possible at the same
time. Consequently, the IETF solicited white papers from anyone who cared to write
one, asking for input on the features that might be desired in a new version of IP. In
addition to the need to accommodate scalable routing and addressing, some of the other
wish list items for IPng were
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■ Support for real-time services;

■ Security support;

■ Autoconfiguration (i.e., the ability of hosts to automatically configure them-
selves with such information as their own IP address and domain name);

■ Enhanced routing functionality, including support for mobile hosts.

It is interesting to note that while many of these features were absent from IPv4 at
the time IPv6 was being designed, support for all of them has made its way into IPv4 in
recent years, often using similar techniques in both protocols. It can be argued that the
freedom to think of IPv6 as a clean slate facilitated the design of new capabilities for IP
that were then retrofitted into IPv4.

In addition to the wish list, one absolutely nonnegotiable feature for IPng was that
there must be a transition plan to move from the current version of IP (version 4) to
the new version. With the Internet being so large and having no centralized control, it
would be completely impossible to have a flag day on which everyone shut down their
hosts and routers and installed a new version of IP. Thus, there will probably be a long
transition period in which some hosts and routers will run IPv4 only, some will run IPv4
and IPv6, and some will run IPv6 only.

The IETF appointed a committee called the IPng Directorate to collect all the
inputs on IPng requirements and to evaluate proposals for a protocol to become IPng.
Over the life of this committee there were a number of proposals, some of which merged
with other proposals, and eventually one was chosen by the Directorate to be the basis
for IPng. That proposal was called Simple Internet Protocol Plus (SIPP). SIPP originally
called for a doubling of the IP address size to 64 bits. When the Directorate selected
SIPP, they stipulated several changes, one of which was another doubling of the address
to 128 bits (16 bytes). It was around this time that the version number 6 was assigned.
The rest of this section describes some of the main features of IPv6. At the time of this
writing, most of the key specifications for IPv6 are Proposed or Draft Standards in the
IETF.

Addresses and Routing

First and foremost, IPv6 provides a 128-bit address space, as opposed to the 32 bits
of version 4. Thus, while version 4 can potentially address 4 billion nodes if address
assignment efficiency reaches 100%, IPv6 can address 3.4 × 1038 nodes, again assuming
100% efficiency. As we have seen, though, 100% efficiency in address assignment is not
likely. Some analysis of other addressing schemes, such as those of the French and U.S.
telephone networks, as well as that of IPv4, have turned up some empirical numbers for
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address assignment efficiency. Based on the most pessimistic estimates of efficiency drawn
from this study, the IPv6 address space is predicted to provide over 1,500 addresses per
square foot of the earth’s surface, which certainly seems like it should serve us well even
when toasters on Venus have IP addresses.

Address Space Allocation
Drawing on the effectiveness of CIDR in IPv4, IPv6 addresses are also classless, but the
address space is still subdivided in various ways based on the leading bits. Rather than
specifying different address classes, the leading bits specify different uses of the IPv6
address. The current assignment of prefixes is listed in Table 4.11.

This allocation of the address space warrants a little discussion. First, the entire
functionality of IPv4’s three main address classes (A, B, and C) is contained inside the
“everything else” range. Global unicast addresses, as we will see shortly, are a lot like
classless IPv4 addresses, only much longer. These are the main ones of interest at this
point, with over 99% of the total IPv6 address space available to this important form
of address. (At the time of writing, IPv6 unicast addresses are being allocated from the
block that begins 001, with the remaining address space—about 87%—being reserved
for future use.)

The multicast address space is (obviously) for multicast, thereby serving the same
role as class D addresses in IPv4. Note that multicast addresses are easy to distinguish—
they start with a byte of all 1s. We will see how these addresses are used in Section 4.4.

The idea behind link local use addresses is to enable a host to construct an address
that will work on the network to which it is connected without being concerned about
global uniqueness of the address. This may be useful for autoconfiguration, as we will
see below. Similarly, the site local use addresses are intended to allow valid addresses to
be constructed on a site (e.g., a private corporate network) that is not connected to the
larger Internet; again, global uniqueness need not be an issue.

Prefix Use

00. . . 0 (128 bits) Unspecified

00. . . 1 (128 bits) Loopback

1111 1111 Multicast addresses

1111 1110 10 Link local unicast

1111 1110 11 Site local unicast

Everything else Global unicast

Table 4.11 Address prefix assignments for IPv6.
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Within the global unicast address space are some important special types of ad-
dresses. A node may be assigned an IPv4-compatible IPv6 address by zero-extending a
32-bit IPv4 address to 128 bits. A node that is only capable of understanding IPv4 can be
assigned an IPv4-mapped IPv6 address by prefixing the 32-bit IPv4 address with 2 bytes
of all 1s and then zero-extending the result to 128 bits. These two special address types
have uses in the IPv4-to-IPv6 transition (see the sidebar on this topic).

Address Notation

Just as with IPv4, there is some special notation for writing down IPv6 addresses. The
standard representation is x:x:x:x:x:x:x:x where each “x” is a hexadecimal representa-
tion of a 16-bit piece of the address. An example would be

47CD:1234:4422:ACO2:0022:1234:A456:0124

Any IPv6 address can be written using this notation. Since there are a few special types
of IPv6 addresses, there are some special notations that may be helpful in certain circum-
stances. For example, an address with a large number of contiguous 0s can be written
more compactly by omitting all the 0 fields. Thus,

47CD:0000:0000:0000:0000:0000:A456:0124

could be written

47CD::A456:0124

Clearly, this form of shorthand can only be used for one set of contiguous 0s in an address
to avoid ambiguity.

Since there are two types of IPv6 addresses that contain an embedded IPv4 address,
these have their own special notation that makes extraction of the IPv4 address easier. For
example, the IPv4-mapped IPv6 address of a host whose IPv4 address was 128.96.33.81
could be written as

::FFFF:128.96.33.81

That is, the last 32 bits are written in IPv4 notation, rather than as a pair of hexadecimal
numbers separated by a colon. Note that the double colon at the front indicates the
leading 0s.

Global Unicast Addresses
By far the most important sort of addressing that IPv6 must provide is plain old unicast
addressing. It must do this in a way that supports the rapid rate of addition of new
hosts to the Internet and that allows routing to be done in a scalable way as the number
of physical networks in the Internet grows. Thus, at the heart of IPv6 is the unicast
address allocation plan that determines how unicast addresses will be assigned to service
providers, autonomous systems, networks, hosts, and routers.
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In fact, the address allocation plan that is proposed for IPv6 unicast addresses is
extremely similar to that being deployed with CIDR in IPv4. To understand how it
works and how it provides scalability, it is helpful to define some new terms. We may
think of a nontransit AS (i.e., a stub or multihomed AS) as a subscriber, and we may think
of a transit AS as a provider. Furthermore, we may subdivide providers into direct and
indirect. The former are directly connected to subscribers. The latter primarily connect
other providers, are not connected di-
rectly to subscribers, and are often known
as backbone networks.

With this set of definitions, we can
see that the Internet is not just an arbi-
trarily interconnected set of ASs; it has
some intrinsic hierarchy. The difficulty is
in making use of this hierarchy without
inventing mechanisms that fail when the
hierarchy is not strictly observed, as hap-
pened with EGP. For example, the distinc-
tion between direct and indirect providers
becomes blurred when a subscriber con-
nects to a backbone or when a direct
provider starts connecting to many other
providers.

As with CIDR, the goal of the IPv6
address allocation plan is to provide ag-
gregation of routing information to re-
duce the burden on intradomain routers.
Again, the key idea is to use an address
prefix—a set of contiguous bits at the
most significant end of the address—to
aggregate reachability information to a
large number of networks and even to a
large number of ASs. The main way to
achieve this is to assign an address prefix
to a direct provider and then for that di-
rect provider to assign longer prefixes that
begin with that prefix to its subscribers.
This is exactly what we observed in Fig-
ure 4.27. Thus, a provider can advertise
a single prefix for all of its subscribers.

Transition from IPv4 to IPv6

The most important idea behind the
transition from IPv4 to IPv6 is that
the Internet is far too big and de-
centralized to have a flag day—one
specified day on which every host and
router is upgraded from IPv4 to IPv6.
Thus, IPv6 needs to be deployed in-
crementally in such a way that hosts
and routers that only understand IPv4
can continue to function for as long
as possible. Ideally, IPv4 nodes should
be able to talk to other IPv4 nodes
and some set of other IPv6-capable
nodes indefinitely. Also, IPv6 hosts
should be capable of talking to other
IPv6 nodes even when some of the in-
frastructure between them may only
support IPv4. Two major mechanisms
have been defined to help this transi-
tion: dual-stack operation and tunnel-
ing.

The idea of dual stacks is fairly
straightforward: IPv6 nodes run both
IPv6 and IPv4 and use the Version
field to decide which stack should
process an arriving packet. In this case,
the IPv6 address could be unrelated
to the IPv4 address, or it could be
the “IPv4-mapped IPv6 address” de-
scribed earlier in this section.
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Of course, the drawback is that if a site decides to change providers, it will need
to obtain a new address prefix and renumber all the nodes in the site. This could be a
colossal undertaking, enough to dissuade most people from ever changing providers. For
this reason, there is ongoing research on other addressing schemes, such as geographic
addressing, in which a site’s address is a function of its location rather than the provider

The basic tunneling technique,
in which an IP packet is sent as the
payload of another IP packet, was de-
scribed in Section 4.1. For IPv6 tran-
sition, tunneling is used to send an
IPv6 packet over a piece of the net-
work that only understands IPv4. This
means that the IPv6 packet is encap-
sulated within an IPv4 header that has
the address of the tunnel endpoint in
its header, is transmitted across the
IPv4-only piece of network, and then
is decapsulated at the endpoint. The
endpoint could be either a router or a
host; in either case, it must be IPv6-
capable to be able to process the IPv6
packet after decapsulation. If the end-
point is a host with an IPv4-mapped
IPv6 address, then tunneling can be
done automatically, by extracting the
IPv4 address from the IPv6 address
and using it to form the IPv4 header.
Otherwise, the tunnel must be config-
ured manually. In this case, the encap-
sulating node needs to know the IPv4
address of the other end of the tun-
nel, since it cannot be extracted from
the IPv6 header. From the perspective
of IPv6, the other end of the tunnel
looks like a regular IPv6 node that is
just one hop away, even though there
may be many hops of IPv4 infrastruc-
ture between the tunnel endpoints.

to which it attaches. At present, however,
provider-based addressing is necessary to
make routing work efficiently.

Note that while IPv6 address assign-
ment is essentially equivalent to the way
address assignment has happened in IPv4
since the introduction of CIDR, IPv6 has
the significant advantage of not having a
large installed base of assigned addresses to
fit into its plans.

One question is whether it makes
sense for hierarchical aggregation to take
place at other levels in the hierarchy. For
example, should all providers obtain their
address prefixes from within a prefix al-
located to the backbone to which they
connect? Given that most providers con-
nect to multiple backbones, this probably
doesn’t make sense. Also, since the num-
ber of providers is much smaller than the
number of sites, the benefits of aggregating
at this level are much less.

One place where aggregation may
make sense is at the national or conti-
nental level. Continental boundaries form
natural divisions in the Internet topology,
and if all addresses in Europe, for example,
had a common prefix, then a great deal of
aggregation could be done, so that most
routers in other continents would only
need one routing table entry for all net-
works with the Europe prefix. Providers in
Europe would all select their prefixes such
that they began with the European prefix.
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Figure 4.35 An IPv6 provider-based unicast address.

Using this scheme, an IPv6 address might look like Figure 4.35. The RegistryID might
be an identifier assigned to a European address registry, with different IDs assigned to
other continents or countries. Note that prefixes would be of different lengths under this
scenario. For example, a provider with few customers could have a longer prefix (and
thus less total address space available) than one with many customers.

One tricky situation could occur when a subscriber is connected to more than one
provider. Which prefix should the subscriber use for his site? There is no perfect solution
to the problem. For example, suppose a subscriber is connected to two providers X and Y.
If the subscriber takes his prefix from X, then Y has to advertise a prefix that has no
relationship to its other subscribers and that as a consequence cannot be aggregated. If
the subscriber numbers part of his AS with the prefix of X and part with the prefix of Y, he
runs the risk of having half his site become unreachable if the connection to one provider
goes down. One solution that works fairly well if X and Y have a lot of subscribers
in common is for them to have three prefixes between them: one for subscribers of X
only, one for subscribers of Y only, and one for the sites that are subscribers of both
X and Y.

Packet Format
Despite the fact that IPv6 extends IPv4 in several ways, its header format is actually
simpler. This simplicity is due to a concerted effort to remove unnecessary functionality
from the protocol. Figure 4.36 shows the result. (For comparison with IPv4, see the
header format shown in Figure 4.3.)

As with many headers, this one starts with a Version field, which is set to 6 for
IPv6. The Version field is in the same place relative to the start of the header as IPv4’s
Version field so that header-processing software can immediately decide which header
format to look for. The TrafficClass and FlowLabel fields both relate to quality of
service issues, as discussed in Section 6.5.

The PayloadLen field gives the length of the packet, excluding the IPv6 header,
measured in bytes. The NextHeader field cleverly replaces both the IP options and
the Protocol field of IPv4. If options are required, then they are carried in one or
more special headers following the IP header, and this is indicated by the value of the
NextHeader field. If there are no special headers, the NextHeader field is the demux
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Figure 4.36 IPv6 packet header.

key identifying the higher-level protocol running over IP (e.g., TCP or UDP), that is, it
serves the same purpose as the IPv4 Protocol field. Also, fragmentation is now handled
as an optional header, which means that the fragmentation-related fields of IPv4 are not
included in the IPv6 header. The HopLimit field is simply the TTL of IPv4, renamed
to reflect the way it is actually used.

Finally, the bulk of the header is taken up with the source and destination addresses,
each of which is 16 bytes (128 bits) long. Thus, the IPv6 header is always 40 bytes long.
Considering that IPv6 addresses are four times longer than those of IPv4, this compares
quite well with the IPv4 header, which is 20 bytes long in the absence of options.

The way that IPv6 handles options is quite an improvement over IPv4. In IPv4,
if any options were present, every router had to parse the entire options field to see
if any of the options were relevant. This is because the options were all buried at the
end of the IP header, as an unordered collection of 〈type, length, value〉 tuples.
In contrast, IPv6 treats options as extension headers that must, if present, appear in a
specific order. This means that each router can quickly determine if any of the options
are relevant to it; in most cases, they will not be. Usually this can be determined by
just looking at the NextHeader field. The end result is that option processing is much
more efficient in IPv6, which is an important factor in router performance. In addition,



326 4 Internetworking

Figure 4.37 IPv6 fragmentation extension header.

the new formatting of options as extension headers means that they can be of arbitrary
length, whereas in IPv4 they were limited to 44 bytes at most. We will see how some of
the options are used below.

Each option has its own type of extension header. The type of each extension
header is identified by the value of the NextHeader field in the header that precedes
it, and each extension header contains a NextHeader field to identify the header fol-
lowing it. The last extension header will be followed by a transport-layer header (e.g.,
TCP) and in this case the value of the NextHeader field is the same as the value of the
Protocol field would be in an IPv4 header. Thus, the NextHeader field does double
duty; it may either identify the type of extension header to follow, or, in the last extension
header, it serves as a demux key to identify the higher-layer protocol running over IPv6.

Consider the example of the fragmentation header, shown in Figure 4.37. This
header provides functionality similar to the fragmentation fields in the IPv4 header de-
scribed in Section 4.1.2, but it is only present if fragmentation is necessary. Assuming it is
the only extension header present, then the NextHeader field of the IPv6 header would
contain the value 44, which is the value assigned to indicate the fragmentation header.
The NextHeader field of the fragmentation header itself contains a value describing
the header that follows it. Again, assuming no other extension headers are present, then
the next header might be the TCP header, which results in NextHeader containing the
value 6, just as the Protocol field would in IPv4. If the fragmentation header were fol-
lowed by, say, an authentication header, then the fragmentation header’s NextHeader
field would contain the value 51.

Autoconfiguration

While the Internet’s growth has been impressive, one factor that has inhibited faster ac-
ceptance of the technology is the fact that getting connected to the Internet has typically
required a fair amount of system administration expertise. In particular, every host that
is connected to the Internet needs to be configured with a certain minimum amount
of information, such as a valid IP address, a subnet mask for the link to which it at-
taches, and the address of a name server. Thus, it has not been possible to unpack a
new computer and connect it to the Internet without some preconfiguration. One goal
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of IPv6, therefore, is to provide support for autoconfiguration, sometimes referred to as
“plug-and-play” operation.

As we saw in Section 4.1.6, autoconfiguration is possible for IPv4, but it depends
on the existence of a server that is configured to hand out addresses and other configu-
ration information to DHCP clients. The longer address format in IPv6 helps provide a
useful, new form of autoconfiguration called stateless autoconfiguration, which does not
require a server.

Recall that IPv6 unicast addresses are hierarchical, and that the least significant
portion is the interface ID. Thus, we can subdivide the autoconfiguration problem into
two parts:

1 Obtain an interface ID that is unique on the link to which the host is attached;

2 Obtain the correct address prefix for this subnet.

Network Address Translation

While IPv6 was motivated by a con-
cern that increased usage of IP would
lead to exhaustion of the address
space, another technology has become
popular as a way to conserve IP ad-
dress space. That technology is net-
work address translation (NAT), and
it is possible that its widespread use
will significantly delay the need to de-
ploy IPv6. NAT is often viewed as “ar-
chitecturally impure,” but it is also a
fact of networking life that cannot be
ignored.

The basic idea behind NAT is
that all the hosts that might commu-
nicate with each other over the
Internet do not need to have glob-
ally unique addresses. Instead,
a host could be assigned a “private
address” that is not necessarily
globally unique, but is unique
within some more limited scope;
for example, within the corporate
network where the host resides.

The first part turns out to be rather
easy, since every host on a link must have a
unique link-level address. For example, all
hosts on an Ethernet have a unique 48-bit
Ethernet address. This can be turned into
a valid link local use address by adding the
appropriate prefix from Table 4.11 (1111
1110 10) followed by enough 0s to make
up 128 bits. For some devices—for exam-
ple, printers or hosts on a small routerless
network that do not connect to any other
networks—this address may be perfectly
adequate. Those devices that need a glob-
ally valid address depend on a router on
the same link to periodically advertise the
appropriate prefix for the link. Clearly, this
requires that the router be configured with
the correct address prefix, and that this
prefix be chosen in such a way that there
is enough space at the end (e.g., 48 bits) to
attach an appropriate link-level address.

The ability to embed link-level ad-
dresses as long as 48 bits into IPv6 ad-
dresses was one of the reasons for choosing
such a large address size. Not only does
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128 bits allow the embedding, but it
leaves plenty of space for the multilevel
hierarchy of addressing that we discussed
above.

Advanced Routing Capabilities

Another of IPv6’s extension headers is
the routing header. In the absence of this
header, routing for IPv6 differs very little
from that of IPv4 under CIDR. The rout-
ing header contains a list of IPv6 addresses
that represent nodes or topological areas
that the packet should visit en route to its
destination. A topological area may be, for
example, a backbone provider’s network.
Specifying that packets must visit this net-
work would be a way of implementing
provider selection on a packet-by-packet
basis. Thus, a host could say that it wants
some packets to go through a provider
that is cheap, others through a provider
that provides high reliability, and still oth-
ers through a provider that the host trusts
to provide security.

To provide the ability to specify
topological entities rather than individ-
ual nodes, IPv6 defines an anycast ad-
dress. An anycast address is assigned to
a set of interfaces, and packets sent to
that address will go to the “nearest” of
those interfaces, with nearest being de-
termined by the routing protocols. For
example, all the routers of a backbone
provider could be assigned a single any-
cast address, which would be used in the
routing header.

The anycast address and the routing
header are also expected to be used to pro-
vide enhanced routing support to mobile

The class A network number 10 is of-
ten used for this purpose, since that
network number was assigned to the
ARPANET and is no longer in use
as a globally unique address. As long
as the host communicates only with
other hosts in the corporate network,
a locally unique address is sufficient. If
it should want to communicate with
a host outside the corporate network,
it does so via a “NAT box”—a de-
vice that is able to translate from the
private address used by the host to
some globally unique address that is
assigned to the NAT box. Since it’s
likely that a small subset of the hosts
in the corporation need the services
of the NAT box at any one time, the
NAT box might be able to get by with
a small pool of globally unique ad-
dresses, much smaller than the num-
ber of addresses that would be needed
if every host in the corporation had a
globally unique address.

So, we can imagine a NAT box
receiving IP packets from a host in-
side the corporation and translating
the IP source address from some pri-
vate address (say, 10.0.1.5) to a glob-
ally unique address (say, 171.69.210.
246). When packets come back from
the remote host addressed to 171.69.
210.246, the NAT box translates the
destination address to 10.0.1.5 and
forwards the packet on toward the
host.

The chief drawback of NAT is
that it breaks a key assumption of the
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IP service model—that all nodes have
globally unique addresses. It turns out
that lots of applications and protocols
rely on this assumption. In particu-
lar, many protocols that run over IP
(e.g., application protocols) carry IP
addresses in their messages. These ad-
dresses also need to be translated by
a NAT box if the higher-layer pro-
tocol is to work properly, and thus
NAT boxes become much more com-
plex than simple IP header translators.
They potentially need to understand
an ever-growing number of higher-
layer protocols. This in turn presents
an obstacle to deployment of new
applications.

It is probably safe to say that
networks would be better off without
NAT, but its disappearance seems un-
likely. While widespread deployment
of IPv6 would probably help, NAT is
now popular for a range of other rea-
sons beyond its original purpose. For
example, it becomes easier to switch
providers if your entire internal net-
work has (private) IP addresses that
bear no relation to the provider’s ad-
dress space. And while NAT boxes
cannot be considered a true solution
to security threats, the fact that the
addresses behind a NAT box are not
globally meaningful provides a level
of protection against simple attacks.
It will be interesting to see how NAT
fares in the future as IPv6 deployment
gathers momentum.

hosts. The detailed mechanisms for pro-
viding this support are still being defined.

Other Features

As mentioned at the beginning of this
section, the primary motivation behind
the development of IPv6 was to support
the continued growth of the Internet.
Once the IP header had to be changed
for the sake of the addresses, however,
the door was open for a wide variety
of other changes, two of which we have
just described—autoconfiguration and
source-directed routing. IPv6 includes
several additional features, most of which
are covered elsewhere in this book—
mobility is discussed in Section 4.2.5, net-
work security is the topic of Chapter 8,
and a new service model proposed for
the Internet is described in Section 6.5.
It is interesting to note that, in most of
these areas, the IPv4 and IPv6 capabili-
ties have become virtually indistinguish-
able, so that the main driver for IPv6 re-
mains the need for larger addresses.

4.4 Multicast
As we saw in Chapter 2, multiaccess net-
works like Ethernet and token rings im-
plement multicast in hardware. There are,
however, applications that need a broader
multicasting capability that is effective at
the scale of internetworks. For example,
when a radio station is broadcast over the
Internet, the same data must be sent to
all the hosts where a user has tuned in to
that station. In that example, the commu-
nication is one-to-many. Other examples
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of one-to-many applications include transmitting the same news, current stock prices,
or software updates to multiple hosts. There are also applications whose communication
is many-to-many, such as multimedia teleconferencing, online multiplayer gaming, or
distributed simulations. In such cases, members of a group receive data from multiple
senders, typically each other. From any particular sender, they all receive the same data.

Normal IP communication, in which each packet must be addressed and sent to a
single host, is not well-suited to such applications. If an application has data to send to
a group, it would have to send a separate packet with the identical data to each member
of the group. This redundancy consumes more bandwidth than necessary. Furthermore,
the redundant traffic is not distributed evenly but rather is focused around the sending
host, and may easily exceed the capacity of the sending host and the nearby networks and
routers. Another problem is that the application would have to keep track of all the IP
addresses to send to. For many, perhaps most, applications, that set of IP addresses could
be constantly changing, for example, as listeners tune into an Internet radio station and
other listeners turn it off.

To better support many-to-many and one-to-many communication, IP provides an
IP-level multicast analogous to the link-level multicast provided by multiaccess networks
like Ethernet and token rings as we saw in Chapter 2. Now that we are introducing the
concept of multicast for IP, we also need a term for the “traditional” one-to-one service
of IP that has been the focus of this chapter so far: that service is referred to as unicast.

The basic IP multicast model is a many-to-many model based on multicast groups,
where each group has its own IP multicast address. The hosts that are members of a
group receive copies of any packets sent to that group’s multicast address. A host can be
in multiple groups, and it can join and leave groups freely by telling its local router using
a protocol that we will discuss shortly. Thus, while we think of unicast addresses as being
associated with a node or an interface, multicast addresses are associated with an abstract
group, the membership of which changes dynamically over time. Further, the original
IP multicast service model allows any host to send multicast traffic to a group; it doesn’t
have to be a member of the group, and there may be any number of such senders to a
given group.

Using IP multicast to send the identical packet to each member of the group, a
host sends a single copy of the packet addressed to the group’s multicast address. The
sending host doesn’t need to know the individual unicast IP address of each member of
the group because, as we will see, that knowledge is distributed among the routers in
the internetwork. Similarly, the sending host doesn’t need to send multiple copies of the
packet because the routers will make copies whenever they have to forward the packet
over more than one link. Compared to using unicast IP to deliver the same packets to
many receivers, IP multicast is more scalable because it eliminates the redundant traffic
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(packets) that would have been sent many times over the same links, especially those near
to the sending host.

IP’s original many-to-many multicast has been supplemented with support for a
form of one-to-many multicast. In this model of one-to-many multicast, called source-
specific multicast (SSM), a receiving host specifies both a multicast group and a specific
sending host. The receiving host would then receive multicasts addressed to the specified
group, but only if they are from the specified sender. Many Internet multicast applica-
tions (e.g., radio broadcasts) fit the SSM model. To contrast it with SSM, IP’s original
many-to-many model is sometimes referred to as any source multicast (ASM).

A host signals its desire to join or leave a multicast group by communicating with
its local router using a special protocol for just that purpose. In IPv4, that protocol is
Internet Group Management Protocol (IGMP); in IPv6, it is Multicast Listener Discovery
(MLD). The router then has the responsibility for making multicast behave correctly
with regard to that host. Because a host may fail to leave a multicast group when it
should (after a crash or other failure, for example), the router periodically polls the LAN
to determine which groups are still of interest to the attached hosts.

4.4.1 Multicast Addresses
IP has a subrange of its address space reserved for multicast addresses. In IPv4, these
addresses are assigned in the class D address space, and IPv6 also has a portion of its
address space (see Table 4.11) reserved for multicast group addresses. Some subranges
of the multicast ranges are reserved for intradomain multicast, so they can be reused
independently by different domains.

Thus, there are 28 bits of possible multicast addresses in IPv4 when we ignore the
prefix shared by all multicast addresses. This presents a problem when attempting to take
advantage of hardware multicasting on a LAN. Let’s take the case of Ethernet. Ethernet
multicast addresses have only 23 bits when we ignore their shared prefix. In other words,
to take advantage of Ethernet multicasting, IP has to map 28-bit IP multicast addresses
into 23-bit Ethernet multicast addresses. This is implemented by taking the low-order
23 bits of any IP multicast address to use as its Ethernet multicast address, and ignoring
the high-order 5 bits. Thus, 32 (25) IP addresses map into each one of the Ethernet
addresses.

When a host on an Ethernet joins an IP multicast group, it configures its Ether-
net interface to receive any packets with the corresponding Ethernet multicast address.
Unfortunately, this causes the receiving host to receive not only the multicast traffic it de-
sired, but also traffic sent to any of the other 31 IP multicast groups that map to the same
Ethernet address, if they are routed to that Ethernet. Therefore, IP at the receiving host
must examine the IP header of any multicast packet to determine whether the packet
really belongs to the desired group. In summary, the mismatch of multicast address sizes
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means that multicast traffic may place a burden on hosts that are not even interested in
the group to which the traffic was sent. Fortunately, in some switched networks (such
as switched Ethernet) this problem can be mitigated by schemes wherein the switches
recognize unwanted packets and discard them.

One perplexing question is how senders and receivers learn which multicast ad-
dresses to use in the first place. This is normally handled by out-of-band means, and
there are some quite sophisticated tools to enable group addresses to be advertised on the
Internet. One example is sdr, discussed in Section 9.3.1.

4.4.2 Multicast Routing (DVMRP, PIM, MSDP)
A router’s unicast forwarding tables indicate, for any IP address, which link to use to for-
ward the unicast packet. To support multicast, a router must additionally have multicast
forwarding tables that indicate, based on multicast address, which links—possibly more
than one—to use to forward the multicast packet (the router duplicates the packet if it is
to be forwarded over multiple links). Thus, where unicast forwarding tables collectively
specify a set of paths, multicast forwarding tables collectively specify a set of trees: mul-
ticast distribution trees. Furthermore, to support source-specific multicast (and, it turns
out, for some types of any source multicast), the multicast forwarding tables must indi-
cate which links to use based on the combination of multicast address and the (unicast)
IP address of the source, again specifying a set of trees.

Multicast routing is the process by which the multicast distribution trees are de-
termined or, more concretely, the process by which the multicast forwarding tables are
built. As with unicast routing, it is not enough that a multicast routing protocol “work”;
it must also scale reasonably well as the network grows, and it must accommodate the
autonomy of different routing domains.

DVMRP

Distance-vector routing, which we discussed in Section 4.2.2 for unicast, can be extended
to support multicast. The resulting protocol is called Distance Vector Multicast Routing
Protocol, or DVMRP. DVMRP was the first multicast routing protocol to see widespread
use.

Recall that, in the distance-vector algorithm, each router maintains a table of
〈Destination, Cost, NextHop〉 tuples, and exchanges a list of 〈Destination, Cost〉
pairs with its directly connected neighbors. Extending this algorithm to support multi-
cast is a two-stage process. First, we create a broadcast mechanism that allows a packet to
be forwarded to all the networks on the internet. Second, we need to refine this mecha-
nism so that it prunes back networks that do not have hosts that belong to the multicast
group. Consequently, DVMRP is one of several multicast routing protocols described as
flood-and-prune protocols.



4.4 Multicast 333

Given a unicast routing table, each router knows that the current shortest path to
a given destination goes through NextHop. Thus, whenever it receives a multicast
packet from source S, the router forwards the packet on all outgoing links (except the
one on which the packet arrived) if and only if the packet arrived over the link that is on
the shortest path to S (i.e., the packet came from the NextHop associated with S in the
routing table). This strategy effectively floods packets outward from S, but does not loop
packets back toward S.

There are two major shortcomings to this approach. The first is that it truly floods
the network; it has no provision for avoiding LANs that have no members in the multi-
cast group. We address this problem below. The second limitation is that a given packet
will be forwarded over a LAN by each of the routers connected to that LAN. This is
due to the forwarding strategy of flooding packets on all links other than the one on
which the packet arrived, without regard to whether or not those links are part of the
shortest-path tree rooted at the source.

The solution to this second limitation is to eliminate the duplicate broadcast pack-
ets that are generated when more than one router is connected to a given LAN. One way
to do this is to designate one router as the “parent” router for each link, relative to the
source, where only the parent router is allowed to forward multicast packets from that
source over the LAN. The router that has the shortest path to source S is selected as the
parent; a tie between two routers would be broken according to which router has the
smallest address. A given router can learn if it is the parent for the LAN (again relative
to each possible source) based upon the distance-vector messages it exchanges with its
neighbors.

Notice that this refinement requires that each router keep, for each source, a bit for
each of its incident links indicating whether or not it is the parent for that source/link
pair. Keep in mind that in an internet setting, a “source” is a network, not a host, since an
internet router is only interested in forwarding packets between networks. The resulting
mechanism is sometimes called reverse path broadcast (RPB) or reverse path forwarding
(RPF). The path is “reverse” because we are considering the shortest path toward the
source when making our forwarding decisions, as compared to unicast routing, which
looks for the shortest path to a given destination.

The RPB mechanism just described implements shortest-path broadcast. We now
want to prune the set of networks that receives each packet addressed to group G to ex-
clude those that have no hosts that are members of G. This can be accomplished in two
stages. First, we need to recognize when a leaf network has no group members. Deter-
mining that a network is a leaf is easy—if the parent router as described above is the only
router on the network, then the network is a leaf. Determining if any group members
reside on the network is accomplished by having each host that is a member of group G
periodically announce this fact over the network, as described in our earlier description
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of link-state multicast. The router then uses this information to decide whether or not
to forward a multicast packet addressed to G over this LAN.

The second stage is to propagate this “no members of G here” information up
the shortest-path tree. This is done by having the router augment the 〈 Destination,
Cost 〉 pairs it sends to its neighbors with the set of groups for which the leaf network is
interested in receiving multicast packets. This information can then be propagated from
router to router, so that for each of its links, a given router knows for what groups it
should forward multicast packets.

Note that including all of this information in the routing update is a fairly expen-
sive thing to do. In practice, therefore, this information is exchanged only when some
source starts sending packets to that group. In other words, the strategy is to use RPB,
which adds a small amount of overhead to the basic distance-vector algorithm, until a
particular multicast address becomes active. At that time, routers that are not interested
in receiving packets addressed to that group speak up, and that information is propagated
to the other routers.

PIM-SM

Protocol-independent multicast, or PIM, was developed in response to the scaling prob-
lems of earlier multicast routing protocols. In particular, it was recognized that the ex-
isting protocols did not scale well in environments where a relatively small proportion
of routers want to receive traffic for a certain group. For example, broadcasting traffic
to all routers until they explicitly ask to be removed from the distribution is not a good
design choice if most routers don’t want to receive the traffic in the first place. This situ-
ation is sufficiently common that PIM divides the problem space into sparse mode and
dense mode, where sparse and dense refer to the proportion of routers that will want the
multicast. PIM dense mode (PIM-DM) uses a flood-and-prune algorithm like DVMRP,
and suffers from the same scalability problem. PIM sparse mode (PIM-SM) has become
the dominant multicast routing protocol and is the focus of our discussion here. The
“protocol-independent” aspect of PIM, by the way, refers to the fact that, unlike ear-
lier protocols such as DVMRP, PIM does not depend on any particular sort of unicast
routing—it can be used with any unicast routing protocol, as we will see below.

In PIM-SM, routers explicitly join the multicast distribution tree using PIM pro-
tocol messages known as Join messages. Note the contrast to DVMRP’s approach of
creating a broadcast tree first and then pruning the uninterested routers. The question
that arises is where to send those Join messages because, after all, any host (and any
number of hosts) could send to the multicast group. To address this, PIM-SM assigns
to each group a special router known as the rendezvous point (RP). In general, a number
of routers in a domain are configured to be candidate RPs, and PIM-SM defines a set
of procedures by which all the routers in a domain can agree on the router to use as the
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RP for a given group. These procedures are rather complex, as they must deal with a
wide variety of scenarios, such as the failure of a candidate RP and the partitioning of a
domain into two separate networks due to a number of link or node failures. For the rest
of this discussion, we assume that all routers in a domain know the unicast IP address of
the RP for a given group.

A multicast forwarding tree is built as a result of routers sending Join messages to
the RP. PIM-SM allows two types of tree to be constructed: a shared tree, which may
be used by all senders, and a source-specific tree, which may be used only by a specific
sending host. The normal mode of operation creates the shared tree first, followed by
one or more source-specific trees if there is enough traffic to warrant it. Because building
trees installs state in the routers along the tree, it is important that the default is to have
only one tree for a group, not one for every sender to a group.

When a router sends a Join message toward the RP for a group G, it is sent using
normal IP unicast transmission. This is illustrated in Figure 4.38(a), in which router R4
is sending a Join to the rendezvous point for some group. The initial Join message is
“wildcarded,” that is, it applies to all senders. A Join message clearly must pass through
some sequence of routers before reaching the RP (e.g., R2). Each router along the path
looks at the Join and creates a forwarding table entry for the shared tree, called a (*, G)
entry (* meaning “all senders”). To create the forwarding table entry, it looks at the
interface on which the Join arrived and marks that interface as one on which it should
forward data packets for this group. It then determines which interface it will use to
forward the Join toward the RP. This will be the only acceptable interface for incoming
packets sent to this group. It then forwards the Join toward the RP. Eventually, the
message arrives at the RP, completing the construction of the tree branch. The shared
tree thus constructed is shown as a solid line from the RP to R4 in Figure 4.38(a).

As more routers send Joins toward the RP, they cause new branches to be added
to the tree, as illustrated in Figure 4.38(b). Note that in this case, the Join only needs to
travel to R2, which can add the new branch to the tree simply by adding a new outgoing
interface to the forwarding table entry created for this group. R2 need not forward the
Join on to the RP. Note also that the end result of this process is to build a tree whose
root is the RP.

At this point, suppose a host wishes to send a message to the group. To do so, it
constructs a packet with the appropriate multicast group address as its destination and
sends it to a router on its local network known as the designated router (DR). Suppose the
DR is R1 in Figure 4.38. There is no state for this multicast group between R1 and the
RP at this point, so instead of simply forwarding the multicast packet, R1 “tunnels” it
to the RP. That is, R1 encapsulates the multicast packet inside a PIM Register message
that it sends to the unicast IP address of the RP. Just like a tunnel endpoint of the sort
described in Section 4.1.8, the RP receives the packet addressed to it, looks at the payload
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Figure 4.38 PIM operation. (a) R4 sends Join to RP and joins shared tree; (b) R5 joins

shared tree; (c) RP builds source-specific tree to R1 by sending Join to R1; (d) R4 and R5

build source-specific tree to R1 by sending Joins to R1.

of the Register message, and finds inside an IP packet addressed to the multicast address
of this group. The RP, of course, does know what to do with such a packet—it sends it
out onto the shared tree of which the RP is the root. In the example of Figure 4.38, this
means that the RP sends the packet on to R2, which is able to forward it on to R4 and
R5. The complete delivery of a packet from R1 to R4 and R5 is shown in Figure 4.39.
We see the tunneled packet travel from R1 to the RP with an extra IP header containing
the unicast address of RP, and then the multicast packet addressed to G making its way
along the shared tree to R4 and R5.

At this point, we might be tempted to declare success, since all hosts can send
to all receivers this way. However, there is some bandwidth inefficiency and processing
cost in the encapsulation and decapsulation of packets on the way to the RP, so the RP
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Figure 4.39 Delivery of a packet along a shared tree. R1 tunnels the packet to the RP,

which forwards it along the shared tree to R4 and R5.

forces knowledge about this group into the intervening routers so that tunneling can be
avoided. It sends a Join message toward the sending host (Figure 4.38(c)). As this Join
travels toward the host, it causes the routers along the path (R3) to learn about the group,
so that it will be possible for the DR to send the packet to the group as “native” (i.e., not
tunneled) multicast packets.

An important detail to note at this stage is that the Join message sent by the RP
to the sending host is specific to that sender, whereas the previous ones sent by R4 and
R5 applied to all senders. Thus, the effect of the new Join is to create a sender-specific
state in the routers between the identified source and the RP. This is referred to as (S, G)
state, since it applies to one sender to one group, and contrasts with the (*, G) state
that was installed between the receivers and the RP that applies to all senders. Thus, in
Figure 4.38(c), we see a source-specific route from R1 to the RP (indicated by the dashed
line) and a tree that is valid for all senders from the RP to the receivers (indicated by the
solid line).

The next possible optimization is to replace the entire shared tree with a source-
specific tree. This is desirable because the path from sender to receiver via the RP might
be significantly longer than the shortest possible path. This again is likely to be triggered
by a high data rate being observed from some sender. In this case, the router at the down-
stream end of the tree—say, R4 in our example—sends a source-specific Join toward the
source. As it follows the shortest path toward the source, the routers along the way create
(S, G) state for this tree, and the result is a tree that has its root at the source, rather than
the RP. Assuming both R4 and R5 made the switch to the source-specific tree, we would
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end up with the tree shown in Figure 4.38(d). Note that this tree no longer involves the
RP at all. We have removed the shared tree from this picture to simplify the diagram,
but in reality all routers with receivers for a group must stay on the shared tree in case
new senders show up.

We can now see why PIM is protocol independent. All of its mechanisms for build-
ing and maintaining trees take advantage of unicast routing without depending on any
particular unicast routing protocol. The formation of trees is entirely determined by the
paths that Join messages follow, which is determined by the choice of shortest paths
made by unicast routing. Thus, to be precise, PIM is “unicast routing protocol indepen-
dent,” as compared to DVMRP. Note that PIM is very much bound up with the Internet
Protocol—it is not protocol independent in terms of network-layer protocols.

The design of PIM-SM again illustrates the challenges in building scalable net-
works, and how scalability is sometimes pitted against some sort of optimality. The
shared tree is certainly more scalable than a source-specific tree, in the sense that it
reduces the total state in routers to be on the order of the number of groups rather
than the number of senders times the number of groups. However, the source-specific
tree is likely to be necessary to achieve efficient routing and effective use of link band-
width.

Interdomain Multicast (MSDP)

PIM-SM has some significant shortcomings when it comes to interdomain multicast. In
particular, the existence of a single RP for a group goes against the principle that do-
mains are autonomous. For a given multicast group, all the participating domains would
be dependent on the domain where the RP is located. Furthermore, if there is a partic-
ular multicast group for which a sender and some receivers shared a single domain, the
multicast traffic would still have to be routed initially from the sender to those receivers
via whatever domain has the RP for that multicast group. Consequently, the PIM-SM
protocol is typically not used across domains, only within a domain.

To extend multicast across domains using PIM-SM, Multicast Source Discovery
Protocol (MSDP) was devised. MSDP is used to connect different domains—each run-
ning PIM-SM internally, with its own RPs—by connecting the RPs of the different
domains. Each RP has one or more MSDP peer RPs in other domains. Each pair of
MSDP peers is connected by a TCP connection (Section 5.2) over which the MSDP
protocol runs. Together, all the MSDP peers for a given multicast group form a loose
mesh that is used as a broadcast network. MSDP messages are broadcast through the
mesh of peer RPs using the reverse path broadcast algorithm that we discussed in the
context of DVMRP.

What information does MSDP broadcast through the mesh of RPs? Not group
membership information; when a host joins a group, the furthest that information will
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Figure 4.40 MSDP operation. (a) The source SR sends a Register to its domain’s RP,

RP1; then RP1 sends a source-specific Join to SR, and an MSDP Source Active to its

MSDP peer in Domain B, RP2; then RP2 sends a source-specific Join to SR. (b) As a

result, RP1 and RP2 are in the source-specific tree for source SR.

flow is its own domain’s RP. Instead, it is source—multicast sender—information. Each
RP knows the sources in its own domain because it receives a Register message when-
ever a new source arises. Each RP periodically uses MSDP to broadcast Source Active
messages to its peers, giving the IP address of the source, the multicast group address,
and the IP address of the originating RP.

If an MSDP peer RP that receives one of these broadcasts has active receivers for
that multicast group, it sends a source-specific Join, on that RP’s own behalf, to the
source host, as shown in Figure 4.40(a). The Join message builds a branch of the source-
specific tree to this RP, as shown in Figure 4.40(b). The result is that every RP that is
part of the MSDP network and has active receivers for a particular multicast group is
added to the source-specific tree of the new source. When an RP receives a multicast
from the source, the RP uses its shared tree to forward the multicast to the receivers in
its domain.
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Source-Specific Multicast (PIM-SSM)
The original service model of PIM was, like earlier multicast protocols, a many-to-many
model. Receivers joined a group, and any host could send to the group. However, it was
recognized in the late 1990s that it might be useful to add a one-to-many model. Lots
of multicast applications, after all, have only one legitimate sender, such as the speaker
at a conference being sent over the Internet. We already saw that PIM-SM can create
source-specific shortest path trees as an optimization after using the shared tree initially.
In the original PIM design, this optimization was invisible to hosts—only routers joined
source-specific trees. However, once the need for a one-to-many service model was recog-
nized, it was decided to make the source-specific routing capability of PIM-SM explicitly
available to hosts. It turns out that this mainly required changes to IGMP and its IPv6
analog, MLD, rather than PIM itself. The newly-exposed capability is now known as
PIM source-specific multicast (PIM-SSM).

PIM-SSM introduces a new concept, the channel, which is the combination of a
source address S and a group address G. The group address G looks just like a normal
IP multicast address, and both IPv4 and IPv6 have allocated subranges of the multicast
address space for SSM. To use PIM-SSM, a host specifies both the group and the source
in an IGMP Membership Report message to its local router. That router then sends a
PIM-SM source-specific Join message toward the source, thereby adding a branch to
itself in the source-specific tree, just as was described above for “normal” PIM-SM, but
bypassing the whole shared-tree stage. Since the tree that results is source-specific, only
the designated source can send packets on that tree.

The introduction of PIM-SSM has provided some significant benefits, particularly
since there is relatively high demand for one-to-many multicasting:

■ Multicasts travel more directly to receivers.

■ The address of a channel is effectively a multicast group address plus a source
address. Therefore, given that a certain range of multicast group addresses will be
used for SSM exclusively, multiple domains can use the same multicast group
address independently and without conflict, as long as they use it only with
sources in their own domains.

■ Since only the specified source can send to an SSM group, there is less risk
of attacks based on malicious hosts overwhelming the routers or receivers with
bogus multicast traffic.

■ PIM-SSM can be used across domains exactly as it is used within a domain,
without reliance on anything like MSDP.

SSM, therefore, is quite a useful addition to the multicast service model.
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Bidirectional Trees (BIDIR-PIM)

We round off our discussion of multicast with another enhancement to PIM known
as Bidirectional PIM. BIDIR-PIM is a recent variant of PIM-SM that is well-suited to
many-to-many multicasting within a domain, especially when senders and receivers to a
group may be the same, as in a multiparty videoconference for example. As in PIM-SM,

Where Are They Now ????
The Fate of Multicast Protocols

A number of IP multicast protocols
have fallen by the wayside since the
1991 publication of Steve Deering’s
doctoral thesis, “Multicast Routing
in a Datagram Network.” In most
cases, their downfall had something to
do with scaling. The most successful
early multicast protocol was DVMRP,
which we discussed at the start of the
section. The Multicast Open Short-
est Path First (MOSPF) protocol was
based on the OSPF unicast routing
protocol. PIM dense mode (PIM-
DM) has some similarity to DVMRP,
in that it also uses a flood-and-prune
approach; at the same time it is like
PIM-SM in being independent of the
unicast routing protocol used. All of
these protocols are more appropriate
to a “dense” domain (i.e., one with a
high proportion of routers interested
in the multicast). These protocols all
appeared relatively early in the his-
tory of multicast, before some of the
scaling challenges were fully apparent.
Although they would still make sense
within a domain for multicast groups
expected to be of “dense” interest, they
are rarely used today, in part because

would-be receivers join groups by send-
ing IGMP Membership Report messages
(which must not be source-specific), and
a shared tree rooted at an RP is used
to forward multicast packets to receivers.
Unlike PIM-SM, however, the shared tree
also has branches to the sources. That
wouldn’t make any sense with PIM-SM’s
unidirectional tree, but BIDIR-PIM’s
trees are bidirectional—a router that re-
ceives a multicast packet from a down-
stream branch can forward it both up the
tree and down other branches. The route
followed to deliver a packet to any partic-
ular receiver goes only as far up the tree as
necessary before going down the branch
to that receiver. See the multicast route
from R1 to R2 in Figure 4.41(b) for an
example. R4 forwards a multicast packet
downstream to R2 at the same time that
it forwards a copy of the same packet up-
stream to R5.

A surprising aspect of BIDIR-PIM
is that there need not actually be an
RP. All that is needed is a routable ad-
dress, which is known as an RP ad-
dress even though it need not be the
address of an RP or anything at all.
How can this be? A Join from a re-
ceiver is forwarded toward the RP address
until it reaches a router with an inter-
face on the link where the RP address
would reside, where the Join terminates.
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Figure 4.41 BIDIR-PIM operation. (a) R2 and R3 send Joins toward the RP address that

terminate when they reach a router on the RP address’s link. (b) A multicast packet

from R1 is forwarded upstream to the RP address’s link, and downstream wherever it

intersects a group member branch.

Figure 4.41(a) shows a Join from R2
terminating at R5, and a Join from
R3 terminating at R6. The upstream
forwarding of a multicast packet simi-
larly flows toward the RP address until
it reaches a router with an interface on
the link where the RP address would re-
side, but then the router forwards the
multicast packet onto that link as the fi-
nal step of upstream forwarding, ensur-
ing that all other routers on that link
receive the packet. Figure 4.41(b) illus-
trates the flow of multicast traffic originat-
ing at R1.

BIDIR-PIM cannot thus far be used
across domains. On the other hand, it has

Where Are They Now ????
the routers usually must support PIM-
SM anyway.

Core-based trees (CBT) was an-
other approach to multicast that was
proposed at about the same time as
PIM. The IETF was initially unable to
choose between the two approaches,
and both PIM and CBT were ad-
vanced as “experimental” protocols.
However, PIM was more widely adopt-
ed by industry, and the main tech-
nical contributions of CBT—shared
trees and bidirectional trees—were
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Where Are They Now ????
ultimately incorporated into PIM-SM
and BIDIR-PIM, respectively.

Border Gateway Multicast Proto-
col (BGMP) also uses the concept of a
bidirectional shared tree. In BGMP’s
case, however, the nodes of the tree
are domains, with one of the domains
as the root. In other words, BGMP
is like MSDP in tying together do-
mains to support interdomain multi-
casts. Unlike MSDP, the domains are
free to choose their own intradomain
protocols. BGMP was proposed at the
IETF, and just a few years ago BGMP
was expected to replace MSDP as the
dominant interdomain routing pro-
tocol. BGMP is quite complex, how-
ever, and it requires the existence of a
protocol that assigns ranges of mul-
ticast addresses to domains, in or-
der for BGMP to know which do-
main is the root for a given address.
Consequently, there have been, it ap-
pears, no implementations of BGMP,
let alone deployments, at the time of
writing.

several advantages over PIM-SM for many-
to-many multicast within a domain:

� There is no source registration
process because the routers al-
ready know how to route a multi-
cast packet toward the RP address.

� The routes are more direct than
those that use PIM-SM’s shared
tree because they go only as far up
the tree as necessary, not all the
way to the RP.

� Bidirectional trees use much less
state than the source-specific trees
of PIM-SM because there is never
any source-specific state. (On
the other hand, the routes will
be longer than those of source-
specific trees.)

� The RP cannot be a bottle-
neck, and indeed no actual RP is
needed.

One conclusion to draw from the
fact that there are so many different ap-
proaches to multicast just within PIM is
that multicast is a difficult problem space
in which to find optimal solutions. You

need to decide which criteria you want to optimize (bandwidth usage, router state, path
length, etc.) and what sort of application you are trying to support (one-to-many, many-
to-many, etc.) before you can make a choice of the “best” multicast mode for the task.

4.5 Multiprotocol Label Switching
We conclude our discussion of IP by describing an idea that was originally viewed as
a way to improve the performance of the Internet. The idea, called multiprotocol label
switching (MPLS), tries to combine some of the properties of virtual circuits with the
flexibility and robustness of datagrams. On the one hand, MPLS is very much associated
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with the Internet Protocol’s datagram-based architecture—it relies on IP addresses and IP
routing protocols to do its job. On the other hand, MPLS-enabled routers also forward
packets by examining relatively short, fixed-length labels, and these labels have local
scope, just like in a virtual circuit network. It is perhaps this marriage of two seemingly
opposed technologies that has caused MPLS to have a somewhat mixed reception in the
Internet engineering community.

Before looking at how MPLS works, it is reasonable to ask, “What is it good for?”
Many claims have been made for MPLS, but there are three main things that it is used
for today:

■ To enable IP capabilities on devices that do not have the capability to forward
IP datagrams in the normal manner;

■ To forward IP packets along “explicit routes”—precalculated routes that don’t
necessarily match those that normal IP routing protocols would select;

■ To support certain types of virtual private network services.

It is worth noting that one of the original goals—improving performance—is not on
the list. This has a lot to do with the advances that have been made in forwarding algo-
rithms for IP routers in recent years, and with the complex set of factors beyond header
processing that determine performance.

The best way to understand how MPLS works is to look at some examples of its
use. In the next three sections we will look at examples to illustrate the three applications
of MPLS mentioned above.

4.5.1 Destination-Based Forwarding
One of the earliest publications to introduce the idea of attaching labels to IP packets
was a paper by Chandranmenon and Vargese that described an idea called “threaded in-
dices.” A very similar idea is now implemented in MPLS-enabled routers. The following
example shows how this idea works.

Consider the network in Figure 4.42. Each of the two routers on the far right
(R3 and R4) has one connected network, with prefixes 18.1.1/24 and 18.3.3/24. The
remaining routers (R1 and R2) have routing tables that indicate which outgoing interface
each router would use when forwarding packets to one of those two networks.

When MPLS is enabled on a router, the router allocates a label for each prefix
in its routing table, and advertises both the label and the prefix that it represents to
its neighboring routers. This advertisement is carried in the Label Distribution Protocol.
This is illustrated in Figure 4.43. Router R2 has allocated the label value 15 for the prefix
18.1.1 and the label value 16 for the prefix 18.3.3. These labels can be chosen at the
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Figure 4.42 Routing tables in example network.

convenience of the allocating router, and can be thought of as indices into the routing
table. After allocating the labels, R2 advertises the label bindings to its neighbors; in this
case, we see R2 advertising a binding between the label 15 and the prefix 18.1.1 to R1.
The meaning of such an advertisement is that R2 has said, in effect, “please attach the
label 15 to all packets sent to me that are destined to prefix 18.1.1.” R1 stores the label
in a table alongside the prefix that it represents as the “remote” or “outgoing” label for
any packets that it sends to that prefix.

In Figure 4.43(c), we see another label advertisement from router R3 to R2 for the
prefix 18.1.1, and R2 places the “remote” label that it learned from R3 in the appropriate
place in its table.

At this point, we can look at what happens when a packet is forwarded in this
network. Suppose a packet destined to the IP address 18.1.1.5 arrives from the left to
router R1. R1 in this case is referred to as a label edge router (LER); an LER performs
a complete IP lookup on arriving IP packets, and then applies labels to them as a result
of the lookup. In this case, R1 would see that 18.1.1.5 matches the prefix 18.1.1 in its
forwarding table, and that this entry contains both an outgoing interface and a remote
label value. R1 therefore attaches the remote label 15 to the packet before sending it.

When the packet arrives at R2, R2 looks only at the label in the packet, not the IP
address. The forwarding table at R2 indicates that packets arriving with a label value of
15 should be sent out interface 1, and that it should carry the label value 24, as advertised
by router R3. R2 therefore rewrites, or swaps, the label, and forwards it on to R3.

What has been accomplished by all this application and swapping of labels? Ob-
serve that when R2 forwarded the packet in this example, it never actually needed to
examine the IP address. Instead, R2 looked only at the incoming label. Thus, we have
replaced the normal IP destination address lookup with a label lookup. To understand
why this is significant, it helps to recall that although IP addresses are always the same
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Figure 4.43 (a) R2 allocates labels and advertises bindings to R1. (b) R1 stores the

received labels in a table. (c) R3 advertises another binding, and R2 stores the received

label in a table.

length, IP prefixes are of variable length, and the IP destination address lookup algorithm
needs to find the longest match; the longest prefix that matches the high-order bits in the
IP address of the packet being forwarded. By contrast, the label forwarding mechanism
just described is an exact match algorithm. It is possible to implement a very simple exact
match algorithm, for example, by using the label as an index into an array, where each
element in the array is one line in the forwarding table.
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Note that while the forwarding algorithm has been changed from longest match
to exact match, the routing algorithm can be any standard IP routing algorithm (e.g.,
OSPF). The path that a packet will follow in this environment is the exact same path
that it would have followed if MPLS were not involved—the path chosen by the IP
routing algorithms. All that has changed is the forwarding algorithm.

An important fundamental concept of MPLS is illustrated by this example. Every
MPLS label is associated with a forwarding equivalence class (FEC)—a set of packets that
are to receive the same forwarding treatment in a particular router. In this example, each
prefix in the routing table is an FEC. That is, all packets that match the prefix 18.1.1—
no matter what the low-order bits of the IP address are—get forwarded along the same
path. Thus, each router can allocate one label that maps to 18.1.1, and any packet that
contains an IP address whose high-order bits match that prefix can be forwarded using
that label.

As we will see in the subsequent examples, FECs are a very powerful and flexible
concept. FECs can be formed using almost any criteria; for example, all the packets
corresponding to a particular customer could be considered to be in the same FEC.

Returning to the example at hand, we observe that changing the forwarding al-
gorithm from normal IP forwarding to label-swapping has an important consequence:
devices that previously didn’t know how to forward IP packets can be used to forward
IP traffic in an MPLS network. The most notable early application of this result was to
ATM switches, which can support MPLS without any changes to their forwarding hard-
ware. ATM switches support the label-swapping forwarding algorithm just described,
and by providing these switches with IP routing protocols and a method to distribute la-
bel bindings, they could be turned into label switching routers (LSRs)—devices that run
IP control protocols but use the label-switching forwarding algorithm. More recently,
the same idea has been applied to optical switches of the sort described in Section 3.1.2.

Before we consider the purported benefits of turning an ATM switch into an LSR,
we should tie up some loose ends. We have said that labels are “attached” to packets,
but where exactly are they attached? The answer depends on the type of link on which
packets are carried. Two common methods for carrying labels on packets are shown in
Figure 4.44. When IP packets are carried as complete frames, as they are on most link
types including Ethernet, token ring, and PPP, the label is inserted as a “shim” between
the layer 2 header and the IP (or other layer 3) header, as shown in the lower part of the
figure. However, if an ATM switch is to function as an MPLS LSR, then the label needs
to be in a place where the switch can use it, and that means it needs to be in the ATM
cell header, exactly where one would normally find the VCI and VPI fields.

Having now devised a scheme by which an ATM switch can function as an LSR,
what have we gained? One thing to note is that we could now build a network that used
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Figure 4.44 (a) Label on an ATM-encapsulated packet; (b) label on a frame-

encapsulated packet.

What Layer Is MPLS?

There have been many debates about
where MPLS belongs in the layered
protocol architectures presented in
Section 1.3. Since the MPLS header
is normally found between the layer 3
and the layer 2 headers in a packet, it
is sometimes referred to as a layer 2.5
protocol. Some people argue that,
since IP packets are encapsulated in-
side MPLS headers, MPLS must be
“below” IP, making it a layer 2 pro-
tocol. Others argue that, since the
control protocols for MPLS are, in
large part, the same protocols as IP—
MPLS uses IP routing protocols and
IP addressing—then MPLS must be
at the same layer as IP (i.e., layer 3).
As we noted in Section 1.3, layered
architectures are useful tools but they
may not always exactly describe the
real world, and MPLS is a good exam-
ple of where strictly layerist views may
be difficult to reconcile with reality.

a mixture of conventional IP routers,
label edge routers, and ATM switches
functioning as LSRs, and they would all
use the same routing protocols. To un-
derstand the benefits of using the same
protocols, consider the alternative. In Fig-
ure 4.45(a) we see a set of routers inter-
connected by virtual circuits over an ATM
network, a configuration called an “over-
lay” network. At one point in time, net-
works of this type were often built because
commercially-available ATM switches sup-
ported higher total throughput than rout-
ers. Today, networks like this are less
common because routers have caught up
with and even surpassed ATM switches.
However, these networks still exist because
of the significant installed base of ATM
switches in network backbones, which in
turn is partly a result of ATM’s ability
to support a range of capabilities such
as circuit emulation and virtual circuit
services.

In an overlay network, each router
would potentially be connected to each
of the other routers by a virtual circuit,
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Figure 4.45 (a) Routers connect to each other using an “overlay” of virtual circuits.

(b) Routers peer directly with LSRs.

but in this case for clarity we have just shown the circuits from R1 to all of its peer
routers. R1 has five routing neighbors and needs to exchange routing protocol mes-
sages with all of them—we say that R1 has five routing adjacencies. By contrast, in
Figure 4.45(b), the ATM switches have been replaced with LSRs. There are no longer
virtual circuits interconnecting the routers. Thus, R1 has only one adjacency, with LSR1.
In large networks, running MPLS on the switches leads to a significant reduction in
the number of adjacencies that each router must maintain, and can greatly reduce the
amount of work that the routers have to do to keep each other informed of topology
changes.

A second benefit of running the same routing protocols on edge routers and on the
LSRs is that the edge routers now have a full view of the topology of the network. This
means that if some link or node fails inside the network, the edge routers will have a
better chance of picking a good new path than if the ATM switches rerouted the affected
VCs without the knowledge of the edge routers.

Note that the step of replacing ATM switches with LSRs is actually achieved by
changing the protocols running on the switches, but typically no change to the forward-
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ing hardware is needed. That is, an ATM switch can often be converted to an MPLS LSR
by upgrading only its software. Furthermore, an MPLS LSR might continue to support
standard ATM capabilities at the same time as it runs the MPLS control protocols, in
what is referred to as “ships in the night” mode.

More recently, the idea of running IP control protocols on devices that are unable
to forward IP packets natively has been extended to optical switches and TDM devices
such as SONET multiplexors. This is known as generalized MPLS or GMPLS. Part of
the motivation for GMPLS was to provide routers with topological knowledge of an
optical network, just as in the ATM case. Even more important was the fact that there
were no standard protocols for controlling optical devices, and so MPLS seemed like a
natural fit for that job.

4.5.2 Explicit Routing
In Section 3.1.3 we introduced the concept of source routing. IP has a source routing
option, but it is not widely used for several reasons, including the fact that only a limited
number of hops can be specified, and because it is usualy processed outside the “fast
path” on most routers.

MPLS provides a convenient way to add capabilities similar to source routing to
IP networks, although the capability is more often called explicit routing rather than
source routing. One reason for the distinction is that it usually isn’t the real source of the
packet that picks the route. More often it is one of the routers inside a service provider’s
network. Figure 4.46 shows an example of how the explicit routing capability of MPLS
might be applied. This sort of network is often called a fish network because of its shape
(the routers R1 and R2 form the tail; R7 is at the head).

Suppose that the operator of the network in Figure 4.46 has determined that any
traffic flowing from R1 to R7 should follow the path R1-R3-R6-R7, and that any traffic
going from R2 to R7 should follow the path R2-R3-R4-R7. One reason for such a choice
would be to make good use of the capacity available along the two distinct paths from R3
to R7. We can think of the R1-to-R7 traffic as constituting one forwarding equivalence

Figure 4.46 A network requiring explicit routing.
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class, and the R2-to-R7 traffic constitutes a second FEC. Forwarding traffic in these
two classes along different paths is difficult with normal IP routing, because R3 doesn’t
normally look at where traffic came from in making its forwarding decisions.

Because MPLS uses label swapping to forward packets, it is easy enough to achieve
the desired routing if the routers are MPLS-enabled. If R1 and R2 attach distinct labels to
packets before sending them to R3—thus identifying them as being in different FECs—
then R3 can forward packets from R1 and R2 along different paths. The question that
then arises is, how do all the routers in the network agree on what labels to use and how
to forward packets with particular labels? Clearly, we can’t use the same procedures as
described in the preceding section to distribute labels, because those procedures establish
labels that cause packets to follow the normal paths picked by IP routing, which is exactly
what we are trying to avoid. Instead, a new mechanism is needed. It turns out that the
protocol used for this task is the Resource Reservation Protocol (RSVP). We’ll talk more
about this protocol in Section 6.5.2, but for now it suffices to say that it is possible to
send an RSVP message along an explicitly specified path (e.g., R1-R3-R6-R7) and use
it to set up label forwarding table entries all along that path. This is very similar to the
process of establishing a virtual circuit described in Section 3.5.

One of the applications of explicit routing is traffic engineering, which refers to the
task of ensuring that sufficient resources are available in a network to meet the demands
placed on it. Controlling exactly on which paths the traffic flows is an important part
of traffic engineering. Explicit routing can also help to make networks more resilient
in the face of failure, using a capability called fast reroute. For example, it is possible to
precalculate a path from router A to router B that explicitly avoids a certain link L. In the
event that link L fails, router A could send all traffic destined to B down the precalculated
path. The combination of precalculation of the backup path and the explicit routing of
packets along the path means that A doesn’t need to wait for routing protocol packets to
make their way across the network or for routing algorithms to be executed by various
other nodes in the network. In certain circumstances, this can significantly reduce the
time taken to reroute packets around a point of failure.

One final point to note about explicit routing is that explicit routes need not be
calculated by a network operator as in the above example. There are a range of algo-
rithms that routers can use to calculate explicit routes automatically. The most common
of these is called constrained shortest path first (CSPF), which is like the link-state al-
gorithms described in Section 4.2.3, but which also takes constraints into account. For
example, if it was required to find a path from R1 to R7 in that could carry an offered
load of 100 Mbps, we could say that the “constraint” is that each link must have at
least 100 Mbps of available capacity. CSPF addresses this sort of problem. More details
on CSPF, and the applications of explicit routing, are provided in the Further Reading
section.
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4.5.3 Virtual Private Networks and Tunnels
We first talked about virtual private networks (VPNs) in Section 4.1.8, and we noted
that one way to build them was using tunnels. It turns out that MPLS can be thought of
as a way to build tunnels, and this makes it suitable for building VPNs of various types.

The simplest form of MPLS VPN to understand is a “layer 2” VPN. In this type
of VPN, MPLS is used to tunnel layer 2 data (such as Ethernet frames or ATM cells)
across a network of MPLS-enabled routers. Recall from Section 4.1.8 that one reason
for tunnels is to provide some sort of network service (such as multicast) that is not
supported by some routers in the network. The same logic applies here: IP routers are
not ATM switches, so you cannot provide an ATM virtual circuit service across a net-
work of conventional routers. However, if you had a pair of routers interconnected by a
tunnel, they could send ATM cells across the tunnel and emulate an ATM circuit. The
term for this technique within the IETF is pseudowire emulation. Figure 4.47 illustrates
the idea.

We have already seen how IP tunnels are built: The router at the entrance of the
tunnel wraps the data to be tunneled in an IP header (the tunnel header), which rep-
resents the address of the router at the far end of the tunnel, and sends the data like
any other IP packet. The receiving router receives the packet with its own address in
the header, strips the tunnel header, and finds the data that was tunneled, which it then
processes. Exactly what it does with that data depends on what it is. For example, if it
were another IP packet, it would then be forwarded on like a normal IP packet. How-
ever, it need not be an IP packet, as long as the receiving router knows what to do with
non-IP packets. We’ll return to the issue of how to handle non-IP data in a moment.

An MPLS tunnel is not too different from an IP tunnel, except that the tunnel
header consists of an MPLS header rather than an IP header. Looking back to our first
example, in Figure 4.43, we saw that router R1 attached a label (15) to every packet
that it sent toward prefix 18.1.1. Such a packet would then follow the path R1-R2-
R3, which each router in the path examining only the MPLS label. Thus, we observe

Figure 4.47 An ATM circuit is emulated by a tunnel.
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that there was no requirement that R1 only send IP packets along this path—any data
could be wrapped up in the MPLS header and it would follow the same path, because
the intervening routers never look beyond the MPLS header. In this regard, an MPLS
header is just like an IP tunnel header.10 The only issue with sending non-IP traffic along
a tunnel, MPLS or otherwise, is this: What to do with non-IP traffic when it reaches the
end of the tunnel? The general solution is to carry some sort of demultiplexing identifier
in the tunnel payload that tells the router at the end of the tunnel what to do. It turns
out that an MPLS label is a perfect fit for such an identifier. An example will make this
clear.

Let’s assume we want to tunnel ATM cells from one router to another across a
network of MPLS-enabled routers, as in Figure 4.47. Further, we assume that the goal
is to emulate an ATM virtual circuit, that is, cells arrive at the entrance, or head, of the
tunnel on a certain input port with a certain VCI and should leave the tail end of the
tunnel on a certain output port and potentially different VCI. This can be accomplished
by configuring the head and tail routers as follows:

■ The head router needs to be configured with the incoming port, the incoming
VCI, the “demultiplexing label” for this emulated circuit, and the address of the
tunnel end router;

■ The tail end router needs to be configured with the outgoing port, the outgoing
VCI, and the demultiplexing label.

Once the routers are provided with this information, we can see how an ATM cell would
be forwarded. Figure 4.48 illustrates the steps.

Figure 4.48 Forwarding ATM cells along a tunnel.

10Note, however, that an MPLS header is only 4 bytes long, compared to 20 for an IP header, which implies a bandwidth
savings when MPLS is used.
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1 An ATM cell arrives on the des-
ignated input port with the ap-
propriate VCI value (101 in this
example).

2 The head router attaches the de-
multiplexing label that identifies
the emulated circuit.

3 The head router then attaches a
second label, which is the tun-
nel label that will get the packet
to the tail router. This label is
learned by mechanisms just like
those described in Section 4.5.1.

4 Routers between the head and
tail forward the packet using
only the tunnel label.

5 The tail router removes the tun-
nel label, finds the demultiplex-
ing label, and recognizes the
emulated circuit.

6 The tail router modifies the
ATM VCI to the correct value
(202 in this case) and sends it out
the correct port.

One item in this example that
might be surprising is that the packet has
two labels attached to it. This is one of the
interesting features of MPLS—labels may
be stacked on a packet to any depth. This
provides some useful scaling capabilities.
In this example, it enables a single tunnel
to carry a potentially large number of em-
ulated circuits.

The same techniques described here
can be applied to emulate many other

Where Are They Now ????
Deployment of MPLS

Originally conceived as a technology
that would operate within the network
of individual service providers, MPLS
remains hidden from most consumer
and academic users of the Internet to-
day. However, it is now sufficiently
popular among service providers that
it has become almost mandatory for
high-end router manufacturers to in-
clude MPLS capabilities in their prod-
ucts. The widespread success of MPLS
is a relatively well-kept secret, at least
to students and researchers focused on
the public Internet.

Two main applications of MPLS
account for most of its deployment.
The layer 3 VPN application de-
scribed in this section is the “killer
application” for MPLS. Almost every
service provider in the world now of-
fers an MPLS-based layer 3 VPN ser-
vice. This is often run on routers that
are essentially separate from the In-
ternet, since the main use of layer 3
VPNs is to provider “private” IP ser-
vice to corporations, not to provide
global Internet connectivity. Some
providers do run their Internet ser-
vice and VPN service over a common
backbone, however.

The second popular usage of
MPLS is explicit routing, either for
traffic engineering, fast reroute, or
both. Unlike the layer 3 VPN service,
which is explicitly marketed to end
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Where Are They Now ????
customers, explicit routing is an in-
ternal capability that providers use to
improve the reliability of their net-
works or reduce the cost. Providers
do not usually publicize details of
their internal network designs, mak-
ing it more difficult to determine how
many providers actually use this tech-
nology. It is clear that the explicit
routing features of MPLS are used by
fewer providers than the VPN fea-
tures, but nevertheless there is evi-
dence of significant usage, especially
when bandwidth is expensive or when
there is a strong desire to maintain
low levels of congestion (e.g., to sup-
port real-time services).

layer 2 services, including Frame Relay and
Ethernet. It is worth noting that virtually
identical capabilities can be provided using
IP tunnels; the main advantage of MPLS
here is the shorter tunnel header.

Before MPLS was used to tunnel
layer 2 services, it was also being used
to support layer 3 VPNs. We won’t go
into the details of layer 3 VPNs, which
are quite complex—see the Further Read-
ing section for some good sources of more
information—but we will note that they
represent one of the most popular uses of
MPLS today. Layer 3 VPNs also use stacks
of MPLS labels to tunnel packets across
an IP network. However, the packets that
are tunneled are themselves IP packets—
hence the name layer 3 VPNs. In a layer
3 VPN, a single service provider oper-
ates a network of MPLS-enabled routers,
and provides a “virtually private” IP net-

work service to any number of distinct customers. That is, each customer of the provider
has some number of sites, and the service provider creates the illusion for each cus-
tomer that there are no other customers on the network. The customer sees an IP
network interconnecting his own sites, and no other sites. This means that each cus-
tomer is isolated from all other customers in terms of both routing and addressing.
Customer A can’t sent packets directly to customer B, and vice versa.11 Customer A
can even use IP addresses that have also been used by customer B. The basic idea
is illustrated in Figure 4.49. As in layer 2 VPNs, MPLS is used to tunnel packets
from one site to another. However, the configuration of the tunnels is performed au-
tomatically by some fairly elaborate use of BGP, which is beyond the scope of this
book.

In summary, MPLS is a rather versatile tool that has been applied to a wide range of
different networking problems. It combines the label-swapping forwarding mechanism
that is normally associated with virtual circuit networks with the routing and control

11Customer A in fact usually can send data to customer B in some restricted way. Most likely, both customer A and
customer B have some connection to the global Internet, and thus it is probably possible for customer A to send email
messages, for example, to the mail server inside customer B’s network. The “privacy” offered by a VPN prevents customer A
from having unrestricted access to all the machines and subnets inside customer B’s network.
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Figure 4.49 Example of a layer 3 VPN. Customers A and B each obtain a virtually

private IP service for a single provider.

protocols of IP datagram networks to produce a class of network that is somewhere
between the two conventional extremes. This extends the capabilities of IP networks to
enable, among other things, more precise control of routing and the support of a range
of VPN services.

4.6 Summary
The main theme of this chapter was how to build big networks by interconnecting
smaller networks. We looked at bridging in the last chapter, but it is a technique
that is mostly used to interconnect a small to moderate number of similar networks.
What bridging does not do well is tackle the two closely related problems of build-
ing very large networks: heterogeneity and scale. The Internet Protocol is the key
tool for dealing with these problems, and it provided most of the examples for this
chapter.

IP tackles heterogeneity by defining a simple, common service model for an inter-
network, which is based on the best-effort delivery of IP datagrams. An important part
of the service model is the global addressing scheme, which enables any two nodes in an
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internetwork to uniquely identify each other for the purposes of exchanging data. The
IP service model is simple enough to be supported by any known networking technol-
ogy, and the ARP mechanism is used to translate global IP addresses into local link-layer
addresses.

A crucial aspect of the operation of an internetwork is the determination of ef-
ficient routes to any destination in the internet. Internet routing algorithms solve this
problem in a distributed fashion; this chapter introduced the two major classes of
algorithms—link-state and distance-vector—along with examples of their application
(RIP and OSPF). We also examined the extensions to IP routing that will support mo-
bile hosts.

We then saw a succession of scaling problems and the ways that IP deals with
them. The major scaling issues are the efficient use of address space and the growth of
routing tables as the Internet grows. The hierarchical IP address format, with its net-
work and host parts, gives us one level of hierarchy to manage scale. Subnetting lets us
make more efficient use of network numbers and helps consolidate routing information;
in effect, it adds one more level of hierarchy to the address. Classless routing (CIDR)
lets us introduce more levels of hierarchy and achieve further routing aggregation. Au-
tonomous systems allow us to partition the routing problem into two parts, interdomain
and intradomain routing, each of which is much smaller than the total routing prob-
lem would be. These mechanisms have enabled today’s Internet to sustain remarkable
growth.

Eventually, all of these mechanisms will be unable to keep up with the Internet’s
growth, and a new address format will be needed. This will require a new IP datagram
format and a new version of the protocol. Originally known as Next Generation IP
(IPng), this new protocol is now known as IPv6, and it provides a 128-bit address with
CIDR-like addressing and routing. While many new capabilities have been claimed for
IPv6, its main advantage remains its ability to support an extremely large number of
addressable devices.

Finally, we looked at two enhancements to the original IP datagram model. The
first, multicast, enables efficient delivery of the same data to groups of receivers. As with
unicast, many of the challenges in multicast relate to scaling, and a number of different
protocols and multicast modes have been developed to optimize scaling and routing in
different environments. The second enhancement, MPLS, brings some of the aspects of
virtual circuit networks to IP, and has been widely used to extend the capabilities of IP.
Applications of MPLS range from traffic engineering to the support of virtual private
networks over the Internet.
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O P E N I S S U E

Deployment of IPv6

More than 15 years have elapsed
since the shortage of IPv4 address
space became serious enough to war-
rant proposals for a new version of IP.
The original IPv6 specification is now
more than 10 years old. IPv6-capable
host operating systems are now widely

available and the major router vendors offer varying degrees of support for IPv6 in their
products. Yet the deployment of IPv6 in the Internet can only be described as embry-
onic. It is worth wondering when deployment is likely to begin in earnest, and what will
cause it.

One reason why IPv6 has not been needed sooner is because of the exten-
sive use of NAT (network address translation, described earlier in this chapter). As
providers viewed IPv4 addresses as a scarce resource, they handed out fewer of them
to their customers, or charged for the number of addresses used; customers responded
by hiding many of their devices behind a NAT box and a single IPv4 address. For
example, it is likely that most home networks with more than one IP-capable de-
vice have some sort of NAT in the network to conserve addresses. So one factor
that might drive IPv6 deployment would be applications that don’t work well with
NAT. While client-server applications work reasonably well when the client’s ad-
dress is “hidden” behind a NAT box, peer-to-peer applications fare less well. Exam-
ples of applications that would work better without NAT and would therefore ben-
efit from more liberal address allocation policies are multiplayer gaming and IP tele-
phony.

Obtaining blocks of IPv4 addresses has been getting more difficult for years, and
this is particularly noticeable in countries outside the United States. As the difficulty
increases, the incentive for providers to start offering IPv6 addresses to their customers
also rises. At the same time, for existing providers, offering IPv6 is a substantial ad-
ditional cost, because they don’t get to stop supporting IPv4 when they start to offer
IPv6. This means, for example, that the size of a provider’s routing tables can only in-
crease initially, because they need to carry all the existing IPv4 prefixes plus new IPv6
prefixes.

At the moment, IPv6 deployment is happening primarily in research networks.
A few service providers are starting to offer it (often with some incentive from national
governments). It seems hard to imagine that the Internet can continue to grow indefi-
nitely without IPv6 seeing some more significant deployments, but it also seems likely
that the overwhelming majority of hosts and networks will be IPv4-only for several more
years at least.
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F U R T H E R R E A D I N G
Not surprisingly, there have been countless papers written on various aspects of the
Internet. Of these, we recommend two as must reading: The paper by Cerf and Kahn
is the one that originally introduced the TCP/IP architecture and is worth reading just
for its historical perspective; the paper by Bradner and Mankin gives an informative
overview on how the rapidly growing Internet has stressed the scalability of the original
architecture, ultimately resulting in the next generation IP. The paper by Paxson describes
a study of how routers behave in the Internet. It also happens to be a good example of
how researchers are now studying the dynamic behavior of the Internet. The final paper
discusses multicast, presenting the approach to multicast originally used on the MBone.

■ Cerf, V., and R. Kahn. “A Protocol for Packet Network Intercommunication.”
IEEE Transactions on Communications COM-22(5):637–648, May 1974.

■ Bradner, S., and A. Mankin. “The Recommendation for the Next Generation
IP Protocol.” Request for Comments 1752, January 1995.

■ Paxson, V. “End-to-End Routing Behavior in the Internet.” SIGCOMM ’96,
pp. 25–38, August 1996.

■ Deering, S., and D. Cheriton. “Multicast Routing in Datagram Internetworks
and Extended LANs.” ACM Transactions on Computer Systems 8(2):85–110,
May 1990.

Beyond these papers, Perlman gives an excellent explanation of routing in an inter-
net, including coverage of both bridges and routers [Per00]. Also, the book by Lynch and
Rose gives general information on the scalability of the Internet [Cha93]. Some interest-
ing experimental studies of the behavior of Internet routing are presented in Labovitz et
al. [LAAJ00].

Many of the techniques and protocols developed to help the Internet scale are
described in RFCs: Subnetting is described in Mogul and Postel [MP85], CIDR is de-
scribed in Fuller and Li [FL06], RIP is defined in Hedrick [Hed88] and Mogul and Pos-
tel [MP94], OSPF is defined in Moy [Moy98], and BGP-4 is defined in Rekhter et al.
[RLH06]. The OSPF specification, at over 200 pages, is one of the longer RFCs around,
but also contains an unusual wealth of detail about how to implement a protocol. A col-
lection of RFCs related to IPv6 can be found in Bradner and Mankin [BM95], and
the most recent IPv6 spec is by Deering and Hinden [DH98]. The reasons to avoid IP
fragmentation are examined in Kent and Mogul [KM87] and the Path MTU discovery
technique is described in Mogul and Deering [MD90]. Protocol Independent Multicast
(PIM) is described in Deering et al. [DEF+96] and [EFH+98]. MSDP is described in
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[FM03] and PIM-SSM in [Bha03]. [Wil00] and [HC99] are both very readable intro-
ductions to multicast with interesting historical details.

There has been a lot of work developing algorithms that can be used by routers
to do fast lookup of IP addresses. (Recall that the problem is that the router needs to
match the longest prefix in the forwarding table.) PATRICIA trees are one of the first
algorithms applied to this problem [Mor68]. More recent work is reported in [DBSP97],
[WVTP97], [LS98], and [SVSW98]. For an overview of how these algorithms can be
used to build a high-speed router, see Partridge et al. [Par98].

Multiprotocol label switching and the related protocols that fed its development
are described in Chandranmenon and Varghese [CV95], Rekhter et al. [RDR+97], and
Davie and Rekhter [DR00]. The latter reference describes many applications of MPLS
such as traffic engineering, fast recovery from network failures, and virtual private net-
works. [RR06] provides the specification of MPLS/BGP VPNs, a form of layer 3 VPN
that can be provided over MPLS networks.

Finally, we recommend the following live references:

■ http://www.ietf.org: The IETF home page, from which you can get RFCs,
internet drafts, and working group charters.

■ http://www.isoc.org/internet/history/: A collection of links related to In-
ternet history, including some articles written by the original researchers who
built the Internet.

E X E R C I S E S
1 What aspect of IP addresses makes it necessary to have one address per net-

work interface, rather than just one per host? In light of your answer, why
does IP tolerate point-to-point interfaces that have nonunique addresses or no
addresses?

2 Why does the Offset field in the IP header measure the offset in 8-byte units?
(Hint: Recall that the Offset field is 13 bits long.)

3 Some signalling errors can cause entire ranges of bits in a packet to be overwrit-
ten by all 0s or all 1s. Suppose all the bits in the packet including the Internet
checksum are overwritten. Could a packet with all 0s or all 1s be a legal IPv4
packet? Will the Internet checksum catch that error? Why or why not?

4 Suppose a TCP message that contains 2,048 bytes of data and 20 bytes of TCP
header is passed to IP for delivery across two networks of the Internet (i.e.,
from the source host to a router to the destination host). The first network
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uses 14-byte headers and has an MTU of 1,024 bytes; the second uses 8-byte
headers with an MTU of 512 bytes. Each network’s MTU gives the size of
the largest IP datagram that can be carried in a link layer frame. Give the sizes
and offsets of the sequence of fragments delivered to the network layer at the
destination host. Assume all IP headers are 20 bytes.

✓ 5 Path MTU is the smallest MTU of any link on the current path (route) be-
tween two hosts. Assume we could discover the Path MTU of the path used
in the previous exercise, and that we use this value as the MTU for all the path
segments. Give the sizes and offsets of the sequence of fragments delivered to
the network layer at the destination host.

★ 6 Suppose an IP packet is fragmented into 10 fragments, each with a 1% (inde-
pendent) probability of loss. To a reasonable approximation, this means there
is a 10% chance of losing the whole packet due to loss of a fragment. What
is the probability of net loss of the whole packet if the packet is transmitted
twice,

(a) Assuming all fragments received must have been part of the same trans-
mission?

(b) Assuming any given fragment may have been part of either transmission?

(c) Explain how use of the Ident field might be applicable here.

7 Suppose the fragments of Figure 4.5(b) all pass through another router onto
a link with an MTU of 380 bytes, not counting the link header. Show the
fragments produced. If the packet were originally fragmented for this MTU,
how many fragments would be produced?

8 What is the maximum bandwidth at which an IP host can send 576-byte pack-
ets without having the Ident field wrap around within 60 seconds? Suppose
IP’s maximum segment lifetime (MSL) is 60 seconds, that is, delayed pack-
ets can arrive up to 60 seconds late but no later. What might happen if this
bandwidth were exceeded?

9 ATM AAL3/4 uses fields Btag/Etag, BASize/Len, Type, SEQ, MID,
Length, and CRC-10 to implement fragmentation into cells. IPv4 uses
Ident, Offset, and the M bit in Flags, among others. What is the IP analog,
if any, for each AAL3/4 field? Does each IP field listed here have an AAL3/4
analog? How well do these fields correspond?
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10 Why do you think IPv4 has fragment reassembly done at the endpoint, rather
than at the next router? Why do you think IPv6 abandoned fragmentation
entirely? (Hint: Think about the differences between IP-layer fragmentation
and link-layer fragmentation.)

11 Having ARP table entries time out after 10 to 15 minutes is an attempt at a
reasonable compromise. Describe the problems that can occur if the timeout
value is too small or too large.

12 IP currently uses 32-bit addresses. If we could redesign IP to use the 6-byte
MAC address instead of the 32-bit address, would we be able to eliminate the
need for ARP? Explain why or why not.

13 Suppose hosts A and B have been assigned the same IP address on the same
Ethernet, on which ARP is used. B starts up after A. What will happen to
A’s existing connections? Explain how “self-ARP” (querying the network on
start-up for one’s own IP address) might help with this problem.

14 Suppose an IP implementation adheres literally to the following algorithm on
receipt of a packet, P, destined for IP address D:

if (〈Ethernet address for D is in ARP cache〉)
〈send P〉

else
〈send out an ARP query for D〉
〈put P into a queue until the response comes back〉

(a) If the IP layer receives a burst of packets destined for D, how might this
algorithm waste resources unnecessarily?

(b) Sketch an improved version.

(c) Suppose we simply drop P, after sending out a query, when cache lookup
fails. How would this behave? (Some early ARP implementations allegedly
did this.)

15 For the network given in Figure 4.50, give global distance-vector tables like
those of Tables 4.5 and 4.8 when

(a) Each node knows only the distances to its immediate neighbors.

(b) Each node has reported the information it had in the preceding step to its
immediate neighbors.
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Figure 4.50 Network for Exercises 15, 17, and 20.

Figure 4.51 Network for Exercise 16.

(c) Step (b) happens a second time.

✓ 16 For the network given in Figure 4.51, give global distance-vector tables like
those of Tables 4.5 and 4.8 when

(a) Each node knows only the distances to its immediate neighbors.

(b) Each node has reported the information it had in the preceding step to its
immediate neighbors.

(c) Step (b) happens a second time.

17 For the network given in Figure 4.50, show how the link-state algorithm builds
the routing table for node D.

18 Suppose we have the forwarding tables shown in Table 4.12 for nodes A and
F, in a network where all links have cost 1. Give a diagram of the smallest
network consistent with these tables.
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A

Node Cost NextHop

B 1 B

C 2 B

D 1 D

E 2 B

F 3 D

F

Node Cost NextHop

A 3 E

B 2 C

C 1 C

D 2 E

E 1 E

Table 4.12 Forwarding tables for Exercise 18.

A

Node Cost NextHop

B 1 B

C 1 C

D 2 B

E 3 C

F 2 C

F

Node Cost NextHop

A 2 C

B 3 C

C 1 C

D 2 C

E 1 E

Table 4.13 Forwarding tables for Exercise 19.

✓ 19 Suppose we have the forwarding tables shown in Table 4.13 for nodes A and
F, in a network where all links have cost 1. Give a diagram of the smallest
network consistent with these tables.

20 For the network in Figure 4.50, suppose the forwarding tables are all estab-
lished as in Exercise 15 and then the C–E link fails. Give

(a) The tables of A, B, D, and F after C and E have reported the news.

(b) The tables of A and D after their next mutual exchange.

(c) The table of C after A exchanges with it.

21 Suppose a router has built up the routing table shown in Table 4.14. The
router can deliver packets directly over interfaces 0 and 1, or it can forward
packets to routers R2, R3, or R4. Describe what the router does with a packet
addressed to each of the following destinations:
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SubnetNumber SubnetMask NextHop

128.96.39.0 255.255.255.128 Interface 0

128.96.39.128 255.255.255.128 Interface 1

128.96.40.0 255.255.255.128 R2

192.4.153.0 255.255.255.192 R3

〈default〉 R4

Table 4.14 Routing table for Exercise 21.

SubnetNumber SubnetMask NextHop

128.96.170.0 255.255.254.0 Interface 0

128.96.168.0 255.255.254.0 Interface 1

128.96.166.0 255.255.254.0 R2

128.96.164.0 255.255.252.0 R3

〈default〉 R4

Table 4.15 Routing table for Exercise 22.

(a) 128.96.39.10.

(b) 128.96.40.12.

(c) 128.96.40.151.

(d) 192.4.153.17.

(e) 192.4.153.90.

✓ 22 Suppose a router has built up the routing table shown in Table 4.15. The
router can deliver packets directly over interfaces 0 and 1, or it can forward
packets to routers R2, R3, or R4. Assume the router does the longest prefix
match. Describe what the router does with a packet addressed to each of the
following destinations:

(a) 128.96.171.92.

(b) 128.96.167.151.

(c) 128.96.163.151.
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Figure 4.52 Simple network for Exercise 23.

(d) 128.96.169.192.

(e) 128.96.165.121.

★ 23 Consider the simple network in Figure 4.52, in which A and B exchange
distance-vector routing information. All links have cost 1. Suppose the A–E
link fails.

(a) Give a sequence of routing table updates that leads to a routing loop be-
tween A and B.

(b) Estimate the probability of the scenario in (a), assuming A and B send out
routing updates at random times, each at the same average rate.

(c) Estimate the probability of a loop forming if A broadcasts an updated
report within 1 second of discovering the A–E failure, and B broadcasts
every 60 seconds uniformly.

24 Consider the situation involving the creation of a routing loop in the network
of Figure 4.14 when the A–E link goes down. List all sequences of table up-
dates among A, B, and C, pertaining to destination E, that lead to the loop.
Assume that table updates are done one at a time, that the split-horizon tech-
nique is observed by all participants, and that A sends its initial report of
E’s unreachability to B before C. You may ignore updates that don’t result in
changes.

25 Suppose a set of routers all use the split-horizon technique; we consider here
under what circumstances it makes a difference if they use poison reverse in
addition.

(a) Show that poison reverse makes no difference in the evolution of the rout-
ing loop in the two examples described in Section 4.2.2, given that the
hosts involved use split horizon.

(b) Suppose split-horizon routers A and B somehow reach a state in which
they forward traffic for a given destination X toward each other. Describe
how this situation will evolve with and without the use of poison reverse.
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Figure 4.53 Networks for Exercise 26.

Figure 4.54 Network for Exercise 27.

(c) Give a sequence of events that leads A and B to a looped state as in (b), even
if poison reverse is used. (Hint: Suppose B and A connect through a very
slow link. They each reach X through a third node, C, and simultaneously
advertise their routes to each other.)

26 Hold down is another distance-vector loop-avoidance technique, whereby hosts
ignore updates for a period of time until link failure news has had a chance to
propagate. Consider the networks in Figure 4.53, where all links have cost 1
except E–D with cost 10. Suppose that the E–A link breaks and B reports
its loop-forming E route to A immediately afterwards (this is the false route,
via A). Specify the details of a hold-down interpretation, and use this to de-
scribe the evolution of the routing loop in both networks. To what extent can
hold down prevent the loop in the EAB network without delaying the discov-
ery of the alternative route in the EABD network?

27 Consider the network in Figure 4.54, using link-state routing. Suppose the
B–F link fails, and the following then occur in sequence:

(a) Node H is added to the right side with a connection to G.

(b) Node D is added to the left side with a connection to C.

(c) A new link D–A is added.

The failed B–F link is now restored. Describe what link-state packets will flood
back and forth. Assume that the initial sequence number at all nodes is 1, and
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Figure 4.55 Network for Exercise 28.

Figure 4.56 Network for Exercise 29.

Figure 4.57 Network for Exercise 30.

that no packets time out, and that both ends of a link use the same sequence
number in their LSP for that link, greater than any sequence number either
used before.

28 Give the steps as in Table 4.9 in the forward search algorithm as it builds the
routing database for node A in the network shown in Figure 4.55.

✓ 29 Give the steps as in Table 4.9 in the forward search algorithm as it builds the
routing database for node A in the network shown in Figure 4.56.

30 Suppose that nodes in the network shown in Figure 4.57 participate in link-
state routing, and C receives contradictory LSPs: One from A arrives claiming
the A–B link is down, but one from B arrives claiming the A–B link is up.

(a) How could this happen?

(b) What should C do? What can C expect?

Do not assume that LSPs contain any synchronized timestamp.
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Figure 4.58 Network for Exercise 31.

31 Consider the network shown in Figure 4.58, in which horizontal lines repre-
sent transit providers and numbered vertical lines are interprovider links.

(a) How many routes to P could provider Q’s BGP speakers receive?

(b) Suppose Q and P adopt the policy that outbound traffic is routed to the
closest link to the destination’s provider, thus minimizing their own cost.
What paths will traffic from host A to host B and from host B to host A
take?

(c) What could Q do to have the B−→A traffic use the closer link 1?

(d) What could Q do to have the B−→A traffic pass through R?

32 Give an example of an arrangement of routers grouped into autonomous sys-
tems so that the path with the fewest hops from a point A to another point B
crosses the same AS twice. Explain what BGP would do with this situation.

★ 33 Let A be the number of autonomous systems on the Internet, and let D (for
diameter) be the maximum AS path length.

(a) Give a connectivity model for which D is of order log A and another for
which D is of order

√
A.

(b) Assuming each AS number is 2 bytes and each network number is 4 bytes,
give an estimate for the amount of data a BGP speaker must receive to
keep track of the AS path to every network. Express your answer in terms
of A, D, and the number of networks N .

34 Suppose IP routers learned about IP networks and subnets the way Ethernet
learning bridges learn about hosts: by noting the appearance of new ones, and
the interface by which they arrive. Compare this with existing distance-vector
router learning
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(a) For a leaf site with a single attachment to the Internet.

(b) For internal use at an organization that did not connect to the Internet.

Assume that routers only receive new-network notices from other routers, and
that the originating routers receive their IP network information via configu-
ration.

35 IP hosts that are not designated routers are required to drop packets misad-
dressed to them, even if they would otherwise be able to forward them cor-
rectly. In the absence of this requirement, what would happen if a packet ad-
dressed to IP address A were inadvertently broadcast at the link layer? What
other justifications for this requirement can you think of?

36 Read the man page or other documentation for the Unix/Windows utility
netstat. Use netstat to display the current IP routing table on your host.
Explain the purpose of each entry. What is the practical minimum number of
entries?

37 Use the Unix utility traceroute (Windows tracert) to determine how
many hops it is from your host to other hosts in the Internet (e.g.,
cs.princeton.edu or www.cisco.com). How many routers do you tra-
verse just to get out of your local site? Read the man page or other documen-
tation for traceroute and explain how it is implemented.

38 What will happen if traceroute is used to find the path to an unassigned
address? Does it matter if the network portion or only the host portion is
unassigned?

39 A site is shown in Figure 4.59. R1 and R2 are routers; R2 connects to the
outside world. Individual LANs are Ethernets. RB is a bridge-router; it routes
traffic addressed to it and acts as a bridge for other traffic. Subnetting is used
inside the site; ARP is used on each subnet. Unfortunately, host A has been
misconfigured and doesn’t use subnets. Which of B, C, D can A reach?

40 An organization has a class C network 200.1.1 and wants to form subnets for
four departments, with hosts as follows:

A 72 hosts

B 35 hosts

C 20 hosts

D 18 hosts
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Figure 4.59 Site for Exercise 39.

Figure 4.60 Network for Exercise 41.

There are 145 hosts in all.

(a) Give a possible arrangement of subnet masks to make this possible.

(b) Suggest what the organization might do if department D grows to 34
hosts.

41 Suppose hosts A and B are on an Ethernet LAN with class C IP network
address 200.0.0. It is desired to attach a host C to the network via a direct
connection to B (see Figure 4.60). Explain how to do this with subnets; give
sample subnet assignments. Assume that an additional network address is not
available. What does this do to the size of the Ethernet LAN?

42 An alternative method for connecting host C in Exercise 41 is to use proxy
ARP and routing: B agrees to route traffic to and from C, and also answers
ARP queries for C received over the Ethernet.

(a) Give all packets sent, with physical addresses, as A uses ARP to locate and
then send one packet to C.

(b) Give B’s routing table. What peculiarity must it contain?
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Net/MaskLength NextHop

C4.50.0.0/12 A

C4.5E.10.0/20 B

C4.60.0.0/12 C

C4.68.0.0/14 D

80.0.0.0/1 E

40.0.0.0/2 F

00.0.0.0/2 G

Table 4.16 Routing table for Exercise 45.

43 Propose a plausible addressing plan for IPv6 that runs out of bits. Specifically,
provide a diagram such as Figure 4.35, perhaps with additional ID fields, that
adds up to more than 128 bits, together with plausible justifications for the
size of each field. You may assume fields are divided on byte boundaries, and
that the InterfaceID is 64 bits. (Hint: Consider fields that would approach
maximum allocation only under unusual circumstances. Can you do this if the
InterfaceID is 48 bits?)

44 Suppose two subnets share the same physical LAN; hosts on each subnet will
see the other subnet’s broadcast packets.

(a) How will DHCP fare if two servers, one for each subnet, coexist on the
shared LAN? What problems might (do!) arise?

(b) Will ARP be affected by such sharing?

45 Table 4.16 is a routing table using CIDR. Address bytes are in hexadecimal.
The notation “/12” in C4.50.0.0/12 denotes a netmask with 12 leading 1 bits,
that is, FF.F0.0.0. Note that the last three entries cover every address and thus
serve in lieu of a default route. State to what next hop the following will be
delivered.

(a) C4.5E.13.87.

(b) C4.5E.22.09.

(c) C3.41.80.02.
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Net/MaskLength NextHop

C4.5E.2.0/23 A

C4.5E.4.0/22 B

C4.5E.C0.0/19 C

C4.5E.40.0/18 D

C4.4C.0.0/14 E

C0.0.0.0/2 F

80.0.0.0/1 G

Table 4.17 Routing table for Exercise 46.

(d) 5E.43.91.12.

(e) C4.6D.31.2E.

(f ) C4.6B.31.2E.

✓ 46 Table 4.17 is a routing table using CIDR. Address bytes are in hexadecimal.
The notation “/12” in C4.50.0.0/12 denotes a netmask with 12 leading 1 bits,
that is, FF.F0.0.0. State to what next hop the following will be delivered.

(a) C4.4B.31.2E.

(b) C4.5E.05.09.

(c) C4.4D.31.2E.

(d) C4.5E.03.87.

(e) C4.5E.7F.12.

(f ) C4.5E.D1.02.

47 Suppose P, Q, and R are network service providers, with respective CIDR
address allocations (using the notation of Exercise 45) C1.0.0.0/8, C2.0.0.0/8,
and C3.0.0.0/8. Each provider’s customers initially receive address allocations
that are a subset of the provider’s. P has the following customers:

PA, with allocation C1.A3.0.0/16;

PB, with allocation C1.B0.0.0/12.
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Q has the following customers:

QA, with allocation C2.0A.10.0/20;

QB, with allocation C2.0B.0.0/16.

Assume there are no other providers or customers.

(a) Give routing tables for P, Q, and R assuming each provider connects to
the other two.

(b) Now assume P is connected to Q and Q is connected to R, but P and R
are not directly connected. Give tables for P and R.

(c) Suppose customer PA acquires a direct link to Q, and QA acquires a direct
link to P, in addition to existing links. Give tables for P and Q, ignoring R.

48 In the previous problem, assume each provider connects to the other two.
Suppose customer PA switches to provider Q and customer QB switches to
provider R. Use the CIDR longest-match rule to give routing tables for all
three providers that allow PA and QB to switch without renumbering.

49 Suppose most of the Internet used some form of geographical addressing, but
that a large international organization has a single IP network address and
routes its internal traffic over its own links.

(a) Explain the routing inefficiency for the organization’s inbound traffic in-
herent in this situation.

(b) Explain how the organization might solve this problem for outbound
traffic.

(c) For your method above to work for inbound traffic, what would have to
happen?

(d) Suppose the large organization now changes its addressing to separate geo-
graphical addresses for each office. What will its internal routing structure
have to look like if internal traffic is still to be routed internally?

50 The telephone system uses geographical addressing. Why do you think this
wasn’t adopted as a matter of course by the Internet?
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51 Suppose a site A is multihomed, in that it has two Internet connections from
two different providers, P and Q. Provider-based addressing as in Exercise 47 is
used, and A takes its address assignment from P. Q has a CIDR longest-match
routing entry for A.

(a) Describe what inbound traffic might flow on the A–Q connection. Con-
sider cases where Q does and does not advertise A to the world using BGP.

(b) What is the minimum advertising of its route to A that Q must do in
order for all inbound traffic to reach A via Q if the P–A link breaks?

(c) What problems must be overcome if A is to use both links for its outbound
traffic?

52 An ISP with a class B address is working with a new company to allocate
it a portion of address space based on CIDR. The new company needs IP
addresses for machines in three divisions of its corporate network: Engineering,
Marketing, and Sales. These divisions plan to grow as follows: Engineering has
five machines as of the start of year 1 and intends to add one machine every
week; Marketing will never need more than 16 machines; and Sales needs
one machine for every two clients. As of the start of year 1, the company
has no clients but the sales model indicates that by the start of year 2, the
company will have six clients and each week thereafter gets one new client
with probability 60%, loses one client with probability 20%, or maintains the
same number with probability 20%.

(a) What address range would be required to support the company’s growth
plans for at least 7 years if Marketing uses all 16 of its addresses and the
Sales and Engineering plans behave as expected?

(b) How long would this address assignment last? At the time when the com-
pany runs out of address space, how would the addresses be assigned to
the three groups?

(c) If CIDR addressing were not available for the 7-year plan, what options
would the new company have in terms of getting address space?

53 Propose a lookup algorithm for a CIDR forwarding table that does not require
a linear search of the entire table to find the longest match.

★ 54 Suppose a network N within a larger organization A acquires its own direct
connection to an Internet service provider, in addition to an existing connec-
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tion via A. Let R1 be the router connecting N to its own provider, and let R2
be the router connecting N to the rest of A.

(a) Assuming N remains a subnet of A, how should R1 and R2 be configured?
What limitations would still exist with N’s use of its separate connection?
Would A be prevented from using N’s connection? Specify your configu-
ration in terms of what R1 and R2 should advertise, and with what paths.
Assume a BGP-like mechanism is available.

(b) Now suppose N gets its own network number; how does this change your
answer in (a)?

(c) Describe a router configuration that would allow A to use N’s link when
its own link is down.

55 How do routers determine that an incoming IP packet is to be multicast?

56 Suppose a multicast group is intended to be private to a particular routing do-
main. Can an IP multicast address be assigned to the group without consulting
with other domains with no risk of conflicts?

57 Under what conditions could a nonrouter host on an Ethernet receive an IP
multicast packet for a multicast group it has not joined?

✓ 58 Consider the example internet shown in Figure 4.61, in which sources D and
E send packets to multicast group G, whose members are shaded in gray. Show
the shortest-path multicast trees for each source.

59 Consider the example internet shown in Figure 4.62 in which sources S1 and
S2 send packets to multicast group G, whose members are shaded in gray.
Show the shortest-path multicast trees for each source.

60 Suppose host A is sending to a multicast group; the recipients are leaf nodes of
a tree rooted at A with depth N and with each nonleaf node having k children;
there are thus kN recipients.

(a) How many individual link transmissions are involved if A sends a multi-
cast message to all recipients?

(b) How many individual link transmissions are involved if A sends unicast
messages to each individual recipient?
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Figure 4.61 Example internet for Exercise 58.

(c) Suppose A sends to all recipients, but some messages are lost and retrans-
mission is necessary. Unicast retransmissions to what fraction of the recip-
ients is equivalent, in terms of individual link transmissions, to a multicast
retransmission to all recipients?

61 The existing Internet depends in many respects on participants being good
“network citizens”—cooperating above and beyond adherence to standard
protocols.

(a) In the PIM-SM scheme, who determines when to create a source-specific
tree? How might this be a problem?

(b) In the PIM-SSM scheme, who determines when to create a source-specific
tree? Why is this presumably not a problem?
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Figure 4.62 Example internet for Exercise 59.

62 (a) Draw an example internetwork where the BIDIR-PIM route from a
source’s router to a group member’s router is longer than the PIM-SM
source-specific route.

(b) Draw an example where they are the same.

63 Determine whether or not the following IPv6 address notations are correct:

(a) ::0F53:6382:AB00:67DB:BB27:7332.

(b) 7803:42F2:::88EC:D4BA:B75D:11CD.

(c) ::4BA8:95CC::DB97:4EAB.

(d) 74DC::02BA.

(e) ::00FF:128.112.92.116.
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64 Determine if your site is connected to the MBone. If so, investigate and ex-
periment with any MBone tools, such as sdr, vat, and vic.

65 MPLS labels are usually 20 bits long. Explain why this provides enough labels
when MPLS is used for destination-based forwarding.

66 MPLS has sometimes been claimed to improve router performance. Explain
why this might be true, and suggest reasons why in practice this may not be
the case.

67 Assume that it takes 32 bits to carry each MPLS label that is added to a packet
when the “shim” header of Figure 4.44(b) is used.

(a) How many additional bytes are needed to tunnel a packet using the MPLS
techniques described in Section 4.5.3?

(b) How many additional bytes are needed, at a minimum, to tunnel a packet
using an additional IP header as described in Section 4.1.8?

(c) Calculate the efficiency of bandwidth usage for each of the two tunneling
approaches when the average packet size is 300 bytes. Repeat for 64-byte
packets. Bandwidth efficiency is defined as (payload bytes carried) ÷ (total
bytes carried).

68 RFC 791 describes the Internet Protocol, and includes two options for source
routing. Describe three disadvantages of using IP source route options com-
pared to using MPLS for explicit routing. (Hint: The IP header including
options may be at most 15 words long.)



End-to-End Protocols

Victory is the beautiful, bright coloured flower. Transport is the
stem without which it could never have blossomed.

—Winston Churchill

he previous three chapters have described various technologies that can beTused to connect together a collection of computers: direct links (including
LAN technologies like Ethernet and token ring), packet-switched networks

(including cell-based networks like ATM), and internetworks. The next problem is
to turn this host-to-host packet delivery service into a process-to-process communi-

P R O B L E M

Getting Processes to
Communicate

cation channel. This is the role played
by the transport level of the network
architecture, which, because it sup-
ports communication between the
end application programs, is some-
times called the end-to-end protocol.

Two forces shape the end-to-end protocol. From above, the application-level
processes that use its services have certain requirements. The following list itemizes some
of the common properties that a transport protocol can be expected to provide:

■ Guarantees message delivery.

■ Delivers messages in the same order they are sent.

■ Delivers at most one copy of each message.

■ Supports arbitrarily large messages.

■ Supports synchronization between the sender and the receiver.

■ Allows the receiver to apply flow control to the sender.

■ Supports multiple application processes on each host.

380
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Note that this list does not include all the functionality that ap-
plication processes might want from the network. For example, it
does not include security, which is typically provided by protocols
that sit above the transport level.

From below, the underlying network upon which the trans-
port protocol operates has certain limitations in the level of ser-
vice it can provide. Some of the more typical limitations of the
network are that it may

■ Drop messages.

■ Reorder messages.

■ Deliver duplicate copies of a given message.

■ Limit messages to some finite size.

■ Deliver messages after an arbitrarily long delay.

Such a network is said to provide a best-effort level of service, as
exemplified by the Internet.

The challenge, therefore, is to develop algorithms that turn
the less-than-desirable properties of the underlying network into
the high level of service required by application programs. Differ-
ent transport protocols employ different combinations of these al-
gorithms. This chapter looks at these algorithms in the context of
four representative services—a simple asynchronous demultiplex-
ing service, a reliable byte-stream service, a request/reply service,
and a service for real-time applications.

In the case of the demultiplexing and byte-stream services,
we use the Internet’s UDP and TCP protocols, respectively, to
illustrate how these services are provided in practice. In the case
of a request/reply service, we discuss the role it plays in a Remote
Procedure Call (RPC) service, and what features that entails. This
discussion is capped off with a description of two widely used
RPC protocols, SunRPC and DCE-RPC.

Real-time applications make particular demands on the
transport protocol, such as the need to carry timing information
that allows audio or video samples to be played back at the ap-
propriate point in time. The protocol that is most widely used for
this purpose is the Real-time Transport Protocol (RTP), which we
examine here. Finally, the chapter concludes with a section that
discusses the performance of the different transport protocols.
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5.1 Simple Demultiplexer (UDP)
The simplest possible transport protocol is one that extends the host-to-host delivery ser-
vice of the underlying network into a process-to-process communication service. There
are likely to be many processes running on any given host, so the protocol needs to
add a level of demultiplexing, thereby allowing multiple application processes on each
host to share the network. Aside from this requirement, the transport protocol adds no
other functionality to the best-effort service provided by the underlying network. The
Internet’s User Datagram Protocol (UDP) is an example of such a transport protocol.

The only interesting issue in such a protocol is the form of the address used to
identify the target process. Although it is possible for processes to directly identify each
other with an OS-assigned process ID (pid), such an approach is only practical in a
closed distributed system in which a single OS runs on all hosts and assigns each process
a unique ID. A more common approach, and the one used by UDP, is for processes
to indirectly identify each other using an abstract locater, often called a port or mailbox.
The basic idea is for a source process to send a message to a port and for the destination
process to receive the message from a port.

The header for an end-to-end protocol that implements this demultiplexing func-
tion typically contains an identifier (port) for both the sender (source) and the receiver
(destination) of the message. For example, the UDP header is given in Figure 5.1. Notice
that the UDP port field is only 16 bits long. This means that there are up to 64K possi-
ble ports, clearly not enough to identify all the processes on all the hosts in the Internet.
Fortunately, ports are not interpreted across the entire Internet, but only on a single host.
That is, a process is really identified by a port on some particular host—a 〈port, host〉
pair. In fact, this pair constitutes the demultiplexing key for the UDP protocol.

The next issue is how a process learns the port for the process to which it wants
to send a message. Typically, a client process initiates a message exchange with a server
process. Once a client has contacted a server, the server knows the client’s port (it was
contained in the message header) and can reply to it. The real problem, therefore, is how

Figure 5.1 Format for UDP header.
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the client learns the server’s port in the first place. A common approach is for the server
to accept messages at a well-known port. That is, each server receives its messages at some
fixed port that is widely published, much like the emergency telephone service available
at the well-known phone number 911. In the Internet, for example, the domain name
server (DNS) receives messages at well-known port 53 on each host, the mail service
listens for messages at port 25, and the Unix talk program accepts messages at well-
known port 517, and so on. This mapping is published periodically in an RFC and is
available on most Unix systems in file /etc/services. Sometimes a well-known port is
just the starting point for communication: The client and server use the well-known port
to agree on some other port that they will use for subsequent communication, leaving
the well-known port free for other clients.

An alternative strategy is to generalize this idea, so that there is only a single well-
known port—the one at which the “port mapper” service accepts messages. A client
would send a message to the port mapper’s well-known port asking for the port it should
use to talk to the “whatever” service, and the port mapper returns the appropriate port.
This strategy makes it easy to change the port associated with different services over time,
and for each host to use a different port for the same service.

As just mentioned, a port is purely an abstraction. Exactly how it is implemented
differs from system to system, or more precisely, from OS to OS. For example, the socket
API described in Chapter 1 is an example implementation of ports. Typically, a port is
implemented by a message queue, as illustrated in Figure 5.2. When a message arrives,
the protocol (e.g., UDP) appends the message to the end of the queue. Should the queue
be full, the message is discarded. There is no flow-control mechanism that tells the sender
to slow down. When an application process wants to receive a message, one is removed
from the front of the queue. If the queue is empty, the process blocks until a message
becomes available.

Finally, although UDP does not implement flow control or reliable/ordered deliv-
ery, it does a little more work than to simply demultiplex messages to some application
process—it also ensures the correctness of the message by the use of a checksum. (The
UDP checksum is optional in the current Internet, but it will become mandatory with
IPv6.) UDP computes its checksum over the UDP header, the contents of the message
body, and something called the pseudoheader. The pseudoheader consists of three fields
from the IP header—protocol number, source IP address, and destination IP address—
plus the UDP length field. (Yes, the UDP length field is included twice in the checksum
calculation.) UDP uses the same checksum algorithm as IP, as defined in Section 2.4.2.
The motivation behind having the pseudoheader is to verify that this message has been
delivered between the correct two endpoints. For example, if the destination IP address
was modified while the packet was in transit, causing the packet to be misdelivered, this
fact would be detected by the UDP checksum.
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Figure 5.2 UDP message queue.

5.2 Reliable Byte Stream (TCP)
In contrast to a simple demultiplexing protocol like UDP, a more sophisticated transport
protocol is one that offers a reliable, connection-oriented, byte-stream service. Such a ser-
vice has proven useful to a wide assortment of applications because it frees the application
from having to worry about missing or reordered data. The Internet’s Transmission Con-
trol Protocol (TCP) is probably the most widely used protocol of this type; it is also the
most carefully tuned. It is for these two reasons that this section studies TCP in detail,
although we identify and discuss alternative design choices at the end of the section.

In terms of the properties of transport protocols given in the problem statement
at the start of this chapter, TCP guarantees the reliable, in-order delivery of a stream of
bytes. It is a full-duplex protocol, meaning that each TCP connection supports a pair of
byte streams, one flowing in each direction. It also includes a flow-control mechanism for
each of these byte streams that allows the receiver to limit how much data the sender can
transmit at a given time. Finally, like UDP, TCP supports a demultiplexing mechanism
that allows multiple application programs on any given host to simultaneously carry on
a conversation with their peers. In addition to the above features, TCP also implements
a highly-tuned congestion-control mechanism. The idea of this mechanism is to throttle
how fast TCP sends data, not for the sake of keeping the sender from overrunning the
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receiver, but to keep the sender from overloading the network. A description of TCP’s
congestion-control mechanism is postponed until Chapter 6, where we discuss it in the
larger context of how network resources are fairly allocated.▲

Since many people confuse congestion control and flow control, we restate the
difference. Flow control involves preventing senders from overrunning the capacity of
receivers. Congestion control involves preventing too much data from being injected into
the network, thereby causing switches or links to become overloaded. Thus, flow con-
trol is an end-to-end issue, while congestion control is concerned with how hosts and
networks interact.

5.2.1 End-to-End Issues
At the heart of TCP is the sliding window algorithm. Even though this is the same
basic algorithm we saw in Section 2.5.2, because TCP runs over the Internet rather than
a point-to-point link, there are many important differences. This subsection identifies
these differences and explains how they complicate TCP. The following subsections then
describe how TCP addresses these, and other complications.

First, whereas the sliding window algorithm presented in Section 2.5.2 runs over a
single physical link that always connects the same two computers, TCP supports logical
connections between processes that are running on any two computers in the Internet.
This means that TCP needs an explicit connection establishment phase during which
the two sides of the connection agree to exchange data with each other. This difference is
analogous to having to dial up the other party rather than having a dedicated phone line.
TCP also has an explicit connection teardown phase. One of the things that happens
during connection establishment is that the two parties establish some shared state to
enable the sliding window algorithm to begin. Connection teardown is needed so each
host knows it is OK to free this state.

Second, whereas a single physical link that always connects the same two computers
has a fixed RTT, TCP connections are likely to have widely different round-trip times.
For example, a TCP connection between a host in San Francisco and a host in Boston,
which are separated by several thousand kilometers, might have an RTT of 100 ms, while
a TCP connection between two hosts in the same room, only a few meters apart, might
have an RTT of only 1 ms. The same TCP protocol must be able to support both of
these connections. To make matters worse, the TCP connection between hosts in San
Francisco and Boston might have an RTT of 100 ms at 3 A.M., but an RTT of 500 ms at
3 P.M. Variations in the RTT are even possible during a single TCP connection that lasts
only a few minutes. What this means to the sliding window algorithm is that the timeout
mechanism that triggers retransmissions must be adaptive. (Certainly, the timeout for a
point-to-point link must be a settable parameter, but it is not necessary to adapt this
timer for a particular pair of nodes.)
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A third difference is that packets may be reordered as they cross the Internet, but
this is not possible on a point-to-point link where the first packet put into one end of
the link must be the first to appear at the other end. Packets that are slightly out of order
do not cause a problem since the sliding window algorithm can reorder packets correctly
using the sequence number. The real issue is how far out-of-order packets can get, or
said another way, how late a packet can arrive at the destination. In the worst case, a
packet can be delayed in the Internet until IP’s time to live (TTL) field expires, at which
time the packet is discarded (and hence there is no danger of it arriving late). Knowing
that IP throws packets away after their TTL expires, TCP assumes that each packet has a
maximum lifetime. The exact lifetime, known as the maximum segment lifetime (MSL), is
an engineering choice. The current recommended setting is 120 seconds. Keep in mind
that IP does not directly enforce this 120-second value; it is simply a conservative esti-
mate that TCP makes of how long a packet might live in the Internet. The implication
is significant—TCP has to be prepared for very old packets to suddenly show up at the
receiver, potentially confusing the sliding window algorithm.

Fourth, the computers connected to a point-to-point link are generally engineered
to support the link. For example, if a link’s delay × bandwidth product is computed
to be 8 KB—meaning that a window size is selected to allow up to 8 KB of data to be
unacknowledged at a given time—then it is likely that the computers at either end of
the link have the ability to buffer up to 8 KB of data. Designing the system otherwise
would be silly. On the other hand, almost any kind of computer can be connected to the
Internet, making the amount of resources dedicated to any one TCP connection highly
variable, especially considering that any one host can potentially support hundreds of
TCP connections at the same time. This means that TCP must include a mechanism
that each side uses to “learn” what resources (e.g., how much buffer space) the other side
is able to apply to the connection. This is the flow control issue.

Fifth, because the transmitting side of a directly connected link cannot send any
faster than the bandwidth of the link allows, and only one host is pumping data into
the link, it is not possible to unknowingly congest the link. Said another way, the load
on the link is visible in the form of a queue of packets at the sender. In contrast, the
sending side of a TCP connection has no idea what links will be traversed to reach the
destination. For example, the sending machine might be directly connected to a relatively
fast Ethernet—and so, capable of sending data at a rate of 100 Mbps—but somewhere
out in the middle of the network, a 1.5-Mbps T1 link must be traversed. And to make
matters worse, data being generated by many different sources might be trying to traverse
this same slow link. This leads to the problem of network congestion. Discussion of this
topic is delayed until Chapter 6.

We conclude this discussion of end-to-end issues by comparing TCP’s approach to
providing a reliable/ordered delivery service with the approach used by X.25 networks.
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In TCP, the underlying IP network is assumed to be unreliable and to deliver messages
out of order; TCP uses the sliding window algorithm on an end-to-end basis to provide
reliable/ordered delivery. In contrast, X.25 networks use the sliding window protocol
within the network, on a hop-by-hop basis. The assumption behind this approach is
that if messages are delivered reliably and in order between each pair of nodes along the
path between the source host and the destination host, then the end-to-end service also
guarantees reliable/ordered delivery.

The problem with this latter approach is that a sequence of hop-by-hop guarantees
does not necessarily add up to an end-to-end guarantee. First, if a heterogeneous link
(say, an Ethernet) is added to one end of the path, then there is no guarantee that this
hop will preserve the same service as the other hops. Second, just because the sliding win-
dow protocol guarantees that messages are delivered correctly from node A to node B,
and then from node B to node C, it does not guarantee that node B behaves perfectly.
For example, network nodes have been known to introduce errors into messages while
transferring them from an input buffer to an output buffer. They have also been known
to accidentally reorder messages. As a consequence of these small windows of vulnera-
bility, it is still necessary to provide true end-to-end checks to guarantee reliable/ordered
service, even though the lower levels of the system also implement that functionality.▲

This discussion serves to illustrate one of the most important principles in system
design—the end-to-end argument. In a nutshell, the end-to-end argument says that a
function (in our example, providing reliable/ordered delivery) should not be provided in
the lower levels of the system unless it can be completely and correctly implemented at
that level. Therefore, this rule argues in favor of the TCP/IP approach. This rule is not
absolute, however. It does allow for functions to be incompletely provided at a low level
as a performance optimization. This is why it is perfectly consistent with the end-to-end
argument to perform error detection (e.g., CRC) on a hop-by-hop basis; detecting and
retransmitting a single corrupt packet across one hop is preferable to having to retransmit
an entire file end-to-end.

5.2.2 Segment Format
TCP is a byte-oriented protocol, which means that the sender writes bytes into a TCP
connection and the receiver reads bytes out of the TCP connection. Although “byte
stream” describes the service TCP offers to application processes, TCP does not itself
transmit individual bytes over the Internet. Instead, TCP on the source host buffers
enough bytes from the sending process to fill a reasonably sized packet and then sends
this packet to its peer on the destination host. TCP on the destination host then empties
the contents of the packet into a receive buffer, and the receiving process reads from this
buffer at its leisure. This situation is illustrated in Figure 5.3, which, for simplicity, shows
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Figure 5.3 How TCP manages a byte stream.

Figure 5.4 TCP header format.

data flowing in only one direction. Remember that, in general, a single TCP connection
supports byte streams flowing in both directions.

The packets exchanged between TCP peers in Figure 5.3 are called segments, since
each one carries a segment of the byte stream. Each TCP segment contains the header
schematically depicted in Figure 5.4. The relevance of most of these fields will become
apparent throughout this section. For now, we simply introduce them.

The SrcPort and DstPort fields identify the source and destination ports, respec-
tively, just as in UDP. These two fields, plus the source and destination IP addresses,
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Figure 5.5 Simplified illustration (showing only one direction) of the TCP process,

with data flow in one direction and ACKs in the other.

combine to uniquely identify each TCP connection. That is, TCP’s demux key is given
by the 4-tuple

〈 SrcPort, SrcIPAddr, DstPort, DstIPAddr〉
Note that because TCP connections come and go, it is possible for a connection between
a particular pair of ports to be established, used to send and receive data, and closed, and
then at a later time for the same pair of ports to be involved in a second connection. We
sometimes refer to this situation as two different incarnations of the same connection.

The Acknowledgment, SequenceNum, and AdvertisedWindow fields
are all involved in TCP’s sliding window algorithm. Because TCP is a byte-oriented pro-
tocol, each byte of data has a sequence number; the SequenceNum field contains the
sequence number for the first byte of data carried in that segment. The Acknowledg-
ment and AdvertisedWindow fields carry information about the flow of data going
in the other direction. To simplify our discussion, we ignore the fact that data can flow
in both directions, and we concentrate on data that has a particular SequenceNum
flowing in one direction and Acknowledgment and AdvertisedWindow values
flowing in the opposite direction, as illustrated in Figure 5.5. The use of these three
fields is described more fully in Section 5.2.4.

The 6-bit Flags field is used to relay control information between TCP peers. The
possible flags include SYN, FIN, RESET, PUSH, URG, and ACK. The SYN and FIN
flags are used when establishing and terminating a TCP connection, respectively. Their
use is described in Section 5.2.3. The ACK flag is set any time the Acknowledgment
field is valid, implying that the receiver should pay attention to it. The URG flag sig-
nifies that this segment contains urgent data. When this flag is set, the UrgPtr field
indicates where the nonurgent data contained in this segment begins. The urgent data is
contained at the front of the segment body, up to and including a value of UrgPtr bytes
into the segment. The PUSH flag signifies that the sender invoked the push operation,
which indicates to the receiving side of TCP that it should notify the receiving process
of this fact. We discuss these last two features more in Section 5.2.7. Finally, the RESET
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flag signifies that the receiver has become confused—for example, because it received a
segment it did not expect to receive—and so wants to abort the connection.

Finally, the Checksum field is used in exactly the same way as for UDP—it is
computed over the TCP header, the TCP data, and the pseudoheader, which is made
up of the source address, destination address, and length fields from the IP header. The
checksum is required for TCP in both IPv4 and IPv6. Also, since the TCP header is of
variable length (options can be attached after the mandatory fields), a HdrLen field is
included that gives the length of the header in 32-bit words. This field is also known as
the Offset field, since it measures the offset from the start of the packet to the start of
the data.

5.2.3 Connection Establishment and Termination
A TCP connection begins with a client (caller) doing an active open to a server (callee).
Assuming that the server had earlier done a passive open, the two sides engage in an
exchange of messages to establish the connection. (Recall from Chapter 1 that a party
wanting to initiate a connection performs an active open, while a party willing to accept
a connection does a passive open.) Only after this connection establishment phase is over
do the two sides begin sending data. Likewise, as soon as a participant is done sending
data, it closes one direction of the connection, which causes TCP to initiate a round of
connection termination messages. Notice that while connection setup is an asymmetric
activity (one side does a passive open and the other side does an active open) connection
teardown is symmetric (each side has to close the connection independently).1 Therefore,
it is possible for one side to have done a close, meaning that it can no longer send data,
but for the other side to keep the other half of the bidirectional connection open and to
continue sending data.

Three-Way Handshake
The algorithm used by TCP to establish and terminate a connection is called a three-way
handshake. We first describe the basic algorithm and then show how it is used by TCP.
The three-way handshake involves the exchange of three messages between the client and
the server, as illustrated by the timeline given in Figure 5.6.

The idea is that two parties want to agree on a set of parameters, which, in the
case of opening a TCP connection, are the starting sequence numbers the two sides
plan to use for their respective byte streams. In general, the parameters might be any
facts that each side wants the other to know about. First, the client (the active par-
ticipant) sends a segment to the server (the passive participant) stating the initial se-
quence number it plans to use (Flags = SYN, SequenceNum = x). The server

1To be more precise, connection setup can be symmetric, with both sides trying to open the connection at the same time,
but the common case is for one side to do an active open and the other side to do a passive open.
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Figure 5.6 Timeline for three-way handshake algorithm.

then responds with a single segment that both acknowledges the client’s sequence num-
ber (Flags = ACK, Ack = x + 1) and states its own beginning sequence number
(Flags = SYN, SequenceNum = y). That is, both the SYN and ACK bits are set in
the Flags field of this second message. Finally, the client responds with a third segment
that acknowledges the server’s sequence number (Flags = ACK, Ack = y + 1). The
reason that each side acknowledges a sequence number that is one larger than the one
sent is that the Acknowledgment field actually identifies the “next sequence number
expected,” thereby implicitly acknowledging all earlier sequence numbers. Although not
shown in this timeline, a timer is scheduled for each of the first two segments, and if the
expected response is not received, the segment is retransmitted.

You may be asking yourself why the client and server have to exchange starting
sequence numbers with each other at connection setup time. It would be simpler if each
side simply started at some “well-known” sequence number, such as 0. In fact, the TCP
specification requires that each side of a connection select an initial starting sequence
number at random. The reason for this is to protect against two incarnations of the same
connection reusing the same sequence numbers too soon; that is, while there is still a
chance that a segment from an earlier incarnation of a connection might interfere with
a later incarnation of the connection.

State-Transition Diagram

TCP is complex enough that its specification includes a state-transition diagram. A copy
of this diagram is given in Figure 5.7. This diagram shows only the states involved in
opening a connection (everything above ESTABLISHED) and in closing a connec-
tion (everything below ESTABLISHED). Everything that goes on while a connection
is open—that is, the operation of the sliding window algorithm—is hidden in the ES-
TABLISHED state.
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Figure 5.7 TCP state-transition diagram.

TCP’s state-transition diagram is fairly easy to understand. Each circle denotes a
state that one end of a TCP connection can find itself in. All connections start in the
CLOSED state. As the connection progresses, the connection moves from state to state
according to the arcs. Each arc is labeled with a tag of the form event/action. Thus, if a
connection is in the LISTEN state and a SYN segment arrives (i.e., a segment with the
SYN flag set), the connection makes a transition to the SYN_RCVD state and takes the
action of replying with an ACK + SYN segment.

Notice that two kinds of events trigger a state transition: (1) a segment arrives from
the peer (e.g., the event on the arc from LISTEN to SYN_RCVD), or (2) the local
application process invokes an operation on TCP (e.g., the active open event on the arc
from CLOSE to SYN_SENT). In other words, TCP’s state-transition diagram effectively
defines the semantics of both its peer-to-peer interface and its service interface, as defined
in Section 1.3.1. The syntax of these two interfaces is given by the segment format (as
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illustrated in Figure 5.4), and by some application programming interface (an example
of which is given in Section 1.4.1), respectively.

Now let’s trace the typical transitions taken through the diagram in Figure 5.7.
Keep in mind that at each end of the connection, TCP makes different transitions from
state to state. When opening a connection, the server first invokes a passive open oper-
ation on TCP, which causes TCP to move to the LISTEN state. At some later time, the
client does an active open, which causes its end of the connection to send a SYN segment
to the server and to move to the SYN_SENT state. When the SYN segment arrives at
the server, it moves to the SYN_RCVD state and responds with a SYN + ACK segment.
The arrival of this segment causes the client to move to the ESTABLISHED state and to
send an ACK back to the server. When this ACK arrives, the server finally moves to the
ESTABLISHED state. In other words, we have just traced the three-way handshake.

There are three things to notice about the connection establishment half of the
state-transition diagram. First, if the client’s ACK to the server is lost, corresponding to
the third leg of the three-way handshake, then the connection still functions correctly.
This is because the client side is already in the ESTABLISHED state, so the local appli-
cation process can start sending data to the other end. Each of these data segments will
have the ACK flag set, and the correct value in the Acknowledgment field, so the
server will move to the ESTABLISHED state when the first data segment arrives. This
is actually an important point about TCP—every segment reports what sequence num-
ber the sender is expecting to see next, even if this repeats the same sequence number
contained in one or more previous segments.

The second thing to notice about the state-transition diagram is that there is a
funny transition out of the LISTEN state whenever the local process invokes a send
operation on TCP. That is, it is possible for a passive participant to identify both ends of
the connection (i.e., itself and the remote participant that it is willing to have connect
to it), and then for it to change its mind about waiting for the other side and instead
actively establish the connection. To the best of our knowledge, this is a feature of TCP
that no application process actually takes advantage of.

The final thing to notice about the diagram is the arcs that are not shown. Specif-
ically, most of the states that involve sending a segment to the other side also schedule
a timeout that eventually causes the segment to be resent if the expected response does
not happen. These retransmissions are not depicted in the state-transition diagram. If
after several tries the expected response does not arrive, TCP gives up and returns to the
CLOSED state.

Turning our attention now to the process of terminating a connection, the impor-
tant thing to keep in mind is that the application process on both sides of the connection
must independently close its half of the connection. If only one side closes the connec-
tion, then this means it has no more data to send, but it is still available to receive data
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from the other side. This complicates the state-transition diagram because it must ac-
count for the possibility that the two sides invoke the close operator at the same time, as
well as the possibility that first one side invokes close and then, at some later time, the
other side invokes close. Thus, on any one side there are three combinations of transi-
tions that get a connection from the ESTABLISHED state to the CLOSED state:

■ This side closes first: ESTABLISHED → FIN_WAIT_1 → FIN_WAIT_2 →
TIME_WAIT → CLOSED.

■ The other side closes first: ESTABLISHED → CLOSE_WAIT → LAST_ACK
→ CLOSED.

■ Both sides close at the same time: ESTABLISHED → FIN_WAIT_1 →
CLOSING → TIME_WAIT → CLOSED.

There is actually a fourth, although rare, sequence of transitions that leads to the
CLOSED state; it follows the arc from FIN_WAIT_1 to TIME_WAIT. We leave it as
an exercise for you to figure out what combination of circumstances leads to this fourth
possibility.

The main thing to recognize about connection teardown is that a connection in
the TIME_WAIT state cannot move to the CLOSED state until it has waited for two
times the maximum amount of time an IP datagram might live in the Internet (i.e.,
120 seconds). The reason for this is that while the local side of the connection has sent
an ACK in response to the other side’s FIN segment, it does not know that the ACK was
successfully delivered. As a consequence, the other side might retransmit its FIN seg-
ment, and this second FIN segment might be delayed in the network. If the connection
were allowed to move directly to the CLOSED state, then another pair of application
processes might come along and open the same connection (i.e., use the same pair of port
numbers), and the delayed FIN segment from the earlier incarnation of the connection
would immediately initiate the termination of the later incarnation of that connection.

5.2.4 Sliding Window Revisited
We are now ready to discuss TCP’s variant of the sliding window algorithm, which serves
several purposes: (1) it guarantees the reliable delivery of data, (2) it ensures that data is
delivered in order, and (3) it enforces flow control between the sender and the receiver.
TCP’s use of the sliding window algorithm is the same as we saw in Section 2.5.2 in the
case of the first two of these three functions. Where TCP differs from the earlier algo-
rithm is that it folds the flow-control function in as well. In particular, rather than having
a fixed-size sliding window, the receiver advertises a window size to the sender. This is
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Figure 5.8 Relationship between TCP send buffer (a) and receive buffer (b).

done using the AdvertisedWindow field in the TCP header. The sender is then lim-
ited to having no more than a value of AdvertisedWindow bytes of unacknowledged
data at any given time. The receiver selects a suitable value for AdvertisedWindow
based on the amount of memory allocated to the connection for the purpose of buffering
data. The idea is to keep the sender from overrunning the receiver’s buffer. We discuss
this at greater length below.

Reliable and Ordered Delivery

To see how the sending and receiving sides of TCP interact with each other to implement
reliable and ordered delivery, consider the situation illustrated in Figure 5.8. TCP on the
sending side maintains a send buffer. This buffer is used to store data that has been
sent but not yet acknowledged, as well as data that has been written by the sending
application, but not transmitted. On the receiving side, TCP maintains a receive buffer.
This buffer holds data that arrives out of order, as well as data that is in the correct order
(i.e., there are no missing bytes earlier in the stream) but that the application process has
not yet had the chance to read.

To make the following discussion simpler to follow, we initially ignore the fact
that both the buffers and the sequence numbers are of some finite size, and hence will
eventually wrap around. Also, we do not distinguish between a pointer into a buffer
where a particular byte of data is stored and the sequence number for that byte.

Looking first at the sending side, three pointers are maintained into the send
buffer, each with an obvious meaning: LastByteAcked, LastByteSent, and Last-
ByteWritten. Clearly,

LastByteAcked ≤ LastByteSent
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since the receiver cannot have acknowledged a byte that has not yet been sent, and

LastByteSent ≤ LastByteWritten

since TCP cannot send a byte that the application process has not yet written. Also note
that none of the bytes to the left of LastByteAcked need to be saved in the buffer
because they have already been acknowledged, and none of the bytes to the right of
LastByteWritten need to be buffered because they have not yet been generated.

A similar set of pointers (sequence numbers) are maintained on the receiving side:
LastByteRead, NextByteExpected, and LastByteRcvd. The inequalities are a
little less intuitive, however, because of the problem of out-of-order delivery. The first
relationship

LastByteRead < NextByteExpected

is true because a byte cannot be read by the application until it is received and all preced-
ing bytes have also been received. NextByteExpected points to the byte immediately
after the latest byte to meet this criterion. Second,

NextByteExpected ≤ LastByteRcvd + 1

since, if data has arrived in order, NextByteExpected points to the byte after Last-
ByteRcvd, whereas if data has arrived out of order, NextByteExpected points to
the start of the first gap in the data, as in Figure 5.8. Note that bytes to the left of
LastByteRead need not be buffered because they have already been read by the lo-
cal application process, and bytes to the right of LastByteRcvd need not be buffered
because they have not yet arrived.

Flow Control

Most of the above discussion is similar to that found in Section 2.5.2; the only real
difference is that this time we elaborated on the fact that the sending and receiving
application processes are filling and emptying their local buffer, respectively. (The earlier
discussion glossed over the fact that data arriving from an upstream node was filling the
send buffer, and data being transmitted to a downstream node was emptying the receive
buffer.)

You should make sure you understand this much before proceeding because now
comes the point where the two algorithms differ more significantly. In what follows, we
reintroduce the fact that both buffers are of some finite size, denoted MaxSendBuffer
and MaxRcvBuffer, although we don’t worry about the details of how they are imple-
mented. In other words, we are only interested in the number of bytes being buffered,
not in where those bytes are actually stored.
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Recall that in a sliding window protocol, the size of the window sets the amount of
data that can be sent without waiting for acknowledgment from the receiver. Thus, the
receiver throttles the sender by advertising a window that is no larger than the amount
of data that it can buffer. Observe that TCP on the receive side must keep

LastByteRcvd − LastByteRead ≤ MaxRcvBuffer

to avoid overflowing its buffer. It therefore advertises a window size of

AdvertisedWindow

= MaxRcvBuffer − ((NextByteExpected − 1) − LastByteRead)

which represents the amount of free space remaining in its buffer. As data arrives, the
receiver acknowledges it as long as all the preceding bytes have also arrived. In addition,
LastByteRcvd moves to the right (is incremented), meaning that the advertised win-
dow potentially shrinks. Whether or not it shrinks depends on how fast the local applica-
tion process is consuming data. If the local process is reading data just as fast as it arrives
(causing LastByteRead to be incremented at the same rate as LastByteRcvd), then
the advertised window stays open (i.e., AdvertisedWindow = MaxRcvBuffer). If,
however, the receiving process falls behind, perhaps because it performs a very expensive
operation on each byte of data that it reads, then the advertised window grows smaller
with every segment that arrives, until it eventually goes to 0.

TCP on the send side must then adhere to the advertised window it gets from the
receiver. This means that at any given time, it must ensure that

LastByteSent − LastByteAcked ≤ AdvertisedWindow

Said another way, the sender computes an effective window that limits how much data it
can send:

EffectiveWindow = AdvertisedWindow−(LastByteSent−LastByteAcked)

Clearly, EffectiveWindow must be greater than 0 before the source can send more
data. It is possible, therefore, that a segment arrives acknowledging x bytes, thereby al-
lowing the sender to increment LastByteAcked by x, but because the receiving process
was not reading any data, the advertised window is now x bytes smaller than the time
before. In such a situation, the sender would be able to free buffer space, but not to send
any more data.
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All the while this is going on, the send side must also make sure that the local
application process does not overflow the send buffer; that is, that

LastByteWritten − LastByteAcked ≤ MaxSendBuffer

If the sending process tries to write y bytes to TCP, but

(LastByteWritten − LastByteAcked) + y > MaxSendBuffer

then TCP blocks the sending process and does not allow it to generate more data.
It is now possible to understand how a slow receiving process ultimately stops a

fast sending process. First, the receive buffer fills up, which means the advertised window
shrinks to 0. An advertised window of 0 means that the sending side cannot transmit any
data, even though data it has previously sent has been successfully acknowledged. Finally,
not being able to transmit any data means that the send buffer fills up, which ultimately
causes TCP to block the sending process. As soon as the receiving process starts to read
data again, the receive-side TCP is able to open its window back up, which allows the
send-side TCP to transmit data out of its buffer. When this data is eventually acknowl-
edged, LastByteAcked is incremented, the buffer space holding this acknowledged
data becomes free, and the sending process is unblocked and allowed to proceed.

There is only one remaining detail that must be resolved—how does the sending
side know that the advertised window is no longer 0? As mentioned above, TCP always
sends a segment in response to a received data segment, and this response contains the
latest values for the Acknowledge and AdvertisedWindow fields, even if these
values have not changed since the last time they were sent. The problem is this. Once
the receive side has advertised a window size of 0, the sender is not permitted to send
any more data, which means it has no way to discover that the advertised window is no
longer 0 at some time in the future. TCP on the receive side does not spontaneously
send nondata segments; it only sends them in response to an arriving data segment.

TCP deals with this situation as follows. Whenever the other side advertises a win-
dow size of 0, the sending side persists in sending a segment with 1 byte of data every so
often. It knows that this data will probably not be accepted, but it tries anyway, because
each of these 1-byte segments triggers a response that contains the current advertised
window. Eventually, one of these 1-byte probes triggers a response that reports a nonzero
advertised window.▲

Note that the reason the sending side periodically sends this probe segment is that
TCP is designed to make the receive side as simple as possible—it simply responds to
segments from the sender, and it never initiates any activity on its own. This is an exam-
ple of a well-recognized (although not universally applied) protocol design rule, which,
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for lack of a better name, we call the smart sender/dumb receiver rule. Recall that we saw
another example of this rule when we discussed the use of NAKs in Section 2.5.2.

Protecting Against Wraparound
This subsection and the next consider the size of the SequenceNum and Adver-
tisedWindow fields and the implications of their sizes on TCP’s correctness and per-
formance. TCP’s SequenceNum field is 32 bits long, and its AdvertisedWindow
field is 16 bits long, meaning that TCP has easily satisfied the requirement of the sliding
window algorithm that the sequence number space be twice as big as the window size:
232 � 2 × 216. However, this requirement is not the interesting thing about these two
fields. Consider each field in turn.

The relevance of the 32-bit sequence number space is that the sequence number
used on a given connection might wrap around—a byte with sequence number x could
be sent at one time, and then at a later time a second byte with the same sequence number
x might be sent. Once again, we assume that packets cannot survive in the Internet for
longer than the recommended MSL. Thus, we currently need to make sure that the
sequence number does not wrap around within a 120-second period of time. Whether
or not this happens depends on how fast data can be transmitted over the Internet;
that is, how fast the 32-bit sequence number space can be consumed. (This discussion
assumes that we are trying to consume the sequence number space as fast as possible, but
of course we will be if we are doing our job of keeping the pipe full.) Table 5.1 shows
how long it takes for the sequence number to wrap around on networks with various
bandwidths.

As you can see, the 32-bit sequence number space is adequate for most situations of
today’s networks, but given that OC-192 links exist in the Internet backbone, and that
some servers now come with Gigabit Ethernet interfaces, it is getting close to the point

Bandwidth Time until Wraparound

T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

Fast Ethernet (100 Mbps) 6 minutes

OC-3 (155 Mbps) 4 minutes

OC-12 (622 Mbps) 55 seconds

OC-48 (2.5 Gbps) 14 seconds

Table 5.1 Time until 32-bit sequence number space wraps around.
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Bandwidth Delay × Bandwidth Product

T1 (1.5 Mbps) 18 KB

Ethernet (10 Mbps) 122 KB

T3 (45 Mbps) 549 KB

Fast Ethernet (100 Mbps) 1.2 MB

OC-3 (155 Mbps) 1.8 MB

OC-12 (622 Mbps) 7.4 MB

OC-48 (2.5 Gbps) 29.6 MB

Table 5.2 Required window size for 100-ms RTT.

where 32 bits is too small. Fortunately, the IETF has already worked out an extension to
TCP that effectively extends the sequence number space to protect against the sequence
number wrapping around. This and related extensions are described in Section 5.2.8.

Keeping the Pipe Full

The relevance of the 16-bit AdvertisedWindow field is that it must be big enough to
allow the sender to keep the pipe full. Clearly, the receiver is free to not open the window
as large as the AdvertisedWindow field allows; we are interested in the situation in
which the receiver has enough buffer space to handle as much data as the largest possible
AdvertisedWindow allows.

In this case, it is not just the network bandwidth but the delay × bandwidth prod-
uct that dictates how big the AdvertisedWindow field needs to be—the window
needs to be opened far enough to allow a full delay × bandwidth product’s worth of data
to be transmitted. Assuming an RTT of 100 ms (a typical number for a cross-country
connection in the United States), Table 5.2 gives the delay × bandwidth product for
several network technologies.

As you can see, TCP’s AdvertisedWindow field is in even worse shape than its
SequenceNum field—it is not big enough to handle even a T3 connection across the
continental United States, since a 16-bit field allows us to advertise a window of only
64 KB. The very same TCP extension mentioned above (see also Section 5.2.8) provides
a mechanism for effectively increasing the size of the advertised window.

5.2.5 Triggering Transmission
We next consider a surprisingly subtle issue: how TCP decides to transmit a segment. As
described earlier, TCP supports a byte-stream abstraction; that is, application programs
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write bytes into the stream, and it is up to TCP to decide that it has enough bytes to
send a segment. What factors govern this decision?

If we ignore the possibility of flow control—that is, we assume the window is
wide open, as would be the case when a connection first starts—then TCP has three
mechanisms to trigger the transmission of a segment. First, TCP maintains a variable,
typically called the maximum segment size (MSS), and it sends a segment as soon as it
has collected MSS bytes from the sending process. MSS is usually set to the size of the
largest segment TCP can send without causing the local IP to fragment. That is, MSS
is set to the MTU of the directly connected network, minus the size of the TCP and IP
headers. The second thing that triggers TCP to transmit a segment is that the sending
process has explicitly asked it to do so. Specifically, TCP supports a push operation, and
the sending process invokes this operation to effectively flush the buffer of unsent bytes.
The final trigger for transmitting a segment is that a timer fires; the resulting segment
contains as many bytes as are currently buffered for transmission. However, as we will
soon see, this “timer” isn’t exactly what you expect.

Silly Window Syndrome

Of course, we can’t just ignore flow control, which plays an obvious role in throttling
the sender. If the sender has MSS bytes of data to send and the window is open at least
that much, then the sender transmits a full segment. Suppose, however, that the sender
is accumulating bytes to send, but the window is currently closed. Now suppose an ACK
arrives that effectively opens the window enough for the sender to transmit, say, MSS/2
bytes. Should the sender transmit a half-full segment, or wait for the window to open to a
full MSS? The original specification was silent on this point, and early implementations
of TCP decided to go ahead and transmit a half-full segment. After all, there is no telling
how long it will be before the window opens further.

It turns out that the strategy of aggressively taking advantage of any available win-
dow leads to a situation now known as the silly window syndrome. Figure 5.9 helps visual-
ize what happens. If you think of a TCP stream as a conveyer belt with “full” containers
(data segments) going in one direction and empty containers (ACKs) going in the reverse
direction, then MSS-sized segments correspond to large containers and 1-byte segments
correspond to very small containers. If the sender aggressively fills an empty container
as soon as it arrives, then any small container introduced into the system remains in the
system indefinitely. That is, it is immediately filled and emptied at each end, and never
coalesced with adjacent containers to create larger containers. This scenario was discov-
ered when early implementations of TCP regularly found themselves filling the network
with tiny segments.

Note that the silly window syndrome is only a problem when either the sender
transmits a small segment or the receiver opens the window a small amount. If neither
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Figure 5.9 Silly window syndrome.

of these happens, then the small container is never introduced into the stream. It’s not
possible to outlaw sending small segments; for example, the application might do a push
after sending a single byte. It is possible, however, to keep the receiver from introducing
a small container (i.e., a small open window). The rule is that after advertising a zero
window, the receiver must wait for space equal to an MSS before it advertises an open
window.

Since we can’t eliminate the possibility of a small container being introduced into
the stream, we also need mechanisms to coalesce them. The receiver can do this by
delaying ACKs—sending one combined ACK rather than multiple smaller ones—but
this is only a partial solution because the receiver has no way of knowing how long it is
safe to delay waiting either for another segment to arrive or for the application to read
more data (thus opening the window). The ultimate solution falls to the sender, which
brings us back to our original issue: When does the TCP sender decide to transmit a
segment?

Nagle’s Algorithm

Returning to the TCP sender, if there is data to send but the window is open less than
MSS, then we may want to wait some amount of time before sending the available data,
but the question is, how long? If we wait too long, then we hurt interactive applications
like Telnet. If we don’t wait long enough, then we risk sending a bunch of tiny packets
and falling into the silly window syndrome. The answer is to introduce a timer, and to
transmit when the timer expires.

While we could use a clock-based timer—for example, one that fires every
100 ms—Nagle introduced an elegant self-clocking solution. The idea is that as long
as TCP has any data in flight, the sender will eventually receive an ACK. This ACK can
be treated like a timer firing, triggering the transmission of more data. Nagle’s algorithm
provides a simple, unified rule for deciding when to transmit:

When the application produces data to send
if both the available data and the window ≥ MSS
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send a full segment
else

if there is unACKed data in flight
buffer the new data until an ACK arrives

else
send all the new data now

In other words, it’s always OK to send a full segment if the window allows. It’s also alright
to immediately send a small amount of data if there are currently no segments in transit,
but if there is anything in flight, the sender must wait for an ACK before transmitting
the next segment. Thus, an interactive application like Telnet that continually writes
one byte at a time will send data at a rate of one segment per RTT. Some segments will
contain a single byte, while others will contain as many bytes as the user was able to type
in one round-trip time. Because some applications cannot afford such a delay for each
write it does to a TCP connection, the socket interface allows the application to turn
off Nagel’s algorithm by setting the TCP_NODELAY option. Setting this option means
that data is transmitted as soon as possible.

5.2.6 Adaptive Retransmission
Because TCP guarantees the reliable delivery of data, it retransmits each segment if an
ACK is not received in a certain period of time. TCP sets this timeout as a function of the
RTT it expects between the two ends of the connection. Unfortunately, given the range
of possible RTTs between any pair of hosts in the Internet, as well as the variation in RTT
between the same two hosts over time, choosing an appropriate timeout value is not that
easy. To address this problem, TCP uses an adaptive retransmission mechanism. We now
describe this mechanism and how it has evolved over time as the Internet community
has gained more experience using TCP.

Original Algorithm

We begin with a simple algorithm for computing a timeout value between a pair of hosts.
This is the algorithm that was originally described in the TCP specification—and the
following description presents it in those terms—but it could be used by any end-to-end
protocol.

The idea is to keep a running average of the RTT and then to compute the timeout
as a function of this RTT. Specifically, every time TCP sends a data segment, it records
the time. When an ACK for that segment arrives, TCP reads the time again, and then
takes the difference between these two times as a SampleRTT. TCP then computes
an EstimatedRTT as a weighted average between the previous estimate and this new



404 5 End-to-End Protocols

Figure 5.10 Associating the ACK with (a) original transmission versus

(b) retransmission.

sample. That is,

EstimatedRTT = α × EstimatedRTT + (1 − α) × SampleRTT

The parameter α is selected to smooth the EstimatedRTT. A small α tracks changes in
the RTT but is perhaps too heavily influenced by temporary fluctuations. On the other
hand, a large α is more stable but perhaps not quick enough to adapt to real changes.
The original TCP specification recommended a setting of α between 0.8 and 0.9. TCP
then uses EstimatedRTT to compute the timeout in a rather conservative way:

TimeOut = 2 × EstimatedRTT

Karn/Partridge Algorithm
After several years of use on the Internet, a rather obvious flaw was discovered in this
simple algorithm. The problem was that an ACK does not really acknowledge a trans-
mission; it actually acknowledges the receipt of data. In other words, whenever a segment
is retransmitted and then an ACK arrives at the sender, it is impossible to determine if
this ACK should be associated with the first or the second transmission of the segment
for the purpose of measuring the sample RTT. It is necessary to know which transmis-
sion to associate it with so as to compute an accurate SampleRTT. As illustrated in
Figure 5.10, if you assume that the ACK is for the original transmission but it was really
for the second, then the SampleRTT is too large (a), while if you assume that the ACK
is for the second transmission but it was actually for the first, then the SampleRTT is
too small (b).

The solution, which was proposed in 1987, is surprisingly simple. Whenever TCP
retransmits a segment, it stops taking samples of the RTT; it only measures SampleRTT



5.2 Reliable Byte Stream (TCP) 405

for segments that have been sent only once. This solution is known as the Karn/Partridge
algorithm, after its inventors. Their proposed fix also includes a second small change
to TCP’s timeout mechanism. Each time TCP retransmits, it sets the next timeout to
be twice the last timeout, rather than basing it on the last EstimatedRTT. That is,
Karn and Partridge proposed that TCP use exponential backoff, similar to what the
Ethernet does. The motivation for using exponential backoff is simple: Congestion is
the most likely cause of lost segments, meaning that the TCP source should not react
too aggressively to a timeout. In fact, the more times the connection times out, the more
cautious the source should become. We will see this idea again, embodied in a much
more sophisticated mechanism, in Chapter 6.

Jacobson/Karels Algorithm

The Karn/Partridge algorithm was introduced at a time when the Internet was suffering
from high levels of network congestion. Their approach was designed to fix some of the
causes of that congestion, and although it was an improvement, the congestion was not
eliminated. The following year (1988), two other researchers—Jacobson and Karels—
proposed a more drastic change to TCP to battle congestion. The bulk of that proposed
change is described in Chapter 6. Here, we focus on the aspect of that proposal that is
related to deciding when to time out and retransmit a segment.

As an aside, it should be clear how the timeout mechanism is related to
congestion—if you time out too soon, you may unnecessarily retransmit a segment,
which only adds to the load on the network. As we will see in Chapter 6, the other rea-
son for needing an accurate timeout value is that a timeout is taken to imply congestion,
which triggers a congestion-control mechanism. Finally, note that there is nothing about
the Jacobson/Karels timeout computation that is specific to TCP. It could be used by any
end-to-end protocol.

The main problem with the original computation is that it does not take the vari-
ance of the sample RTTs into account. Intuitively, if the variation among samples is
small, then the EstimatedRTT can be better trusted and there is no reason for multi-
plying this estimate by 2 to compute the timeout. On the other hand, a large variance
in the samples suggests that the timeout value should not be too tightly coupled to the
EstimatedRTT.

In the new approach, the sender measures a new SampleRTT as before. It then
folds this new sample into the timeout calculation as follows:

Difference = SampleRTT − EstimatedRTT

EstimatedRTT = EstimatedRTT + (δ × Difference)

Deviation = Deviation + δ(|Difference| − Deviation)
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where δ is a fraction between 0 and 1. That is, we calculate both the mean RTT and the
variation in that mean.

TCP then computes the timeout value as a function of both EstimatedRTT and
Deviation as follows:

TimeOut = µ × EstimatedRTT + φ × Deviation

where based on experience, µ is typically set to 1 and φ is set to 4. Thus, when the
variance is small, TimeOut is close to EstimatedRTT; a large variance causes the
Deviation term to dominate the calculation.

Implementation
There are two items of note regarding the implementation of timeouts in TCP. The first
is that it is possible to implement the calculation for EstimatedRTT and Deviation
without using floating-point arithmetic. Instead, the whole calculation is scaled by 2n,
with δ selected to be 1/2n. This allows us to do integer arithmetic, implementing multi-
plication and division using shifts, thereby achieving higher performance. The resulting
calculation is given by the following code fragment, where n = 3 (i.e., δ = 1/8). Note
that EstimatedRTT and Deviation are stored in their scaled-up forms, while the value
of SampleRTT at the start of the code and of TimeOut at the end are real, unscaled
values. If you find the code hard to follow, you might want to try plugging some real
numbers into it and verifying that it gives the same results as the equations above.

{
SampleRTT -= (EstimatedRTT >> 3);
EstimatedRTT += SampleRTT;
if (SampleRTT < 0)

SampleRTT = -SampleRTT;
SampleRTT -= (Deviation >> 3);
Deviation += SampleRTT;
TimeOut = (EstimatedRTT >> 3) + (Deviation >> 1);

}

The second point of note is that the Jacobson/Karels algorithm is only as good as
the clock used to read the current time. On typical Unix implementations at the time,
the clock granularity was as large as 500 ms, which is significantly larger than the average
cross-country RTT of somewhere between 100 and 200 ms. To make matters worse, the
Unix implementation of TCP only checked to see if a timeout should happen every time
this 500-ms clock ticked, and would only take a sample of the round-trip time once per
RTT. The combination of these two factors could mean that a timeout would happen
1 second after the segment was transmitted. Once again, the extensions to TCP include
a mechanism that makes this RTT calculation a bit more precise.
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All of the retransmission algorithms we have discussed are based on acknowledg-
ment timeouts, which indicate that a segment has probably been lost. Note that a time-
out does not, however, tell the sender whether any segments it sent after the lost segment
were successfully received. That is because TCP acknowledgments are cumulative; they
identify only the last segment that was received without any preceding gaps. The recep-
tion of segments that occur after a gap grows more frequent as faster networks lead to
larger windows. If ACKs also told the sender which subsequent segments, if any, had
been received, then the sender could be more intelligent about which segments it re-
transmits, draw better conclusions about the state of congestion, and make better RTT
estimates. A TCP extension supporting this is described in Section 5.2.8.

5.2.7 Record Boundaries
Since TCP is a byte-stream protocol, the number of bytes written by the sender are
not necessarily the same as the number of bytes read by the receiver. For example, the
application might write 8 bytes, then 2 bytes, then 20 bytes to a TCP connection, while
on the receiving side, the application reads 5 bytes at a time inside a loop that iterates
6 times. TCP does not interject record boundaries between the 8th and 9th bytes, nor
between the 10th and 11th bytes. This is in contrast to a message-oriented protocol such
as UDP, in which the message that is sent is exactly the same length as the message that
is received.

Even though TCP is a byte-stream protocol, it has two different features that can be
used by the sender to insert record boundaries into this byte stream, thereby informing
the receiver how to break the stream of bytes into records. (Being able to mark record
boundaries is useful, for example, in many database applications.) Both of these features
were originally included in TCP for completely different reasons; they have only come
to be used for this purpose over time.

The first mechanism is the urgent data feature, as implemented by the URG flag
and the UrgPtr field in the TCP header. Originally, the urgent data mechanism was
designed to allow the sending application to send out-of-band data to its peer. By “out
of band” we mean data that is separate from the normal flow of data (e.g., a command
to interrupt an operation already underway). This out-of-band data was identified in
the segment using the UrgPtr field and was to be delivered to the receiving process as
soon as it arrived, even if that meant delivering it before data with an earlier sequence
number. Over time, however, this feature has not been used, so instead of signifying
“urgent” data, it has come to be used to signify “special” data, such as a record marker.
This use has developed because, as with the push operation, TCP on the receiving side
must inform the application that “urgent data” has arrived. That is, the urgent data in
itself is not important, it is the fact that the sending process can effectively send a signal
to the receiver that is important.
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The second mechanism for inserting end-of-record markers into a byte is the push
operation. Originally, this mechanism was designed to allow the sending process to tell
TCP that it should send (flush) whatever bytes it had collected to its peer. The push
operation can be used to implement record boundaries because the specification says
that TCP must send whatever data it has buffered at the source when the application
says push, and optionally, TCP at the destination notifies the application whenever an
incoming segment has the PUSH flag set. If the receiving side supports this option (the
socket interface does not), then the push operation can be used to break the TCP stream
into records.

Of course, the application program is always free to insert record boundaries with-
out any assistance from TCP. For example, it can send a field that indicates the length of
a record that is to follow, or it can insert its own record boundary markers into the data
stream.

5.2.8 TCP Extensions
We have mentioned at four different points in this section that there are now extensions
to TCP that help to mitigate some problem that TCP is facing as the underlying network
gets faster. These extensions are designed to have as small an impact on TCP as possible.
In particular, they are realized as options that can be added to the TCP header. (We
glossed over this point earlier, but the reason that the TCP header has a HdrLen field is
that the header can be of variable length; the variable part of the TCP header contains
the options that have been added.) The significance of adding these extensions as options
rather than changing the core of the TCP header is that hosts can still communicate using
TCP even if they do not implement the options. Hosts that do implement the optional
extensions, however, can take advantage of them. The two sides agree that they will use
the options during TCP’s connection establishment phase.

The first extension helps to improve TCP’s timeout mechanism. Instead of mea-
suring the RTT using a coarse-grained event, TCP can read the actual system clock when
it is about to send a segment, and put this time—think of it as a 32-bit timestamp—in
the segment’s header. The receiver then echoes this timestamp back to the sender in its
acknowledgment, and the sender subtracts this timestamp from the current time to mea-
sure the RTT. In essence, the timestamp option provides a convenient place for TCP to
“store” the record of when a segment was transmitted; it stores the time in the segment
itself. Note that the endpoints in the connection do not need synchronized clocks, since
the timestamp is written and read at the same end of the connection.

The second extension addresses the problem of TCP’s 32-bit SequenceNum
field wrapping around too soon on a high-speed network. Rather than define a new 64-
bit sequence number field, TCP uses the 32-bit timestamp just described to effectively
extend the sequence number space. In other words, TCP decides whether to accept or
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reject a segment based on a 64-bit identifier that has the SequenceNum field in the
low-order 32 bits and the timestamp in the high-order 32 bits. Since the timestamp is
always increasing, it serves to distinguish between two different incarnations of the same
sequence number. Note that the timestamp is being used in this setting only to protect
against wraparound; it is not treated as part of the sequence number for the purpose of
ordering or acknowledging data.

The third extension allows TCP to advertise a larger window, thereby allowing it to
fill larger delay × bandwidth pipes that are made possible by high-speed networks. This
extension involves an option that defines a scaling factor for the advertised window. That
is, rather than interpreting the number that appears in the AdvertisedWindow field
as indicating how many bytes the sender is allowed to have unacknowledged, this option
allows the two sides of TCP to agree that the AdvertisedWindow field counts larger
chunks (e.g., how many 16-byte units of data the sender can have unacknowledged). In
other words, the window scaling option specifies how many bits each side should left-
shift the AdvertisedWindow field before using its contents to compute an effective
window.

The fourth extension allows TCP to augment its cumulative acknowledgment with
selective acknowledgments of any additional segments that have been received but aren’t
contiguous with all previously received segments. This is the selective acknowledgment, or
SACK, option. When the SACK option is used, the receiver continues to acknowledge
segments normally—the meaning of the Acknowledge field does not change—but it
also uses optional fields in the header to acknowledge any additional blocks of received
data. This allows the sender to retransmit just the segments that are missing according
to the selective acknowledgment.

Without SACK, there are only two reasonable strategies for a sender. The pes-
simistic strategy responds to a timeout by retransmitting not just the segment that timed
out, but any segments transmitted subsequently. In effect, the pessimistic strategy as-
sumes the worst: that all those segments were lost. The disadvantage of the pessimistic
strategy is that it may unnecessarily retransmit segments that were successfully received
the first time. The other strategy is the optimistic strategy, which responds to a timeout
by retransmitting only the segment that timed out. In effect, the optimistic scenario as-
sumes the rosiest scenario: that only the one segment has been lost. The disadvantage of
the optimistic strategy is that it is very slow, unnecessarily, when a series of consecutive
segments has been lost, as might happen when there is congestion. It is slow because each
segment’s loss is not discovered until the sender receives an ACK for its retransmission
of the previous segment. So it consumes one RTT per segment until it has retransmitted
all the segments in the lost series. With the SACK option, a better strategy is available to
the sender: retransmit just the segments that fill the gaps between the segments that have
been selectively acknowledged.
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5.2.9 Alternative Design Choices
Although TCP has proven to be a robust protocol that satisfies the needs of a wide range
of applications, the design space for transport protocols is quite large. TCP is, by no
means, the only valid point in that design space. We conclude our discussion of TCP
by considering alternative design choices. While we offer an explanation for why TCP’s
designers made the choices they did, we leave it to you to decide if there might be a place
for alternative transport protocols.

First, we have suggested from the very first chapter of this book that there are at
least two interesting classes of transport protocols: stream-oriented protocols like TCP
and request/reply protocols like RPC. In other words, we have implicitly divided the
design space in half and placed TCP squarely in the stream-oriented half of the world.
We could further divide the stream-oriented protocols into two groups—reliable and
unreliable—with the former containing TCP and the latter being more suitable for inter-
active video applications that would rather drop a frame than incur the delay associated
with a retransmission.

This exercise in building a transport protocol taxonomy is interesting and could
be continued in greater and greater detail, but the world isn’t as black and white as we
might like. Consider the suitability of TCP as a transport protocol for request/reply ap-
plications, for example. TCP is a full-duplex protocol, so it would be easy to open a
TCP connection between the client and server, send the request message in one direc-
tion, and send the reply message in the other direction. There are two complications,
however. The first is that TCP is a byte-oriented protocol rather than a message-oriented
protocol, and request/reply applications always deal with messages. (We explore the is-
sue of bytes versus messages in greater detail in a moment.) The second complication
is that in those situations where both the request message and the reply message fit in
a single network packet, a well-designed request/reply protocol needs only two packets
to implement the exchange, whereas TCP would need at least nine: three to establish
the connection, two for the message exchange, and four to tear down the connection.
Of course, if the request or reply messages are large enough to require multiple network
packets (e.g., it might take 100 packets to send a 100,000-byte reply message), then the
overhead of setting up and tearing down the connection is inconsequential. In other
words, it isn’t always the case that a particular protocol cannot support a certain func-
tionality; it’s sometimes the case that one design is more efficient than another under
particular circumstances.

Second, as just suggested, you might question why TCP chose to provide a reliable
byte-stream service rather than a reliable message-stream service; messages would be the
natural choice for a database application that wants to exchange records. There are two
answers to this question. The first is that a message-oriented protocol must, by definition,
establish an upper bound on message sizes. After all, an infinitely long message is a
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byte stream. For any message size that a protocol selects, there will be applications that
want to send larger messages, rendering the transport protocol useless and forcing the
application to implement its own transportlike services. The second reason is that while
message-oriented protocols are definitely more appropriate for applications that want to
send records to each other, you can easily insert record boundaries into a byte stream to
implement this functionality, as described in Section 5.2.7.

Third, TCP chose to implement explicit setup/teardown phases, but this is not
required. In the case of connection setup, it would certainly be possible to send all nec-
essary connection parameters along with the first data message. TCP elected to take a
more conservative approach that gives the receiver the opportunity to reject the connec-
tion before any data arrives. In the case of teardown, we could quietly close a connection
that has been inactive for a long period of time, but this would complicate applications
like Telnet that want to keep a connection alive for weeks at a time; such applications
would be forced to send out-of-band “keep alive” messages to keep the connection state
at the other end from disappearing.

Finally, TCP is a window-based protocol, but this is not the only possibility. The al-
ternative is a rate-based design, in which the receiver tells the sender the rate—expressed
in either bytes or packets per second—at which it is willing to accept incoming data.
For example, the receiver might inform the sender that it can accommodate 100 packets
a second. There is an interesting duality between windows and rate, since the number
of packets (bytes) in the window, divided by the RTT, is exactly the rate. For example,
a window size of 10 packets and a 100-ms RTT implies that the sender is allowed to
transmit at a rate of 100 packets a second. It is by increasing or decreasing the adver-
tised window size that the receiver is effectively raising or lowering the rate at which the
sender can transmit. In TCP, this information is fed back to the sender in the Adver-
tisedWindow field of the ACK for every segment. One of the key issues in a rate-based
protocol is how often the desired rate—which may change over time—is relayed back to
the source: Is it for every packet, once per RTT, or only when the rate changes? While we
have just now considered window versus rate in the context of flow control, it is an even
more hotly contested issue in the context of congestion control, which we will discuss in
Chapter 6.

5.3 Remote Procedure Call
As discussed in Chapter 1, one common pattern of communication used by application
programs is the request/reply paradigm, also called message transaction: a client sends a
request message to a server, and the server responds with a reply message, with the client
blocking (suspending execution) to wait for the reply. Figure 5.11 illustrates the basic
interaction between the client and server in such a message transaction.
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Figure 5.11 Timeline for RPC.

A transport protocol that supports the request/reply paradigm is much more than
a UDP message going in one direction followed by a UDP message going in the other
direction. It needs to deal with correctly identifying processes on remote hosts and cor-
relating requests with responses. It may also need to overcome some or all of the limi-
tations of the underlying network outlined in the problem statement at the beginning
of this chapter. While TCP overcomes these limitations by providing a reliable byte-
stream service, it doesn’t match the request/reply paradigm very well either—going to
the trouble to establish a TCP connection just to exchange a pair of messages seems like
overkill. This section describes a third category of transport protocol, called Remote Pro-
cedure Call (RPC), that more closely matches the needs of an application involved in a
request/reply message exchange.

5.3.1 RPC Fundamentals
RPC is actually more than just a protocol—it is a popular mechanism for structuring
distributed systems. RPC is popular because it is based on the semantics of a local pro-
cedure call—the application program makes a call into a procedure without regard for
whether it is local or remote and blocks until the call returns. An application developer
can be largely unaware of whether the procedure is local or remote, simplifying his task
considerably. When the procedures being called are actually methods of remote objects in
an object-oriented language, RPC is known as remote method invocation (RMI). While
the RPC concept is simple, there are two main problems that make it more complicated
than local procedure calls:

■ The network between the calling process and the called process has much more
complex properties than the backplane of a computer. For example, it is likely
to limit message sizes and has a tendency to lose and reorder messages.
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■ The computers on which the calling and called processes run may have signifi-
cantly different architectures and data representation formats.

Thus, a complete RPC mechanism actually involves two major components:

1 A protocol that manages the messages sent between the client and the server
processes and that deals with the potentially undesirable properties of the un-
derlying network.

2 Programming language and compiler support to package the arguments into a
request message on the client machine and then to translate this message back
into the arguments on the server machine, and likewise with the return value
(this piece of the RPC mechanism is usually called a stub compiler).

Figure 5.12 schematically depicts what happens when a client invokes a remote
procedure. First, the client calls a local stub for the procedure, passing it the arguments
required by the procedure. This stub hides the fact that the procedure is remote by

Figure 5.12 Complete RPC mechanism.
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translating the arguments into a request message and then invoking an RPC protocol to
send the request message to the server machine. At the server, the RPC protocol delivers
the request message to the server stub (sometimes called a skeleton), which translates it
into the arguments to the procedure and then calls the local procedure. After the server
procedure completes, it returns the answer to the server stub, which packages this return
value in a reply message that it hands off to the RPC protocol for transmission back
to the client. The RPC protocol on the client passes this message up to the client stub,
which translates it into a return value that it returns to the client program.

This section considers just the protocol-related aspects of an RPC mechanism. That
is, it ignores the stubs and focuses instead on the RPC protocol, sometimes referred
to as a request/reply protocol, that transmits messages between client and server. The
transformation of arguments into messages and vice versa is covered in Chapter 7.

What Layer Is RPC?

Once again, the “What layer is this?”
issue raises its ugly head. To many
people, especially those who adhere to
a strictly layerist view of protocol ar-
chitecture, RPC is implemented on
top of a transport protocol (usually
UDP) and so cannot itself (by defi-
nition) be a transport protocol. It is
certainly valid, however, to argue that
the Internet should have an RPC pro-
tocol, since RPC offers a process-to-
process service that is fundamentally
different from that offered by TCP
and UDP. The usual response to such
a suggestion, however, is that the In-
ternet architecture does not prohibit
network designers from implementing
their own RPC protocol on top of
UDP. Whichever side of the issue of
whether the Internet should have an
official RPC protocol you support, the
important point is that the way you
implement RPC in the Internet ar-
chitecture says nothing about whether

The term RPC refers to a type of
protocol rather than a specific standard
like TCP, so specific RPC protocols vary
in the functions they perform. And unlike
TCP, which is the dominant reliable byte-
stream protocol, there is no one domi-
nant RPC protocol. Thus, in this section
we will talk more about alternative design
choices than previously.

Identifiers in RPC

Two functions that must be performed by
any RPC protocol are:

■ Provide a name space for
uniquely identifying the proce-
dure to be called.

■ Match each reply message to the
corresponding request message.

The first problem has some similarities
to the problem of identifying nodes in a
network, something that we saw in previ-
ous chapters (e.g., IP addresses in Chap-
ter 4). One of the design choices when
identifying things is whether to make this
namespace flat or hierarchical.
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A flat namespace would simply assign a unique, unstructured identifier (e.g., an
integer) to each procedure, and this number would be carried in a single field in an RPC
request message. This would require some kind of central coordination to avoid assign-
ing the same procedure number to two different procedures. Alternatively, the protocol
could implement a hierarchical name space, analogous to that used for file pathnames,
which requires only that a file’s “basename” be unique within its directory. This approach
potentially simplifies the job of ensuring uniqueness of procedure names. A hierarchical
namespace for RPC could be implemented by defining a set of fields in the request
message format, one for each level of naming in, say, a two- or three-level hierarchical
namespace.

The key to matching a reply message to the corresponding request is to uniquely
identify request-replies pairs using a message ID field. A reply message had its message ID
field set to the same value as the request message. When the client RPC module receives

RPC should be considered a transport
protocol or not.

Interestingly, there are other peo-
ple who believe that RPC is the most
interesting protocol in the world and
that TCP/IP is just what you do when
you want to go “off site.” This is
the predominant view of the oper-
ating systems community, which has
built countless OS kernels for dis-
tributed systems that contain exactly
one protocol—you guessed it, RPC—
running on top of a network device
driver.

Our position is that any pro-
tocol that offers process-to-process
service, as opposed to node-to-node
or host-to-host service, qualifies as a
transport protocol. Thus, RPC is a
transport protocol and, in fact, can be
implemented on top of other proto-
cols that are themselves valid transport
protocols.

the reply, it uses the message ID to search
for the corresponding outstanding request.
To make the RPC transaction appear like a
local procedure call to the caller, the caller
is blocked (e.g., by using a semaphore) un-
til the reply message is received. When the
reply is received, the blocked caller is iden-
tified based on the request number in the
reply, the remote procedure’s return value
is obtained from the reply, and the caller is
unblocked so that it can return with that
return value.

One of the recurrent challenges in
RPC is dealing with unexpected responses,
and we see this with message IDs. For ex-
ample, consider the following pathological
(but realistic) situation. A client machine
sends a request message with a message ID
of 0, then crashes and reboots, and then
sends an unrelated request message, also
with a message ID of 0. The server may
not have been aware that the client crashed
and rebooted, and upon seeing a request
message with a message ID of 0, acknowl-
edges it and discards it as a duplicate. The
client never gets a response to the request.
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Figure 5.13 Simple timeline for a reliable RPC protocol.

One way to eliminate this problem is to use a boot ID. A machine’s boot ID is a
number that is incremented each time the machine reboots; this number is read from
disk, incremented, and written back to disk during the machine’s start-up procedure.
This number is then put in every message sent by that host. If a message is received with
an old message ID but a new boot ID, it is recognized as a new message. In effect, the
message ID and boot ID combine to form a unique ID for each transaction.

Overcoming Network Limitations
RPC protocols often perform additional functions to deal with the fact that networks
are not perfect channels. Two such functions are:

■ Provide reliable message delivery.

■ Support large message sizes through fragmentation and reassembly.

An RPC protocol might implement reliability because the underlying protocols
(e.g., UDP/IP) do not provide it, or perhaps to recover more quickly or efficiently from
failures that otherwise would eventually be repaired by underlying protocols. An RPC
protocol can implement reliability using acknowledgments and timeouts, similarly to
TCP. The basic algorithm is straightforward, as illustrated by the timeline given in Fig-
ure 5.13. The client sends a request message and the server acknowledges it. Then, after
executing the procedure, the server sends a reply message and the client acknowledges
the reply.

Either a message carrying data (a request message or a reply message) or the ACK
sent to acknowledge that message may be lost in the network. To account for this possi-
bility, both client and server save a copy of each message they send until an ACK for it
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Figure 5.14 Timeline for a reliable RPC protocol using implicit acknowledgment.

has arrived. Each side also sets a RETRANSMIT timer and resends the message should
this timer expire. Both sides reset this timer and try again some agreed-upon number of
times before giving up and freeing the message.

If an RPC client receives a reply message, clearly the corresponding request mes-
sage must have been received by the server. Hence the reply message itself is an implicit
acknowledgment, and any additional acknowledgment from the server is not logically
necessary. Similarly, a request message could implicitly acknowledge the preceding re-
ply message—assuming the protocol makes request-reply transactions sequential, so that
one transaction must complete before the next begins. Unfortunately, this sequentiality
would severely limit RPC performance.

A way out of this predicament is for the RPC protocol to implement a channel ab-
straction. Within a given channel, request/reply transactions are sequential—there can
be only one transaction active on a given channel at any given time—but there can be
multiple channels. Each message includes a channel ID field to indicate which channel
the message belongs to. A request message in a given channel would implicitly acknowl-
edge the previous reply in that channel, if it hadn’t already been acknowledged. An ap-
plication program can open multiple channels to a server if it wants to have more than
one request/reply transaction between them at the same time (the application would
need multiple threads). As illustrated in Figure 5.14, the reply message serves to ac-
knowledge the request message, and a subsequent request acknowledges the preceding
reply. Note that we saw a very similar approach—called concurrent logical channels—
in Section 2.5.3 as a way to improve on the performance of a stop-and-wait reliability
mechanism.

Another complication that RPC must address is that the server may take an ar-
bitrarily long time to produce the result, and worse yet, it may crash before generating



418 5 End-to-End Protocols

the reply. Keep in mind that we are talking about the period of time after the server has
acknowledged the request but before it has sent the reply. To help the client distinguish
between a slow server and a dead server, the RPC’s client side periodically sends an “Are
you alive?” message to the server, and the server side responds with an ACK. Alterna-
tively, the server could send “I am still alive” messages to the client without the client
having first solicited them. The client-initiated approach is more scalable because it puts
more of the per-client burden (managing the timeout timer) on the clients.

RPC reliability may include the property known as at-most-once semantics. This
means that for every request message that the client sends, at most one copy of that
message is delivered to the server. Each time the client calls a remote procedure, that
procedure is invoked at most one time on the server machine. We say “at most once”
rather than “exactly once” because it is always possible that either the network or the
server machine has failed, making it impossible to deliver even one copy of the request
message.

To implement at-most-once semantics, RPC on the server side must recognize du-
plicate requests (and ignore them), even if it has already successfully replied to the origi-
nal request. Hence it must maintain some state information that identifies past requests.
One approach is to identify requests using sequence numbers, so a server need only re-
member the most recent sequence number. Unfortunately, this would limit an RPC to
one outstanding request (to a given server) at a time, since one request must be completed
before the request with the next sequence number can be transmitted. Once again, chan-
nels provide a solution. The server could recognize duplicate requests by remembering
the current sequence number for each channel, without limiting the client to one request
at a time.

As obvious as at-most-once sounds, not all RPC protocols support this behavior.
Some support a semantics that is facetiously called zero-or-more semantics; that is, each
invocation on a client results in the remote procedure being invoked zero or more times.
It is not hard to understand how this would cause problems for a remote procedure
that changed some local state variable (e.g., incremented a counter) or that had some
externally visible side effect (e.g., launched a missile) each time it was invoked. On the
other hand, if the remote procedure being invoked is idempotent—multiple invocations
have the same effect as just one—then the RPC mechanism need not support at-most-
once semantics; a simpler (possibly faster) implementation will suffice.

As was the case with reliability, the two reasons why an RPC protocol might im-
plement message fragmentation and reassembly are (1) it is not provided by the under-
lying protocol stack, or (2) it can be implemented more efficiently by the RPC protocol.
Consider the case where RPC is implemented on top of UDP/IP and relies on IP for
fragmentation and reassembly. If even one fragment of a message fails to arrive within a
certain amount of time, IP discards the fragments that did arrive and the message is effec-
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tively lost. Eventually the RPC protocol (assuming it implements reliability) would time
out and retransmit the message. In contrast, consider an RPC protocol that implements
its own fragmentation and reassembly and aggressively ACKs or NACKs individual frag-
ments. Lost fragments would be more quickly detected and retransmitted, and only the
lost fragments would be retransmitted, not the whole message.

Synchronous versus Asynchronous Protocols

One way to characterize a protocol is by whether it is synchronous or asynchronous. The
precise meaning of these terms depends on where in the protocol hierarchy you use them.
At the transport layer, it is most accurate to think of them as defining the extremes of
a spectrum rather than as two mutually exclusive alternatives. The key attribute of any
point along the spectrum is how much the sending process knows after the operation to
send a message returns. In other words, if we assume that an application program invokes
a send operation on a transport protocol, then exactly what does the application know
about the success of the operation when the send operation returns?

At the asynchronous end of the spectrum, the application knows absolutely nothing
when send returns. It not only doesn’t know if the message was received by its peer,
but it doesn’t even know for sure that the message has successfully left the local machine.
At the synchronous end of the spectrum, the send operation typically returns a reply
message. That is, the application not only knows that the message it sent was received by
its peer, but it knows that the peer has returned an answer. Thus, synchronous protocols
implement the request/reply abstraction, while asynchronous protocols are used if the
sender wants to be able to transmit many messages without having to wait for a response.
Using this definition, RPC protocols are obviously synchronous protocols.

Although we have not discussed them in this chapter, there are interesting points
between these two extremes. For example, the transport protocol might implement send
so that it blocks (does not return) until the message has been successfully received at
the remote machine, but returns before the sender’s peer on that machine has actually
processed and responded to it. This is sometimes called a reliable datagram protocol.

5.3.2 RPC Implementations (SunRPC, DCE)
We now turn our discussion to some example implementations of RPC protocols. These
will serve to highlight some of the different design decisions that protocol designers have
made. Our first example is SunRPC, a widely used RPC protocol also known as ONC
RPC (Open Network Computing RPC). Our second example, which we will refer to
as DCE-RPC, is part of the Distributed Computing Environment (DCE). DCE is a
set of standards and software for building distributed systems that was defined by the
Open Software Foundation (OSF), a consortium of computer companies that originally
included IBM, the Digital Equipment Corporation, and Hewlett-Packard; today OSF
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Figure 5.15 Protocol graph for SunRPC on top of UDP.

goes by the name Open Group. These two examples represent interesting alternative
design choices in the RPC solution space.

SunRPC

SunRPC became a de facto standard thanks to its wide distribution with Sun worksta-
tions and to the central role it plays in Sun’s popular Network File System (NFS). The
IETF subsequently adopted it as a standard Internet protocol under the name ONC
RPC.

SunRPC can be implemented over several different transport protocols. Figure 5.15
illustrates the protocol graph when SunRPC is implemented on UDP. As we noted earlier
in this section, a strict layerist might frown on the idea of running a transport protocol
over a transport protocol, or argue that RPC must be something other than a transport
protocol since it appears “above” the transport layer. Pragmatically, the design decision
to run RPC over an existing transport layer makes quite a lot of sense, as will be apparent
in the following discussion.

SunRPC uses two-tier identifiers to identify remote procedures: a 32-bit program
number and a 32-bit procedure number. (There is also a 32-bit version number, but
we ignore that in the following discussion.) For example, the NFS server has been as-
signed program number x00100003, and within this program, getattr is procedure
1, setattr is procedure 2, read is procedure 6, write is procedure 8, and so on. The
program number and procedure number are transmitted in the SunRPC request mes-
sage’s header, whose fields are shown in Figure 5.16. The server—which may support
several program numbers—is responsible for calling the specified procedure of the speci-
fied program. A SunRPC request really represents a request to call the specified program
and procedure on the particular machine to which the request was sent, even though the
same program number may be implemented on other machines in the same network.
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Figure 5.16 SunRPC header formats: (a) request; (b) reply.

Thus, the address of the server’s machine (e.g., an IP address) is an implicit third tier of
the RPC address.

Different program numbers may belong to different servers on the same machine.
These different servers have different transport layer demux keys (e.g., UDP ports), most
of which are not well-known numbers but instead are assigned dynamically. These de-
mux keys are called transport selectors. How can a SunRPC client that wants to talk to a
particular program determine which transport selector to use to reach the correspond-
ing server? The solution is to assign a well-known address to just one program on the
remote machine, and let that program handle the task of telling clients which trans-
port selector to use to reach any other program on the machine. The original version of
this SunRPC program is called the Port Mapper, and it supports only UDP and TCP
as underlying protocols. Its program number is x00100000 and its well-known port
is 111. RPCBIND, which evolved from the Port Mapper, supports arbitrary underlying
transport protocols. As each SunRPC server starts, it calls an RPCBIND registration
procedure on the server’s own home machine to register its transport selector and the
program numbers that it supports. A remote client can then call an RPCBIND lookup
procedure to look up the transport selector for a particular program number.

To make this more concrete, consider an example using the Port Mapper with
UDP. To send a request message to NFS’s read procedure, a client first sends a request
message to the Port Mapper at well-known UDP port 111, asking that procedure 3 be
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invoked to map program number x00100003 to the UDP port where the NFS pro-
gram currently resides.2 The client then sends a SunRPC request message with program
number x00100003 and procedure number 6 to this UDP port, and the SunRPC
module listening at that port calls the NFS read procedure. The client also caches the
program-to-port number mapping so that it need not go back to the Port Mapper each
time it wants to talk to the NFS program.

To match up a reply message with the corresponding request, so that the result of
the RPC can be returned to the correct caller, both request and reply message headers
include an XID (transaction ID) field, as in Figure 5.16. An XID is a unique transaction
id, used only by one request and the corresponding reply. After the server has successfully
replied to a given request, it does not remember the XID. Because of this, SunRPC
cannot guarantee at-most-once semantics.

The details of SunRPC’s semantics depend on underlying the transport protocol.
It does not implement its own reliability, so it is only reliable if the underlying transport
is reliable. (Of course, any application that runs over SunRPC may also choose to imple-
ment its own reliability mechanisms above the level of SunRPC if it chooses.) The ability
to send request and reply messages that are larger than the network MTU is also depen-
dent on the underlying transport. In other words, SunRPC does not make any attempt
to improve on the underlying transport when it comes to reliability and message size.
Since SunRPC can run over many different transport protocols, this gives it considerable
flexibility without complicating the design of the RPC protocol itself.

Returning to the SunRPC header format of Figure 5.16, the request message con-
tains variable-length Credentials and Verifier fields, both of which are used by the
client to authenticate itself to the server; that is, to give evidence that the client has the
right to invoke the server. How a client authenticates itself to a server is a general is-
sue that must be addressed by any protocol that wants to provide a reasonable level of
security. This topic is discussed in more detail in the next chapter.

DCE-RPC
DCE-RPC is the RPC protocol at the core of the DCE system and was the basis of
the RPC mechanism underlying Microsoft’s DCOM and ActiveX. It can be used with
the Network Data Representation (NDR) stub compiler described in Chapter 7, but
it also serves as the underlying RPC protocol for the Common Object Request Broker
Architecture (CORBA), which is an industry-wide standard for building distributed,
object-oriented systems.

DCE-RPC, like SunRPC, can be implemented on top of several transport proto-
cols including UDP and TCP. It is also similar to SunRPC in that it defines a two-level

2In practice, NFS is such an important program that it has been given its own well-known UDP port, but for the purposes
of illustration we’re pretending that’s not the case.
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Figure 5.17 Typical DCE-RPC message exchange.

addressing scheme: the transport protocol demultiplexes to the correct server, DCE-
RPC dispatches to a particular procedure exported by that server, and clients consult an
“endpoint mapping service” (similar to SunRPC’s Port Mapper) to learn how to reach
a particular server. Unlike SunRPC, however, DCE-RPC implements at-most-once call
semantics. (In truth, DCE-RPC supports multiple call semantics, including an idem-
potent semantics similar to SunRPC’s, but at-most-once is the default behavior.) There
are some other differences between the two approaches, which we will highlight in the
following paragraphs.

Figure 5.17 gives a timeline for the typical exchange of messages, where each mes-
sage is labeled by its DCE-RPC type. The client sends a Request message, the server
eventually replies with a Response message, and the client acknowledges (Ack) the re-
sponse. Instead of the server acknowledging the request messages, however, the client pe-
riodically sends a Ping message to the server, which responds with a Working message
to indicate that the remote procedure is still in progress. If the server’s reply is received
reasonably quickly, no Pings are sent. Although not shown in the figure, other message
types are also supported. For example, the client can send a Quit message to the server,
asking it to abort an earlier call that is still in progress; the server responds with a Quack
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(quit acknowledgment) message. Also, the server can respond to a Request message
with a Reject message (indicating that a call has been rejected), and it can respond to a
Ping message with a Nocall message (indicating that the server has never heard of the
caller).

Each request/reply transaction in DCE-RPC takes place in the context of an activ-
ity. An activity is a logical request/reply channel between a pair of participants. At any
given time, there can be only one message transaction active on a given channel. Like
the concurrent logical channel approach described above and in Section 2.5.3, the ap-
plication programs have to open multiple channels if they want to have more than one
request/reply transaction between them at the same time. The activity to which a message
belongs is identified by the message’s ActivityId field. A SequenceNum field then
distinguishes between calls made as part of the same activity; it serves the same purpose
as SunRPC’s XID (transaction ID) field. Unlike SunRPC, DCE-RPC keeps track of the
last sequence number used as part of a particular activity, so as to ensure at-most-once
semantics. To distinguish between replies sent before and after a server machine reboots,
DCE-RPC uses a ServerBoot field to hold the machine’s boot ID.

Another design choice made in DCE-RPC that differs from SunRPC is the sup-
port of fragmentation and reassembly in the RPC protocol. As noted above, even if
an underlying protocol such as IP provides fragmentation/reassembly, a more sophisti-
cated algorithm implemented as part of RPC can result in quicker recovery and reduced
bandwidth consumption when fragments are lost. The FragmentNum field uniquely
identifies each fragment that makes up a given request or reply message. Each DCE-
RPC fragment is assigned a unique fragment number (e.g., 0, 1, 2, 3, and so on). Both
the client and server implement a selective acknowledgment mechanism, which works
as follows. (We describe the mechanism in terms of a client sending a fragmented re-
quest message to the server; the same mechanism applies when a server sends a fragment
response to the client.)

First, each fragment that makes up the request message contains both a unique
FragmentNum, and a flag indicating whether this packet is a fragment of a call (frag)
or the last fragment of a call (last_frag); request messages that fit in a single packet carry
a no_frag flag. The server knows it has received the complete request message when it
has the last_frag packet and there are no gaps in the fragment numbers. Second, in
response to each arriving fragment, the server sends a Fack (fragment acknowledgment)
message to the client. This acknowledgment identifies the highest fragment number that
the server has successfully received. In other words, the acknowledgment is cumulative,
much like in TCP. In addition, however, the server selectively acknowledges any higher
fragment numbers it has received out of order. It does so with a bit-vector that identifies
these out-of-order fragments relative to the highest in-order fragment it has received.
Finally, the client responds by retransmitting the missing fragments.
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Figure 5.18 Fragmentation with selective acknowledgments.

Figure 5.18 illustrates how this all works. Suppose the server has successfully re-
ceived fragments up through number 20, plus fragments 23, 25, and 26. The server
responds with a Fack that identifies fragment 20 as the highest in-order fragment, plus
a bit-vector (SelAck) with the third (23 = 20 + 3), fifth (25 = 20 + 5), and sixth
(26 = 20 + 6) bits turned on. So as to support an (almost) arbitrarily long bit-vector,
the size of the vector (measured in 32-bit words) is given in the SelAckLen field.

Given DCE-RPC’s support for very large messages—the FragmentNum field
is 16 bits long, meaning it can support 64K fragments—it is not appropriate for the
protocol to blast all the fragments that make up a message as fast as it can since doing
so might overrun the receiver. Instead, DCE-RPC implements a flow-control algorithm
that is very similar to TCP’s. Specifically, each Fack message not only acknowledges
received fragments, but it also informs the sender of how many fragments it may now
send. This is the purpose of the WindowSize field in Figure 5.18, which serves exactly
the same purpose as TCP’s AdvertisedWindow field except it counts fragments rather
than bytes. DCE-RPC also implements a congestion-control mechanism that is similar
to TCP’s, which we will see in Chapter 6. Given the complexity of congestion control, it
is perhaps not surprising that some RPC protocols avoid it by avoiding fragmentation.
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In summary, designers have quite a range of options open to them when design-
ing an RPC protocol. SunRPC takes the more minimalist approach and adds relatively
little to the underlying transport beyond the essentials of locating the right procedure
and identifying messages. DCE-RPC adds more functionality, with the possibility of
improved performance in some environments at the cost of greater complexity.

5.4 Transport for Real-Time Applications (RTP)
In the early days of packet switching, most applications were concerned with the move-
ment of data: accessing remote computing resources, transferring files, sending email,
and so on. However, at least as early as 1981, experiments were underway to carry “real-
time” traffic, such as digitized voice samples, over packet networks. We call an application
“real-time” when it has strong requirements for the timely delivery of information. Inter-
net telephony or “Voiceover IP” (VOIP) is a classic example of a real-time application,
because you can’t easily carry on a conversation with someone if it takes more than a
fraction of a second to get a response. As we will see shortly, real-time applications place
some specific demands on the transport protocol that are not well met by the protocols
discussed so far in this chapter.

Multimedia applications—those that involve video, audio, and data—are some-
times divided into two classes: interactive applications and streaming applications. A rel-
atively early and popular example of the former class is vat, a multiparty audiocon-
ferencing tool that is often used over networks supporting IP multicast. The control
panel for a typical vat conference is shown in Figure 5.19. Internet telephony is also a
class of interactive application, and probably the most widely used one at the time of
writing. Another interactive conferencing application is vic, the videoconferencing tool
discussed in Chapter 1 and illustrated in Figure 1.1. These are the sort of applications
with the most stringent real-time requirements.

Streaming applications typically deliver audio or video streams from a server
to a client, and are typified by such commercial products as Real Audio. Because
of the lack of human-to-human interaction, they place less stringent real-time re-
quirements on the underlying protocols. While such applications are not strictly real-
time, however, they still have enough in common with interactive multimedia ap-
plications to warrant consideration of a common protocol for both types of applica-
tion.

It should by now be apparent that designers of a transport protocol for real-time
and multimedia applications face a real challenge in defining the requirements broadly
enough to meet the needs of very different applications. They must also pay attention to
the interactions among different applications; for example, the synchronization of audio
and video streams. We will see how these concerns affected the design of RTP below.
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Figure 5.19 User interface of a vat audioconference.

Figure 5.20 Protocol stack for multimedia applications using RTP.

Much of RTP actually derives from protocol functionality that was originally em-
bedded in the application vat. Newer versions of vat (and many other applications)
run over RTP. RTP can run over many lower-layer protocols, but commonly runs over
UDP. That leads to the protocol stack shown in Figure 5.20. Note that we are therefore
running a transport protocol over a transport protocol. There is no rule against that, and
in fact it makes a lot of sense, since UDP provides such a minimal level of functionality,
and the basic demultiplexing based on port numbers happens to be just what RTP needs
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as a starting point. So rather than recreate port numbers in RTP, RTP outsources the
demultiplexing function to UDP.

5.4.1 Requirements
The most basic requirement for a general-purpose multimedia protocol is that it allows
similar applications to interoperate with each other. For example, it should be possi-
ble for two independently implemented audioconferencing applications to talk to each
other. This immediately suggests that the applications had better use the same method of
encoding and compressing voice; otherwise, the data sent by one party will be incompre-
hensible to the receiving party. Since there are quite a few different coding schemes for
voice, each with its own trade-offs between quality, bandwidth requirements, and com-
putational cost, it would probably be a bad idea to decree that only one such scheme can
be used. Instead, our protocol should provide a way that a sender can tell a receiver which
coding scheme it wants to use, and possibly negotiate until a scheme that is available to
both parties is identified.

Just as with audio, there are many different video coding schemes.3 Thus, we see
that the first common function that RTP can provide is the ability to communicate that
choice of coding scheme. Note that this also serves to identify the type of application
(e.g., audio or video); once we know what coding algorithm is being used, we know
what type of data is being encoded as well.

Another important requirement for RTP is to enable the recipient of a data stream
to determine the timing relationship among the received data. As we will see in Sec-
tion 6.5, real-time applications need to place received data into a playback buffer to
smooth out the jitter that may have been introduced into the data stream during trans-
mission across the network. Thus, some sort of timestamping of the data will be necessary
to enable the receiver to play it back at the appropriate time.

Related to the timing of a single media stream is the issue of synchronization of
multiple media in a conference. The obvious example of this would be to synchronize an
audio and video stream that are originating from the same sender. As we will see below,
this is a slightly more complex problem than playback time determination for a single
stream.

Another important function to be provided is an indication of packet loss. Note
that an application with tight latency bounds generally cannot use a reliable transport
like TCP because retransmission of data to correct for loss would probably cause the
packet to arrive too late to be useful. Thus, the application must be able to deal with
missing packets, and the first step in dealing with them is noticing that they are in fact
missing. As an example, a video application using MPEG encoding will need to take

3Audio and video coding and compression are discussed in more detail in Chapter 7.
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different actions when a packet is lost, depending on whether the packet came from an
I frame, a B frame, or a P frame since these different frame types carry different amounts
of information (see Section 7.2.3 for more details).

Since multimedia applications generally do not run over TCP, they also miss out on
the congestion avoidance features of TCP (as described in Section 6.3). Yet many mul-
timedia applications are capable of responding to congestion, for example, by changing
the parameters of the coding algorithm to reduce the bandwidth consumed. Clearly, to
make this work, the receiver needs to notify the sender that losses are occurring so that
the sender can adjust its coding parameters.

Another common function across multimedia applications is the concept of frame
boundary indication. A frame in this context is application-specific. For example, it may
be helpful to notify a video application that a certain set of packets correspond to a single
frame. In an audio application it is helpful to mark the beginning of a “talkspurt,” which
is a collection of sounds or words followed by silence. The receiver can then identify
the silences between talkspurts and use them as opportunities to move the playback
point. This follows the observation that slight shortening or lengthening of the spaces
between words are not perceptible to users, whereas shortening or lengthening the words
themselves is both perceptible and annoying.

A final function that we might want to put into the protocol is some way of iden-
tifying senders that is more user-friendly than an IP address. Tools such as vat and vic
can display strings such as Joe User (user@domain.com) on their control panels,
and thus the application protocol should support the association of such a string with a
data stream.

In addition to the functionality that is required from our protocol, we note an ad-
ditional requirement: It should make reasonably efficient use of bandwidth. Put another
way, we don’t want to introduce a lot of extra bits that need to be sent with every packet
in the form of a long header. The reason for this is that audio packets, which are one of
the most common types of multimedia data, tend to be small, so as to reduce the time
it takes to fill them with samples. Long audio packets would mean high latency due to
packetization, which has a negative effect on the perceived quality of conversations. (Re-
call that this was one of the factors in choosing the length of ATM cells.) Since the data
packets themselves are short, a large header would mean that a relatively large amount
of link bandwidth would be used by headers, thus reducing the available capacity for
“useful” data. We will see several aspects of the design of RTP that have been influenced
by the necessity of keeping the header short.

5.4.2 RTP Details
Now that we have seen the rather long list of requirements for our transport protocol for
multimedia, we turn to the details of the protocol that has been specified to meet those
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requirements. This protocol, RTP, was developed in the IETF and is in widespread use.
The RTP standard actually defines a pair of protocols, RTP and the Real-time Transport
Control Protocol (RTCP). The former is used for the exchange of multimedia data, while
the latter is used to periodically send control information associated with a certain data
flow. When running over UDP, the RTP data stream and the associated RTCP control
stream use consecutive transport-layer ports. The RTP data uses an even port number
and the RTCP control information uses the next higher (odd) port number.

Because RTP is designed to support a wide variety of applications, it provides a
flexible mechanism by which new applications can be developed without repeatedly re-
vising the RTP protocol itself. For each class of application (e.g., audio), RTP defines
a profile and one or more formats. The profile provides a range of information that en-
sures a common understanding of the fields in the RTP header for that application class,
as will be apparent when we examine the header in detail. The format specification ex-
plains how the data that follows the RTP header is to be interpreted. For example, the
RTP header might just be followed by a sequence of bytes, each of which represents a
single audio sample taken from a defined interval after the previous one. Alternatively,
the format of the data might be much more complex; an MPEG-encoded video stream,
for example, would need to have a good deal of structure to represent all the different
types of information.▲

The design of RTP embodies an architectural principle known as Application Level
Framing (ALF). This principle was put forward by Clark and Tennenhouse in 1990 as
a new way to design protocols for emerging multimedia applications. They recognized
that these new applications were unlikely to be well served by existing protocols such as
TCP, and that furthermore they might not be well served by any sort of “one-size-fits-all”
protocol. At the heart of this principle is the belief that an application understands its
own needs best. For example, an MPEG video application knows how best to recover
from lost frames, and how to react differently depending on what type of frame is lost.
The same application also understands best how to segment the data for transmission—
for example, it’s better to send the data from different frames in different datagrams,
so that a lost packet only corrupts a single frame, not two. It is for this reason that
RTP leaves so many of the protocol details to the profile and format documents that are
specific to an application.

Header Format

Figure 5.21 shows the header format used by RTP. The first 12 bytes are always present,
whereas the contributing source identifiers are only used in certain circumstances. Af-
ter this header there may be optional header extensions, as described below. Finally, the
header is followed by the RTP payload, the format of which is determined by the appli-
cation. The intention of this header is that it contain only the fields that are likely to be
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Figure 5.21 RTP header format.

used by many different applications, since anything that is very specific to a single appli-
cation would be more efficiently carried in the RTP payload for that application only.

The first two bits are a version identifier, which contains the value 2 in the RTP
version deployed at the time of writing. You might think that the designers of the proto-
col were rather bold to think that 2 bits would be enough to contain all future versions of
RTP, but recall that bits are at a premium in the RTP header. Furthermore, the use of pro-
files for different applications makes it less likely that many revisions to the base RTP pro-
tocol would be needed. In any case, if it turns out that another version of RTP is needed
beyond version 2, it would be possible to consider a change to the header format so that
more than one future version would be possible. For example, a new RTP header with the
value 3 in the version field could have a “subversion” field somewhere else in the header.

The next bit is the “padding” (P) bit, which is set in circumstances in which the
RTP payload has been padded for some reason. RTP data might be padded to fill up
a block of a certain size as required by an encryption algorithm, for example. In such a
case, the complete length of the RTP header, data, and padding would be conveyed by
the lower-layer protocol header (e.g., the UDP header) and the last byte of the padding
would contain a count of how many bytes should be ignored. This is illustrated in Fig-
ure 5.22. Note that this approach to padding removes any need for a length field in the
RTP header (thus serving the goal of keeping the header short); in the common case of
no padding, the length is deduced from the lower-layer protocol.

The extension (X) bit is used to indicate the presence of an extension header, which
would be defined for a specific application and follow the main header. Such headers are
rarely used, since it is generally possible to define a payload-specific header as part of the
payload format definition for a particular application.

The X bit is followed by a 4-bit field that counts the number of “contributing
sources,” if any are included in the header. Contributing sources are discussed below.
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Figure 5.22 Padding of an RTP packet.

We noted above the frequent need for some sort of frame indication; this is pro-
vided by the marker bit, which could be set at the beginning of a talkspurt, for example.
The 7-bit payload type field follows; it indicates what type of multimedia data is carried
in this packet. One possible use of this field would be to enable an application to switch
from one coding scheme to another based on information about resource availability in
the network or feedback on application quality. The exact usage of the marker bit and
the payload type is determined by the application profile.

Note that the payload type is generally not used as a demultiplexing key to di-
rect data to different applications (or to different streams within a single application; for
example, the audio and video stream for a videoconference). This is because such demul-
tiplexing is typically provided at a lower layer (e.g., by UDP, as described in Section 5.1).
Thus, two media streams using RTP would typically use different UDP port numbers.

The sequence number is used to enable the receiver of an RTP stream to detect
missing and misordered packets. The sender simply increments the value by one for
each transmitted packet. Note that RTP does not do anything when it detects a lost
packet, in contrast to TCP, which both corrects for the loss (by retransmission) and
interprets the loss as a congestion indication (which may cause it to reduce its window
size). Rather, it is left to the application to decide what to do when a packet is lost
because this decision is likely to be highly application-dependent. For example, a video
application might decide that the best thing to do when a packet is lost is to replay the
last frame that was correctly received. Some applications might also decide to modify
their coding algorithms to reduce bandwidth needs in response to loss, but this is not a
function of RTP. It would not be sensible for RTP to decide that the sending rate should
be reduced, as this might make the application useless.

The function of the timestamp field is to enable the receiver to play back samples
at the appropriate intervals and to enable different media streams to be synchronized.
Because different applications may require different granularities of timing, RTP itself
does not specify the units in which time is measured. Instead, the timestamp is just a
counter of “ticks,” where the time between ticks is dependent on the encoding in use.
For example, an audio application that samples data once every 125 µs could use that
value as its clock resolution. The clock granularity is one of the details that is specified
in the RTP profile or payload format for an application.
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The timestamp value in the packet is a number representing the time at which the
first sample in the packet was generated. The timestamp is not a reflection of the time of
day; only the differences between timestamps are relevant. For example, if the sampling
interval is 125 µs and the first sample in packet n + 1 was generated 10 ms after the first
sample in packet n, then the number of sampling instants between these two samples is

TimeBetweenPackets ÷ TimePerSample = (10 × 10−3) ÷ (125 × 10−6)

= 80

Assuming the clock granularity is the same as the sampling interval, then the timestamp
in packet n + 1 would be greater than that in packet n by 80. Note that fewer than 80
samples might have been sent due to compression techniques such as silence detection,
and yet the timestamp allows the receiver to play back the samples with the correct
temporal relationship.

The synchronization source (SSRC) is a 32-bit number that uniquely identifies a
single source of an RTP stream. In a given multimedia conference, each sender picks a
random SSRC and is expected to resolve conflicts in the unlikely event that two sources
pick the same value. By making the source identifier something other than the net-
work or transport address of the source, RTP ensures independence from the lower-layer
protocol. It also enables a single node with multiple sources (e.g., several cameras) to
distinguish those sources. When a single node generates different media streams (e.g.,
audio and video), it is not required to use the same SSRC in each stream, as there are
mechanisms in RTCP (described below) to allow intermedia synchronization.

The contributing source (CSRC) is used only when a number of RTP streams
pass through a “mixer.” A mixer can be used to reduce the bandwidth requirements for
a conference by receiving data from many sources and sending it as a single stream.
For example, the audio streams from several concurrent speakers could be decoded and
recoded as a single audio stream. In this case, the mixer lists itself as the synchronization
source but also lists the contributing sources—the SSRC values of the speakers who
contributed to the packet in question.

5.4.3 Control Protocol
RTCP provides a control stream that is associated with a data stream for a multimedia
application. This control stream provides three main functions:

1 Feedback on the performance of the application and the network;

2 A way to correlate and synchronize different media streams that have come from
the same sender;
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3 A way to convey the identity of a sender for display on a user interface (e.g., the
vat interface shown in Figure 5.19).

The first function may be useful for rate-adaptive applications, which may use
performance data to decide to use a more aggressive compression scheme to reduce con-
gestion, or to send a higher-quality stream when there is little congestion. It can also be
useful in diagnosing network problems.

You might think that the second function is already provided by the synchroniza-
tion source ID of RTP, but in fact it is not. As already noted, multiple cameras from a
single node might have different SSRC values. Furthermore, there is no requirement that
an audio and video stream from the same node use the same SSRC. Because collisions of
SSRC values may occur, it may be necessary to change the SSRC value of a stream. To
deal with this problem, RTCP uses the concept of a canonical name (CNAME) that is
assigned to a sender, which is then associated with the various SSRC values that might
be used by that sender using RTCP mechanisms.

Simply correlating two streams is only part of the problem of intermedia synchro-
nization. Because different streams may have completely different clocks (with different
granularities and even different amounts of inaccuracy or drift), there needs to be a way
to accurately synchronize streams with each other. RTCP addresses this problem.

RTCP defines a number of different packet types, including

■ Sender reports, which enable active senders to a session to report transmission
and reception statistics;

■ Receiver reports, which receivers who are not senders use to report reception
statistics;

■ Source descriptions, which carry CNAMEs and other sender description
information;

■ Application-specific control packets.

These different RTCP packet types are sent over the lower-layer protocol, which,
as we have noted, is typically UDP. Several RTCP packets can be packed into a single
PDU of the lower-level protocol. It is required that at least two RTCP packets are sent in
every lower-level PDU: One of these is a report packet; the other is a source description
packet. Other packets may be included up to the size limits imposed by the lower-layer
protocols.

Before looking closely at the contents of an RTCP packet, we note that there is
a potential problem with every member of a multicast group sending periodic control
traffic. Unless we take some steps to limit it, this control traffic has the potential to be a
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significant consumer of bandwidth. For example, in an audioconference, no more than
two or three senders are likely to send audio data at any instant, since there is no point
in everyone talking at once. But there is no such social limit on everyone sending control
traffic, and this could be a severe problem in a conference with thousands of participants.
To deal with this problem, RTCP has a set of mechanisms by which the participants scale
back their reporting frequency as the number of participants increases. These rules are
somewhat complex, but the basic goal is this: Limit the total amount of RTCP traffic
to a small percentage (typically 5%) of the RTP data traffic. To accomplish this goal,
the participants should know how much data bandwidth is likely to be in use (e.g., the
amount to send three audio streams) and the number of participants. They learn the
former from means outside RTP (known as session management, discussed at the end
of this section), and they learn the latter from the RTCP reports of other participants.
Because RTCP reports might be sent at a very low rate, it might only be possible to get an
approximate count of the current number of recipients, but that is typically sufficient.
Also, it is recommended to allocate more RTCP bandwidth to active senders, on the
assumption that most participants would like to see reports from them, for example, to
find out who is speaking.

Once a participant has determined how much bandwidth it can consume with
RTCP traffic, it sets about sending periodic reports at the appropriate rate. Sender reports
and receiver reports differ only in that the former include some extra information about
the sender. Both types of reports contain information about the data that was received
from all sources in the most recent reporting period.

The extra information in a sender report consists of

■ A timestamp containing the actual time of day when this report was generated;

■ The RTP timestamp corresponding to the time when the report was generated;

■ Cumulative counts of the packets and bytes sent by this sender since it began
transmission.

Note that the first two quantities can be used to enable synchronization of different
media streams from the same source, even if those streams use different clock granular-
ities in their RTP data streams, since it gives the key to convert time of day to the RTP
timestamps.

Both sender and receiver reports contain one block of data per source that has
been heard from since the last report. Each block contains the following statistics for the
source in question:

■ Its SSRC;
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■ The fraction of data packets from this source that were lost since the last re-
port was sent (calculated by comparing the number of packets received with the
number of packets expected; this last value can be determined from the RTP
sequence numbers);

■ Total number of packets lost from this source since the first time it was heard
from;

■ Highest sequence number received from this source (extended to 32 bits to
account for wrapping of the sequence number);

■ Estimated interarrival jitter for the source (calculated by comparing the inter-
arrival spacing of received packets with the expected spacing at transmission
time);

■ Last actual timestamp received via RTCP for this source;

■ Delay since last sender report received via RTCP for this source.

As you might imagine, the recipients of this information can learn all sorts of things
about the state of the session. In particular, they can see if other recipients are getting
much better quality from some sender than they are, which might be an indication
that a resource reservation needs to be made, or that there is a problem in the network
that needs to be attended to. In addition, if a sender notices that many receivers are
experiencing high loss of its packets, it might decide that it should reduce its sending
rate or use a coding scheme that is more resilient to loss.

The final aspect of RTCP that we will consider is the source description packet.
Such a packet contains, at a minimum, the SSRC of the sender and the sender’s CNAME.
The canonical name is derived in such a way that all applications that generate media
streams that might need to be synchronized (e.g., separately generated audio and video
streams from the same user) will choose the same CNAME even though they might
choose different SSRC values. This enables a receiver to identify the media stream that
came from the same sender. The most common format of the CNAME is user@host,
where host is the fully qualified domain name of the sending machine. Thus, an
application launched by the user whose user name is jdoe running on the machine
cicada.cs.princeton.edu would use the string jdoe@cicada.cs.princeton.edu
as its CNAME. The large and variable number of bytes used in this representation would
make it a bad choice for the format of an SSRC, since the SSRC is sent with every data
packet and must be processed in real time. Allowing CNAMEs to be bound to SSRC
values in periodic RTCP messages enables a compact and efficient format for the SSRC.
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Other items may be included in the source description packet, such as the real
name and email address of the user. These are used in user interface displays and to
contact participants, but are less essential to the operation of RTP than the CNAME.

5.5 Performance
Recall that Chapter 1 introduced the two quantitative metrics by which network per-
formance is evaluated: latency and throughput. As mentioned in that discussion, these
metrics are influenced not only by the underlying hardware (e.g., propagation delay and
link bandwidth) but also by software overheads. Now that we have a complete software-
based protocol graph available to us that includes alternative transport protocols, we can
discuss how to meaningfully measure its performance. The importance of such measure-
ments is that they represent the performance seen by application programs.

We begin, as any report of experimental results should, by describing our experi-
mental method. This includes the apparatus used in the experiments. We ran our experi-
ments on a pair of 733-MHz Pentium workstations connected by an isolated 100-Mbps
Ethernet. The Ethernet spanned a single machine room so propagation is not an issue,
making this a measure of processor/software overheads. Each workstation was running
the Linux operating system (2.4 kernel). A test program on running on top of the socket
interface ping-pongs (reflects) messages between the two machines. Figure 5.23 illustrates
one round-trip between the two test programs.

Figure 5.23 Measured system: Two Pentium workstations running Linux connected by

a 100-Mbps Ethernet.
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Message Size (Bytes) UDP TCP

1 58 66

100 76 84

200 93 104

300 111 124

400 132 136

500 150 159

600 167 176

700 184 194

800 203 210

900 223 228

1000 239 249

Table 5.3 Measured round-trip latencies (µs) for various message sizes and protocols.

You may notice that this experimental setup is rather far from bleeding edge in
terms of the hardware, link speed, and OS. The point of this section is not to show how
fast a particular protocol can run, but to illustrate the general methodology for measuring
and reporting protocol performance.

Each experiment involved running three identical instances of the same test. Each
test, in turn, involved sending a message of some specified size back and forth between
the two machines 10,000 times. The system’s clock was read at the beginning and end of
each test, and the difference between these two times was divided by 10,000 to determine
the time taken for each round-trip. The average of these three times (the three runs of the
test) is reported for each experiment below. Each experiment involved a different-sized
message. The latency numbers were for message sizes of 1 byte, 100 bytes, 200 bytes,
. . . , 1,000 bytes. The throughput results were for message sizes of 1 KB, 2 KB, 4 KB,
8 KB, . . . , 32 KB.

Table 5.3 gives the results of the latency test. As you would expect, latency in-
creases with message size. Although there are sometimes special cases where you might
be interested in the latency of, say, a 200-byte message, typically the most important
latency number is the 1-byte case. This is because the 1-byte case represents the over-
head involved in processing each message that does not depend on the amount of data
contained in the message. It is typically the lower bound on latency, representing factors
like the speed-of-light delay and the time taken to process headers. Note that there is
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Figure 5.24 Measured throughput using UDP for various message sizes.

a small difference between the latency experienced by the two different protocol stacks,
with UDP round-trip times a bit less than for TCP. This is to be expected since TCP
provides more functionality.

The results of the throughput test are given in Figure 5.24. Here, we show only
the results for UDP. The key thing to notice in this graph is that throughput improves
as the messages get larger. This makes sense—each message involves a certain amount
of overhead, so a larger message means that this overhead is amortized over more bytes.
The throughput curve flattens off above 16 KB, at which point the per-message overhead
becomes insignificant when compared to the large number of bytes that the protocol
stack has to process.

A second thing to notice is that the throughput curve tops out before reaching
100 Mbps. Although it can’t be deduced from these measurements, it turns out that the
factor preventing our system from running at the full Ethernet speed is a limitation of
the network adaptor rather than the software.

The main things to take away from this discussion are:

■ Experiments should be run a large number of times to minimize the effects of
random fluctuations (this is not just true for networking experiments);
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■ By running experiments on a wide range of packet sizes, you can identify the
fixed per-packet costs and the packet size-dependent costs;

■ Careful experimental design may be needed to identify performance bottle-
necks—in this simple experiment, we learned that the Ethernet link was not
the bottleneck, but could not identify the true bottleneck any more precisely.

5.6 Summary
This chapter has described four very different end-to-end protocols. The first protocol
we considered is a simple demultiplexer, as typified by UDP. All such a protocol does
is dispatch messages to the appropriate application process based on a port number. It
does not enhance the best-effort service model of the underlying network in any way, or
said another way, it offers an unreliable, connectionless datagram service to application
programs.

The second type is a reliable byte-stream protocol, and the specific example of
this type that we looked at is TCP. The challenges faced with such a protocol are to
recover from messages that may be lost by the network, to deliver messages in the same
order in which they are sent, and to allow the receiver to do flow control on the sender.
TCP uses the basic sliding window algorithm, enhanced with an advertised window, to
implement this functionality. The other item of note for this protocol is the importance
of an accurate timeout/retransmission mechanism. Interestingly, even though TCP is a
single protocol, we saw that it employs at least five different algorithms—sliding window,
Nagle, three-way handshake, Karn/Partridge, and Jacobson/Karels—all of which can be
of value to any end-to-end protocol.

The third type of transport protocol we looked at is request/reply protocols that
form the basis for RPC. Such protocols must dispatch requests to the correct remote
procedures, and match replies to the corresponding requests. They may additionally pro-
vide reliability, such as at-most-once semantics, or support large message sizes by message
fragmentation and reassembly.

Finally we looked at transport protocols for the emerging class of applications that
involve multimedia data (such as audio and video) and that have a requirement for “real-
time” delivery. Such a transport protocol needs to provide help with recovering the tim-
ing information of a single media stream and with synchronizing multiple media streams.
It also needs to provide information to upper layers (e.g., the application layer) about lost
data (since there will normally not be enough time to retransmit lost packets) so that ap-
propriate application-specific recovery methods can be employed. The protocol that has
been developed to meet these needs is RTP, which includes a companion control protocol
called RTCP.
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What should be clear after read-
ing this chapter is that transport pro-
tocol design is a tricky business. As
we have seen, getting a transport pro-
tocol right in the first place is hard
enough, but changing circumstances
make matters more complicated. The

O P E N I S S U E

Application-Specific
Protocols

challenge is finding ways to adapt to these changes.
Our experience with using the protocol can change. As we saw with TCP’s timeout

mechanism, experience led to a series of refinements in how TCP decides to retransmit a
segment. None of these changes affected the format of the TCP header, however, and so
they could be incorporated into TCP one implementation at a time. That is, there was
no need for everyone to upgrade their version of TCP on the same day.

The characteristics of the underlying network can also change. For many years,
TCP’s 32-bit sequence number and 16-bit advertised window were more than ade-
quate. However, higher-bandwidth networks mean that the sequence number is not
large enough to protect against wraparound, and the advertised window is too small
to allow the sender to fill the network pipe. While an obvious solution would have been
to redefine the TCP header to include a 64-bit sequence number field and a 32-bit adver-
tised window field, this would have introduced the very serious problem of how several
million Internet hosts would make the transition from the current header to this new
header. While such transitions have been performed on production networks, including
the telephone network, they are no trivial matter. It was decided, therefore, to implement
the necessary extensions as options and to allow hosts to negotiate with each other as to
whether or not they will use the options for each connection.

It is not clear that all problems can be solved with options, however. For starters,
the TCP header has room for only 44 bytes of options. (This is because the HdrLen
field is 4 bits long, meaning that the total TCP header length cannot exceed 16 × 32-bit
words, or 64 bytes.) Of course, a TCP option that extends the space available for options
is always a possibility, but you have to wonder how far it is worth going for the sake of
backward compatibility.

Perhaps the hardest changes to accommodate are the adaptations to the level of
service required by application programs. It is inevitable that some applications will have
a good reason for wanting a slight variation from the standard services. For example,
some applications want RPC most of the time, but occasionally want to be able to
send a stream of request messages without waiting for any of the replies. While this
is no longer technically the semantics of RPC, a common scenario is to modify an
existing RPC protocol to allow this flexibility. As another example, because video is a
stream-oriented application, one might be tempted to use TCP as the transport protocol.
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Unfortunately, TCP guarantees reliability by retransmission, which is not suitable for a
real-time application—it would be better to drop a frame than wait for it to be retrans-
mitted. Some designers suggested that TCP should support an option that effectively
turns off its reliability feature, at which point it is hard to call it TCP anymore. Ulti-
mately, the decision to make a new protocol—RTP—seemed the better choice.

How to develop transport protocols that can evolve to satisfy diverse applications,
many of which have not yet been imagined, is a hard problem. RTP took the approach of
leaving many details to be specified in application-specific profiles, following the Appli-
cation Layer Framing principles proposed in the early 1990s. This may prove sufficient
to allow the level of customization that evolving applications will require from the trans-
port layer.

F U R T H E R R E A D I N G
There is no doubt that TCP is a complex protocol and that in fact it has subtleties
not illuminated in this chapter. Therefore, the recommended reading list for this chapter
includes the original TCP specification. Our motivation for including this specification is
not so much to fill in the missing details, as to expose you to what an honest-to-goodness
protocol specification looks like. The next paper, by Birrell and Nelson, is the seminal
paper on RPC. Third, the paper by Clark and Tennenhouse on protocol architecture
introduced the concept of Application Layer Framing that inspired the design of RTP;
this paper provides considerable insight into the challenges of designing protocols as
application needs change.

■ USC-ISI. “Transmission Control Protocol.” Request for Comments 793, Septem-
ber 1981.

■ Birrell, A., and B. Nelson. “Implementing Remote Procedure Calls.” ACM
Transactions on Computer Systems 2(1):39–59, February 1984.

■ Clark, D., and D. Tennenhouse. “Architectural Considerations for a New Gen-
eration of Protocols.” Proceedings of the SIGCOMM ’90 Symposium, pp. 200–
208, September 1990.

Beyond the protocol specification, the most complete description of TCP, includ-
ing its implementation in Unix, can be found in Stevens [Ste94b,SW95]. Also, the
third volume of Comer and Stevens’ TCP/IP series of books describes how to write
client/server applications on top of TCP and UDP, using the Posix socket interface
[CS00], the Windows socket interface [CS97], and the BSD socket interface [CS96].
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Several papers evaluate the performance of different transport protocols at a very
detailed level. For example, the article by Clark et al. [CJRS89] measures the process-
ing overheads of TCP, a paper by Mosberger et al. [MPBO96] explores the limitations
of protocol processing overheads, and Thekkath and Levy [TL93] and Schroeder and
Burrows [SB89] examine RPC’s performance in great detail.

The original TCP timeout calculation was described in the TCP specification (see
above), while the Karn/Partridge algorithm was described in [KP91] and the Jacob-
son/Karels algorithm was proposed in [Jac88]. The TCP extensions are defined by Ja-
cobson et al. [JBB92], while O’Malley and Peterson [OP91] argue that extending TCP
in this way is not the right approach to solving the problem.

Several distributed operating systems have defined their own RPC protocols. No-
table examples include the V system, described by Cheriton and Zwaenepoel [CZ85];
Sprite, described by Ousterhout et al. [OCD+88]; and Amoeba, described by Mullender
[Mul90].

RTP is described in RFC 3550 [SCFJ03], and there are numerous other RFCs
(such as RFC 3551 [SC03]) that describe the profiles of various applications that use
RTP. McCanne and Jacobson [MJ95] describe vic, one of the applications to use RTP.

E X E R C I S E S
1 If a UDP datagram is sent from host A, port P, to host B, port Q, but at host

B there is no process listening to port Q, then B is to send back an ICMP Port
Unreachable message to A. Like all ICMP messages, this is addressed to A as a
whole, not to port P on A.

(a) Give an example of when an application might want to receive such ICMP
messages.

(b) Find out what an application has to do, on the operating system of your
choice, to receive such messages.

(c) Why might it not be a good idea to send such messages directly back to the
originating port P on A?

2 Consider a simple UDP-based protocol for requesting files (based somewhat
loosely on the Trivial File Transport Protocol, TFTP). The client sends an ini-
tial file request, and the server answers (if the file can be sent) with the first
data packet. Client and server then continue with a stop-and-wait transmission
mechanism.
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(a) Describe a scenario by which a client might request one file but get another;
you may allow the client application to exit abruptly and be restarted with
the same port.

(b) Propose a change in the protocol that will make this situation much less
likely.

3 Design a simple UDP-based protocol for retrieving files from a server. No au-
thentication is to be provided. Stop-and-wait transmission of the data may be
used. Your protocol should address the following issues:

(a) Duplication of the first packet should not duplicate the “connection.”

(b) Loss of the final ACK should not necessarily leave the server in doubt as to
whether the transfer succeeded.

(c) A late-arriving packet from a past connection shouldn’t be interpretable as
part of a current connection.

4 This chapter explains three sequences of state transitions during TCP connec-
tion teardown. There is a fourth possible sequence, which traverses an addi-
tional arc (not shown in Figure 5.7) from FIN_WAIT_1 to TIME_WAIT and
labeled FIN + ACK/ACK. Explain the circumstances that result in this fourth
teardown sequence.

5 When closing a TCP connection, why is the two-segment-lifetime timeout not
necessary on the transition from LAST_ACK to CLOSED?

6 A sender on a TCP connection that receives a 0 advertised window periodically
probes the receiver to discover when the window becomes nonzero. Why would
the receiver need an extra timer if it were responsible for reporting that its
advertised window had become nonzero (i.e., if the sender did not probe)?

7 Read the man page (or Windows equivalent) for the Unix/Windows utility
netstat. Use netstat to see the state of the local TCP connections. Find out
how long closing connections spend in TIME_WAIT.

8 The sequence number field in the TCP header is 32 bits long, which is big
enough to cover over 4 billion bytes of data. Even if this many bytes were never
transferred over a single connection, why might the sequence number still wrap
around from 232 − 1 to 0?
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9 You are hired to design a reliable byte-stream protocol that uses a sliding win-
dow (like TCP). This protocol will run over a 100-Mbps network. The RTT
of the network is 100 ms, and the maximum segment lifetime is 60 seconds.

(a) How many bits would you include in the AdvertisedWindow and
SequenceNum fields of your protocol header?

(b) How would you determine the numbers given above, and which values
might be less certain?

✓ 10 You are hired to design a reliable byte-stream protocol that uses a sliding win-
dow (like TCP). This protocol will run over a 1-Gbps network. The RTT of
the network is 140 ms, and the maximum segment lifetime is 60 seconds. How
many bits would you include in the AdvertisedWindow and Sequen-
ceNum fields of your protocol header?

11 Suppose a host wants to establish the reliability of a link by sending packets
and measuring the percentage that are received; routers, for example, do this.
Explain the difficulty doing this over a TCP connection.

12 Suppose TCP operates over a 1-Gbps link.

(a) Assuming TCP could utilize the full bandwidth continuously, how long
would it take the sequence numbers to wrap around completely?

(b) Suppose an added 32-bit timestamp field increments 1,000 times during
the wraparound time you found above. How long would it take for the
timestamp to wrap around?

✓ 13 Suppose TCP operates over a 40-Gbps STS-768 link.

(a) Assuming TCP could utilize the full bandwidth continuously, how long
would it take the sequence numbers to wrap around completely?

(b) Suppose an added 32-bit timestamp field increments 1,000 times during
the wraparound time you found above. How long would it take for the
timestamp to wrap around?

14 If host A receives two SYN packets from the same port from remote host B, the
second may be either a retransmission of the original or else, if B has crashed
and rebooted, an entirely new connection request.
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(a) Describe the difference as seen by host A between these two cases.

(b) Give an algorithmic description of what the TCP layer needs to do upon
receiving a SYN packet. Consider the duplicate/new cases above, and the
possibility that nothing is listening to the destination port.

15 Suppose x and y are two TCP sequence numbers. Write a function to deter-
mine whether x comes before y (in the notation of Request for Comments 793,
“x =< y”) or after y; your solution should work even when sequence numbers
wrap around.

16 Suppose an idle TCP connection exists between sockets A and B. A third party
has eavesdropped and knows the current sequence number at both ends.

(a) Suppose the third party sends A a forged packet ostensibly from B and
with 100 bytes of new data. What happens? (Hint: Look up in Request
for Comments 793 what TCP does when it receives an ACK that is not an
“acceptable ACK.”)

(b) Suppose the third party sends each end such a forged 100-byte data packet
ostensibly from the other end. What happens now? What would happen if
A later sent 200 bytes of data to B?

17 Suppose party A connects to the Internet via a dial-up IP server (e.g., using
SLIP or PPP), has several open Telnet connections (using TCP), and is cut
off. Party B then dials in and is assigned the same IP address that A had had.
Assuming B were able to guess to what host(s) A had been connected, describe
a sequence of probes that could enable B to obtain sufficient state information
to continue with A’s connections.

18 Diagnostic programs are commonly available that record the first 100 bytes,
say, of every TCP connection to a certain 〈host, port〉. Outline what must be
done with each received TCP packet, P, in order to determine if it contains
data that belongs to the first 100 bytes of a connection to host HOST, port
PORT. Assume the IP header is P.IPHEAD, the TCP header is P.TCPHEAD,
and header fields are as named in Figures 4.3 and 5.4. (Hint: To get initial
sequence numbers (ISNs) you will have to examine every packet with the SYN
bit set. Ignore the fact that sequence numbers will eventually be reused.)

19 If a packet arrives at host A with B’s source address, it could just as easily have
been forged by any third host C. If, however, A accepts a TCP connection
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from B, then during the three-way handshake A sent ISNA to B’s address and
received an acknowledgment of it. If C is not located so as to be able to eaves-
drop on ISNA, then it might seem that C could not have forged B’s response.

However, the algorithm for choosing ISNA does give other unrelated
hosts a fair chance of guessing it. Specifically, A selects ISNA based on a
clock value at the time of connection. Request for Comments 793 specifies that
this clock value be incremented every 4 µs; common Berkeley implementa-
tions once simplified this to incrementing by 250,000 (or 256,000) once per
second.

(a) Given this simplified increment-once-per-second implementation, explain
how an arbitrary host C could masquerade as B in at least the opening of a
TCP connection. You may assume that B does not respond to SYN+ACK
packets A is tricked into sending to it.

(b) Assuming real RTTs can be estimated to within 40 ms, about how many
tries would you expect it to take to implement the strategy of part (a) with
the unsimplified “increment every 4 µs” TCP implementation?

20 The Nagle algorithm, built into most TCP implementations, requires the
sender to hold a partial segment’s worth of data (even if PUSHed) until ei-
ther a full segment accumulates or the most recent outstanding ACK arrives.

(a) Suppose the letters abcdefghi are sent, one per second, over a TCP con-
nection with an RTT of 4.1 seconds. Draw a timeline indicating when each
packet is sent and what it contains.

(b) If the above were typed over a full-duplex Telnet connection, what would
the user see?

(c) Suppose that mouse position changes are being sent over the connection.
Assuming that multiple position changes are sent each RTT, how would a
user perceive the mouse motion with and without the Nagle algorithm?

21 Suppose a client C repeatedly connects via TCP to a given port on a server S,
and that each time it is C that initiates the close.

(a) How many TCP connections a second can C make here before it ties up
all its available ports in TIME_WAIT state? Assume client ephemeral ports
are in the range 1024–5119, and that TIME_WAIT lasts 60 seconds.
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(b) Berkeley-derived TCP implementations typically allow a socket in
TIME_WAIT state to be reopened before TIME_WAIT expires, if the
highest sequence number used by the old incarnation of the connection
is less than the ISN used by the new incarnation. This solves the prob-
lem of old data accepted as new; however, TIME_WAIT also serves the
purpose of handling late final FINs. What would such an implementa-
tion have to do to address this and still achieve strict compliance with the
TCP requirement that a FIN sent anytime before or during a connection’s
TIME_WAIT receive the same response?

22 Explain why TIME_WAIT is a somewhat more serious problem if the server
initiates the close than if the client does. Describe a situation in which this
might reasonably happen.

23 What is the justification for the exponential increase in timeout value proposed
by Karn and Partridge? Why, specifically, might a linear (or slower) increase be
less desirable?

★ 24 The Jacobson/Karels algorithm sets TimeOut to be 4 mean deviations above
the mean. Assume that individual packet round-trip times follow a statistical
normal distribution, for which 4 mean deviations are π standard deviations.
Using statistical tables, for example, what is the probability that a packet will
take more than TimeOut time to arrive?

25 Suppose a TCP connection, with window size 1, loses every other packet.
Those that do arrive have RTT = 1 second. What happens? What happens
to TimeOut? Do this for two cases:

(a) After a packet is eventually received, we pick up where we left off, resuming
with EstimatedRTT initialized to its pretimeout value, and TimeOut
double that.

(b) After a packet is eventually received, we resume with TimeOut initialized
to the last exponentially backed-off value used for the timeout interval.

In the following four exercises, the calculations involved are straightforward
with a spreadsheet.

26 Suppose, in TCP’s adaptive retransmission mechanism, that EstimatedRTT
is 4.0 at some point and subsequent measured RTTs all are 1.0. How long
does it take before the TimeOut value, as calculated by the Jacobson/Karels
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algorithm, falls below 4.0? Assume a plausible initial value of Deviation; how
sensitive is your answer to this choice? Use δ = 1/8.

✓ 27 Suppose, in TCP’s adaptive retransmission mechanism, that EstimatedRTT
is 90 at some point and subsequent measured RTTs all are 200. How long
does it take before the TimeOut value, as calculated by the Jacobson/Karels
algorithm, falls below 300? Assume initial Deviation value of 25; use δ = 1/8.

28 Suppose TCP’s measured RTT is 1.0 except that every N th RTT is 4.0. What
is the largest N , approximately, that doesn’t result in timeouts in the steady
state (i.e., for which the Jacobson/Karels TimeOut remains greater than 4.0)?
Use δ = 1/8.

29 Suppose that TCP is measuring RTTs of 1.0 second, with a mean deviation
of 0.1 second. Suddenly the RTT jumps to 5.0 seconds, with no deviation.
Compare the behaviors of the original and Jacobson/Karels algorithms for com-
puting TimeOut. Specifically, how many timeouts are encountered with each
algorithm? What is the largest TimeOut calculated? Use δ = 1/8.

30 Suppose that, when a TCP segment is sent more than once, we take
SampleRTT to be the time between the original transmission and the
ACK, as in Figure 5.10(a). Show that if a connection with a 1-packet win-
dow loses every other packet (i.e., each packet is transmitted twice), then
EstimatedRTT increases to infinity. Assume TimeOut = EstimatedRTT;
both algorithms presented in the text always set TimeOut even larger.
(Hint: EstimatedRTT = EstimatedRTT + β × (SampleRTT
− EstimatedRTT).)

31 Suppose that, when a TCP segment is sent more than once, we take Sam-
pleRTT to be the time between the most recent transmission and the
ACK, as in Figure 5.10(b). Assume, for definiteness, that TimeOut = 2 ×
EstimatedRTT. Sketch a scenario in which no packets are lost but Estimat-
edRTT converges to a third of the true RTT, and give a diagram illustrating
the final steady state. (Hint: Begin with a sudden jump in the true RTT to just
over the established TimeOut.)

32 Consult Request for Comments 793 to find out how TCP is supposed to respond
if a FIN or an RST arrives with a sequence number other than NextByte-
Expected. Consider both when the sequence number is within the receive
window and when it is not.
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33 One of the purposes of TIME_WAIT is to handle the case of a data packet
from a first incarnation of a connection arriving very late and being accepted
as data for the second incarnation.

(a) Explain why, for this to happen (in the absence of TIME_WAIT), the
hosts involved would have to exchange several packets in sequence after
the delayed packet was sent but before it was delivered.

(b) Propose a network scenario that might account for such a late delivery.

34 Propose an extension to TCP by which one end of a connection can hand off
its end to a third host; that is, if A were connected to B, and A handed off
its connection to C, then afterwards C would be connected to B and A would
not. Specify the new states and transitions needed in the TCP state-transition
diagram, and any new packet types involved. You may assume all parties will
understand this new option. What state should A go into immediately after the
handoff?

35 TCP’s simultaneous open feature is seldom used.

(a) Propose a change to TCP in which this is disallowed. Indicate what changes
would be made in the state diagram (and if necessary in the undiagrammed
event responses).

(b) Could TCP reasonably disallow simultaneous close?

(c) Propose a change to TCP in which simultaneous SYNs exchanged by two
hosts lead to two separate connections. Indicate what state diagram changes
this entails, and also what header changes become necessary. Note that
this now means that more than one connection can exist over a given pair
of 〈host,port〉s. (You might also look up the first Discussion item on
page 87 of Request for Comments 1122.)

36 TCP is a very symmetric protocol, but the client/server model is not. Consider
an asymmetric TCP-like protocol in which only the server side is assigned a
port number visible to the application layers. Client-side sockets would simply
be abstractions that can be connected to server ports.

(a) Propose header data and connection semantics to support this. What will
you use to replace the client port number?
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(b) What form does TIME_WAIT now take? How would this be seen
through the programming interface? Assume that a client socket could
now be reconnected arbitrarily many times to a given server port, resources
permitting.

(c) Look up the rsh/rlogin protocol. How would the above break this?

37 The following exercise is concerned with the TCP state FIN_WAIT_2 (see
Figure 5.7).

(a) Describe how a client might leave a suitable server in state FIN_WAIT_2
indefinitely. What feature of the server’s protocol is necessary here for this
scenario?

(b) Try this with some appropriate existing server. Either write a stub client,
or use an existing Telnet client capable of connecting to an arbitrary port.
Use the netstat utility to verify that the server is in FIN_WAIT_2 state.

38 Request for Comments 1122 states (of TCP):

A host MAY implement a “half-duplex” TCP close sequence, so that an application
that has called CLOSE cannot continue to read data from the connection. If such
a host issues a CLOSE call while received data is still pending in TCP, or if new
data is received after CLOSE is called, its TCP SHOULD send an RST to show
that data was lost.

Sketch a scenario involving the above in which data sent by (not to!) the closing
host is lost. You may assume that the remote host, upon receiving an RST,
discards all received data still unread in buffers.

39 When TCP sends a 〈SYN,SequenceNum = x〉 or 〈FIN,SequenceNum
= x〉, the consequent ACK has Acknowledgment = x + 1, that is, SYNs
and FINs each take up one unit in sequence number space. Is this necessary?
If so, give an example of an ambiguity that would arise if the corresponding
Acknowledgment were x instead of x + 1; if not, explain why.

40 Find out the generic format for TCP header options from Request for Comments
793.

(a) Outline a strategy that would expand the space available for options beyond
the current limit of 44 bytes.

(b) Suggest an extension to TCP allowing the sender of an option a way of
specifying what the receiver should do if the option is not understood.
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List several such receiver actions that might be useful, and try to give an
example application of each.

41 The TCP header does not have a boot ID field. Why isn’t there a problem with
one end of a TCP connection crashing and rebooting, then sending a message
with an ID it had previously used?

42 Suppose we were to implement remote file system mounting using an unre-
liable RPC protocol that offers zero-or-more semantics. If a message reply is
received, this improves to at-least-once semantics. We define read(n) to re-
turn the specified nth block, rather than the next block in sequence; this way
reading once is the same as reading twice and at-least-once semantics is thus
the same as exactly once.

(a) For what other file system operations is there no difference between at-
least-once and exactly once semantics? Consider open, create, write,
seek, opendir, readdir, mkdir, delete (a.k.a. unlink), and rmdir.

(b) For the remaining operations, which can have their semantics altered to
achieve equivalence of at-least-once and exactly once? What file system op-
erations are irreconcilable with at-least-once semantics?

(c) Suppose the semantics of the rmdir system call are changed such that the
given directory is removed if it exists, and nothing is done otherwise. How
could you write a program to delete directories that distinguishes between
these two cases?

43 The RPC-based “NFS” remote file system is sometimes considered to have
slower than expected write performance. In NFS, a server’s RPC reply to a
client write request means that the data is physically written to the server’s
disk, not just placed in a queue.

(a) Explain the bottleneck we might expect, even with infinite bandwidth, if
the client sends all its write requests through a single logical channel, and
explain why using a pool of channels could help. (Hint: You will need to
know a little about disk controllers.)

(b) Suppose the server’s reply means only that the data has been placed in the
disk queue. Explain how this could lead to data loss that wouldn’t occur
with a local disk. Note that a system crash immediately after data was en-
queued doesn’t count, because that would cause data loss on a local disk as
well.
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(c) An alternative would be for the server to respond immediately to acknowl-
edge the write request, and to send its own separate request later to con-
firm the physical write. Propose different RPC semantics to achieve the
same effect, but with a single logical request and reply.

44 Consider a client and server using an RPC mechanism that includes a channel
abstraction and boot IDs.

(a) Give a scenario involving server reboot in which an RPC request is sent
twice by the client and is executed twice by the server, with only a single
ACK.

(b) How might the client become aware this had happened? Would the client
be sure it had happened?

45 Suppose an RPC request is of the form “Increment the value of field X of disk
block N by 10%.” Specify a mechanism to be used by the executing server to
guarantee that an arriving request is executed exactly once, even if the server
crashes while in the middle of the operation. Assume that individual disk block
writes are either complete or else the block is unchanged. You may also assume
that some designated “undo log” blocks are available. Your mechanism should
include how the RPC server is to behave at restart.

46 Consider a SunRPC client sending a request to a server.

(a) Under what circumstances can the client be sure its request has executed
exactly once?

(b) Suppose we wished to add at-most-once semantics to SunRPC. What
changes would have to be made? Explain why adding one or more fields to
the existing headers would not be sufficient.

47 Suppose TCP were to be used as the underlying transport in an RPC protocol;
each TCP connection is to carry a sequential stream of requests and replies.
What analog, if any, would TCP have for:

(a) Channel ID.

(b) Message ID.

(c) Boot ID.
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(d) A message type for requests.

(e) A message type for replies.

(f ) A message type for acknowledgments.

(g) A message type for are-you-alive? messages.

Which of these would the overlying RPC protocol have to provide? Would
some analog of implicit acknowledgments exist?

48 Write a test program that uses the socket interface to send messages between
a pair of Unix workstations connected by some LAN (e.g., Ethernet, ATM, or
FDDI). Use this test program to perform the following experiments.

(a) Measure the round-trip latency of TCP and UDP for different message
sizes (e.g., 1 byte, 100 bytes, 200 bytes, . . . , 1,000 bytes).

(b) Measure the throughput of TCP and UDP for 1-KB, 2-KB, 3-KB, . . . ,
32-KB messages. Plot the measured throughput as a function of message
size.

(c) Measure the throughput of TCP by sending 1 MB of data from one host to
another. Do this in a loop that sends a message of some size; for example,
1,024 iterations of a loop that sends 1-KB messages. Repeat the experiment
with different message sizes and plot the results.

49 Try to find situations where an RTP application might reasonably do the
following:

■ Send multiple packets at essentially the same time that need different
timestamps.

■ Send packets at different times that need the same timestamp.

Argue, in consequence, that RTP timestamps must, in at least some cases, be
provided (at least indirectly) by the application. (Hint: Think of cases where
the sending rate and playback rate might not match.)

50 Having the timestamp clock count time in units of one frame time or one voice
sample time would be the minimum resolution to ensure accurate playback.
But the time unit is usually considerably smaller; what is the purpose of this?



Exercises 455

51 Suppose we want returning RTCP reports from receivers to amount to no
more than 5% of the outgoing primary RTP stream. If each report is 84 bytes,
and the RTP traffic is 20 KBps, and there are 1,000 recipients, how often do
individual receivers get to report? What if there are 10,000 recipients?

52 RFC 3550 specifies that the time interval between receiver RTCP reports in-
clude a randomization factor to avoid having all the receivers send at the same
time. If all the receivers sent in the same 5% subinterval of their reply time
interval, the arriving upstream RTCP traffic would rival the downstream RTP
traffic.

(a) Video receivers might reasonably wait to send their reports until the higher-
priority task of processing and displaying one frame is completed; this
might mean their RTCP transmissions were synchronized on frame bound-
aries. Is this likely to be a serious concern?

(b) With 10 receivers, what is the probability of their all sending in one par-
ticular 5% subinterval?

(c) With 10 receivers, what is the probability half will send in one particular
5% subinterval? Multiply this by 20 for an estimate of the probability half
will all send in the same arbitrary 5% subinterval. (Hint: How many ways
can we choose 5 receivers out of 10?)

53 What might a server actually do with the packet-loss-rate data and jitter data
in receiver reports?

54 Video applications typically run over UDP rather than TCP because they can-
not tolerate retransmission delays. However, this means video applications are
not constrained by TCP’s congestion control algorithm. What impact does this
have on TCP traffic? Be specific about the consequences.

Fortunately, these video applications often use RTP, which results in
RTCP “receiver reports” being sent from the sink back to the source. These
reports are sent periodically (e.g., once a second) and include the percentage
of packets successfully received in the last reporting period. Describe how the
source might use this information to adjust its rate in a TCP-compatible way.

55 Propose a mechanism for deciding when to report an RTP packet as lost. How
does your mechanism compare with the TCP adaptive retransmission mecha-
nisms of Section 5.2.6?



Congestion Control

and Resource

Allocation

The hand that hath made you fair hath made you good.

—William Shakespeare

y now we have seen enough layers of the network protocol hierarchy to under-Bstand how data can be transferred among processes across heterogeneous net-
works. We now turn to a problem that spans the entire protocol stack—how

to effectively and fairly allocate resources among a collection of competing users. The
resources being shared include the bandwidth of the links and the buffers on the routers
or switches where packets are queued awaiting transmission. Packets contend at a router
for the use of a link, with each contending packet placed in a queue waiting its turn to be
transmitted over the link. When too many packets are contending for the same link, the

P R O B L E M

Allocating Resources

queue overflows and packets have to
be dropped. When such drops become
common events, the network is said
to be congested. Most networks pro-
vide a congestion-control mechanism
to deal with just such a situation.

Congestion control and resource allocation are two sides of the same coin. On
the one hand, if the network takes an active role in allocating resources—for exam-
ple, scheduling which virtual circuit gets to use a given physical link during a certain
period of time—then congestion may be avoided, thereby making congestion control
unnecessary. Allocating network resources with any precision is difficult, however, be-
cause the resources in question are distributed throughout the network; multiple links
connecting a series of routers need to be scheduled. On the other hand, you can always
let packet sources send as much data as they want, and then recover from congestion
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should it occur. This is the easier approach, but it can be dis-
ruptive because many packets may be discarded by the network
before congestion can be controlled. Furthermore, it is precisely
at those times when the network is congested—that is, resources
have become scarce relative to demand—that the need for re-
source allocation among competing users is most keenly felt.
There are also solutions in the middle, whereby inexact allo-
cation decisions are made, but congestion can still occur and
hence some mechanism is still needed to recover from it. Whether
you call such a mixed solution congestion control or resource
allocation does not really matter. In some sense, it is both.

Congestion control and resource allocation involve both
hosts and network elements such as routers. In network ele-
ments, various queuing disciplines can be used to control the
order in which packets get transmitted and which packets get
dropped. The queuing discipline can also segregate traffic; that
is, to keep one user’s packets from unduly affecting another
user’s packets. At the end hosts, the congestion-control mecha-
nism paces how fast sources are allowed to send packets. This
is done in an effort to keep congestion from occurring in the
first place, and should it occur, to help eliminate the congestion.

This chapter starts with an overview of congestion control
and resource allocation. We then discuss different queuing dis-
ciplines that can be implemented on the routers inside the net-
work, followed by a description of the congestion control algo-
rithm provided by TCP on the hosts. The fourth section explores
various techniques involving both routers and hosts that aim to
avoid congestion before it becomes a problem. Finally, we exam-
ine the broad area of quality of service. We consider the needs
of applications to receive different levels of resource allocation in
the network, and describe a number of ways in which they can
request these resources and the network can meet the requests.
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6.1 Issues in Resource Allocation
Resource allocation and congestion control are complex issues and have been the subject
of much study ever since the first network was designed. They are still active areas of
research. One factor that makes these issues complex is that they are not isolated to one
single level of a protocol hierarchy. Resource allocation is partially implemented in the
routers or switches inside the network and partially in the transport protocol running on
the end hosts. End systems use signalling protocols to convey their resource requirements
to network nodes, which respond with information about resource availability. One of
the main goals of this chapter is to define a framework in which these mechanisms can
be understood, as well as to give the relevant details about a representative sample of
mechanisms.

We should clarify our terminology before going any further. By “resource allo-
cation,” we mean the process by which network elements try to meet the competing
demands that applications have for network resources—primarily link bandwidth and
buffer space in routers or switches. Of course, it will often not be possible to meet all the
demands, meaning that some users or applications may receive fewer network resources
than they want. Part of the resource allocation problem is deciding when to say no, and
to whom.

We use the term “congestion control” to describe the efforts made by network
nodes to prevent or respond to overload conditions. Since congestion is generally bad
for everyone, the first order of business is making congestion subside, or preventing
it in the first place. This might be achieved simply by persuading a few hosts to stop
sending, thus improving the situation for everyone else. However, it is more common
for congestion-control mechanisms to have some notion of fairness—that is, they try to
share the pain among all users, rather than causing great pain to a few. Thus, we see that
many congestion-control mechanisms will have a notion of resource allocation built into
them.

It is also important to understand the difference between flow control and conges-
tion control. Flow control, as we have seen in Section 2.5, involves keeping a fast sender
from overrunning a slow receiver. Congestion control, by contrast, is intended to keep a
set of senders from sending too much data into the network because of lack of resources at
some point. These two concepts are often confused; as we will see, they also share some
mechanisms.

6.1.1 Network Model
We begin by defining three salient features of the network architecture. For the most
part, this is a summary of material presented in the previous chapters that is relevant to
the problem of resource allocation.
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Figure 6.1 A potential bottleneck router.

Packet-Switched Network

We consider resource allocation in a packet-switched network (or internet) consisting of
multiple links and switches (or routers). Since most of the mechanisms described in this
chapter were designed for use on the Internet, and therefore were originally defined in
terms of routers rather than switches, we use the term “router” throughout our discus-
sion. The problem is essentially the same, whether on a network or an internetwork.

In such an environment, a given source may have more than enough capacity on
the immediate outgoing link to send a packet, but somewhere in the middle of a net-
work, its packets encounter a link that is being used by many different traffic sources.
Figure 6.1 illustrates this situation—two high-speed links are feeding a low-speed link.
This is in contrast to shared-access networks like Ethernet and token rings, where the
source can directly observe the traffic on the network and decide accordingly whether or
not to send a packet. We have already seen the algorithms used to allocate bandwidth on
shared-access networks (Chapter 2). These access-control algorithms are, in some sense,
analogous to congestion-control algorithms in a switched network.▲

Note that congestion control is not the same as routing. While it is true that a
congested link could be assigned a large edge weight by the route propagation protocol,
and as a consequence, routers would route around it, “routing around” a congested link
does not solve the congestion problem. To see this, we need look no further than the
simple network depicted in Figure 6.1, where all traffic has to flow through the same
router to reach the destination. Although this is an extreme example, it is common to
have a certain router that it is not possible to route around.1 This router can become
congested, and there is nothing the routing mechanism can do about it. This congested
router is sometimes called the bottleneck router.

1It is also worth noting that the complexity of routing in the Internet is such that simply obtaining a reasonably direct,
loop-free route is about the best you can hope for. Routing around congestion would be considered icing on the cake.
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Connectionless Flows
For much of our discussion, we assume that the network is essentially connectionless,
with any connection-oriented service implemented in the transport protocol that is run-
ning on the end hosts. (We explain the qualification “essentially” in a moment.) This is
precisely the model of the Internet, where IP provides a connectionless datagram deliv-
ery service and TCP implements an end-to-end connection abstraction. Note that this
assumption excludes early networks like X.25, in which a virtual circuit abstraction is
maintained across a set of routers (see Section 3.1.2). In such networks, a connection
setup message traverses the network when a circuit is established. This setup message
reserves a set of buffers for the connection at each router, thereby providing a form of
congestion control—a connection is established only if enough buffers can be allocated
to it at each router. The major shortcoming of this approach is that it leads to an under-
utilization of resources—buffers reserved for a particular circuit are not available for use
by other traffic even if they were not currently being used by that circuit. The focus of
this chapter is on resource allocation approaches that apply in an internetwork, and thus
we focus mainly on connectionless networks.

We need to qualify the term “connectionless” because our classification of networks
as being either connectionless or connection-oriented is a bit too restrictive; there is a gray
area in between. In particular, the assumption that all datagrams are completely inde-
pendent in a connectionless network is too strong. The datagrams are certainly switched
independently, but it is usually the case that a stream of datagrams between a particular
pair of hosts flows through a particular set of routers. This idea of a flow—a sequence of
packets sent between a source/destination pair and following the same route through the
network—is an important abstraction in the context of resource allocation; it is one that
we will use in this chapter.

One of the powers of the flow abstraction is that flows can be defined at dif-
ferent granularities. For example, a flow can be host-to-host (i.e., have the same
source/destination host addresses) or process-to-process (i.e., have the same source/
destination host/port pairs). In the latter case, a flow is essentially the same as a chan-
nel, as we have been using that term throughout this book. The reason we introduce a
new term is that a flow is visible to the routers inside the network, whereas a channel is
an end-to-end abstraction. Figure 6.2 illustrates several flows passing through a series of
routers.

Because multiple related packets flow through each router, it sometimes makes
sense to maintain some state information for each flow, information that can be used to
make resource allocation decisions about the packets that belong to the flow. This state
is sometimes called soft state; the main difference between soft state and “hard” state is
that soft state need not always be explicitly created and removed by signalling. Soft state
represents a middle ground between a purely connectionless network that maintains no
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Figure 6.2 Multiple flows passing through a set of routers.

state at the routers and a purely connection-oriented network that maintains hard state
at the routers. In general, the correct operation of the network does not depend on soft
state being present (each packet is still routed correctly without regard to this state), but
when a packet happens to belong to a flow for which the router is currently maintaining
soft state, then the router is better able to handle the packet.

Note that a flow can be either implicitly defined or explicitly established. In the
former case, each router watches for packets that happen to be traveling between the same
source/destination pair—the router does this by inspecting the addresses in the header—
and treats these packets as belonging to the same flow for the purpose of congestion
control. In the latter case, the source sends a flow setup message across the network,
declaring that a flow of packets is about to start. While explicit flows are arguably no
different than a connection across a connection-oriented network, we call attention to
this case because even when explicitly established, a flow does not imply any end-to-
end semantics, and in particular, it does not imply the reliable and ordered delivery of a
virtual circuit. It simply exists for the purpose of resource allocation. We will see examples
of both implicit and explicit flows in this chapter.

Service Model

In the early part of this chapter, we will focus on mechanisms that assume the best-effort
service model of the Internet. With best-effort service, each packet is treated in exactly
the same way, with end hosts given no opportunity to ask the network that one of their
flows be given certain guarantees. Defining a service model that supports some kind of
guarantee—for example, guaranteeing the bandwidth needed for a video stream—is the
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subject of Section 6.5. Such a service model is said to provide multiple qualities of service
(QoS). As we will see, there is actually a spectrum of possibilities, ranging from a purely
best-effort service model to one in which individual flows receive quantitative guarantees
of QoS. One of the greatest challenges is to define a service model that meets the needs
of a wide range of applications and even allows for the applications that will be invented
in the future.

6.1.2 Taxonomy
There are countless ways in which resource allocation mechanisms differ, making a thor-
ough taxonomy a difficult proposition. For now, we describe three dimensions along
which resource allocation mechanisms can be characterized; more subtle distinctions will
be called out during the course of this chapter.

Router-Centric versus Host-Centric
Resource allocation mechanisms can be classified into two broad groups: those that ad-
dress the problem from inside the network (i.e., at the routers or switches) and those that
address it from the edges of the network (i.e., in the hosts, perhaps inside the transport
protocol). Since it is the case that both the routers inside the network and the hosts at
the edges of the network participate in resource allocation, the real issue is where the
majority of the burden falls.

In a router-centric design, each router takes responsibility for deciding when pack-
ets are forwarded and selecting which packets are to be dropped, as well as for informing
the hosts that are generating the network traffic how many packets they are allowed
to send. In a host-centric design, the end hosts observe the network conditions (e.g.,
how many packets they are successfully getting through the network) and adjust their
behavior accordingly. Note that these two groups are not mutually exclusive. For ex-
ample, a network that places the primary burden for managing congestion on routers
still expects the end hosts to adhere to any advisory messages the routers send, while
the routers in networks that use end-to-end congestion control still have some policy,
no matter how simple, for deciding which packets to drop when their queues do over-
flow.

Reservation-Based versus Feedback-Based
A second way that resource allocation mechanisms are sometimes classified is according
to whether they use reservations or feedback. In a reservation-based system, the end host
asks the network for a certain amount of capacity at the time a flow is established. Each
router then allocates enough resources (buffers and/or percentage of the link’s band-
width) to satisfy this request. If the request cannot be satisfied at some router, because
doing so would overcommit its resources, then the router rejects the flow. This is anal-
ogous to getting a busy signal when trying to make a phone call. In a feedback-based
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approach, the end hosts begin sending data without first reserving any capacity and then
adjust their sending rate according to the feedback they receive. This feedback can either
be explicit (i.e., a congested router sends a “please slow down” message to the host) or
it can be implicit (i.e., the end host adjusts its sending rate according to the externally
observable behavior of the network, such as packet losses).

Note that a reservation-based system always implies a router-centric resource allo-
cation mechanism. This is because each router is responsible for keeping track of how
much of its capacity is currently reserved and for making sure each host lives within the
reservation it made. If a host sends data faster than it claimed it would when it made
the reservation, then that host’s packets are good candidates for discarding should the
router become congested. On the other hand, a feedback-based system can imply either
a router- or host-centric mechanism. Typically, if the feedback is explicit, then the router
is involved, to at least some degree, in the resource allocation scheme. If the feedback
is implicit, then almost all of the burden falls to the end host; the routers silently drop
packets when they become congested.

Window-Based versus Rate-Based

A third way to characterize resource allocation mechanisms is according to whether they
are window-based or rate-based. This is one of the areas, noted above, where similar
mechanisms and terminology are used for both flow control and congestion control.
Both flow-control and resource allocation mechanisms need a way to express, to the
sender, how much data they are allowed to transmit. There are two general ways of
doing this: with a window or with a rate. We have already seen window-based trans-
port protocols, such as TCP, in which the receiver advertises a window to the sender.
This window corresponds to how much buffer space the receiver has, and it limits
how much data the sender can transmit, that is, it supports flow control. A simi-
lar mechanism—window advertisement—can be used within the network to reserve
buffer space, that is, to support resource allocation. This is essentially what is done
in X.25.

It is also possible to control a sender’s behavior using a rate, that is, how many bits
per second the receiver or network is able to absorb. Although we have not yet studied
any rate-based transport protocols in this book (we will in Chapter 9), we can imagine
such a protocol used to support video: The receiver says it can process video frames at a
rate of 1 Mbps, and the sender adheres to this rate. As we will see later in this chapter,
rate-based characterization of flows is a logical choice in a reservation-based system that
supports different qualities of service—the sender makes a reservation for so many bits
per second, and each router along the path determines if it can support that rate, given
the other flows to which it has made commitments.
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Summary of Resource Allocation Taxonomy

Classifying resource allocation approaches at two different points along each of three
dimensions, as we have just done, would seem to suggest up to eight unique strategies.
While eight different approaches are certainly possible, we note that in practice two gen-
eral strategies seem to be most prevalent; these two strategies are tied to the underlying
service model of the network.

On the one hand, a best-effort service model usually implies that feedback is be-
ing used, since such a model does not allow users to reserve network capacity. This, in
turn, means that most of the responsibility for congestion control falls to the end hosts,
perhaps with some assistance from the routers. In practice, such networks use window-
based information. This is the general strategy adopted in the Internet and the focus of
Sections 6.3 and 6.4.

On the other hand, a QoS-based service model probably implies some form of
reservation.2 Support for these reservations is likely to require significant router involve-
ment, for example, to queue packets differently depending on the level of reserved re-
sources they require. Moreover, it is natural to express such reservations in terms of rate,
since windows are only indirectly related to how much bandwidth a user needs from the
network. We discuss this topic in Section 6.5.

6.1.3 Evaluation Criteria
The final issue is one of knowing whether a resource allocation mechanism is good or not.
Recall that in the problem statement at the start of this chapter we posed the question
of how a network effectively and fairly allocates its resources. This suggests at least two
broad measures by which a resource allocation scheme can be evaluated. We consider
each in turn.

Effective Resource Allocation

A good starting point for evaluating the effectiveness of a resource allocation scheme is
to consider the two principal metrics of networking: throughput and delay. Clearly, we
want as much throughput and as little delay as possible. Although on the surface it might
appear as though increasing throughput also means reducing delay, this is not the case.
One sure way for a resource allocation algorithm to increase throughput is to allow as
many packets into the network as possible, so as to drive the utilization of all the links up
to 100%. We would do this to avoid the possibility of a link becoming idle because an
idle link necessarily hurts throughput. The problem with this strategy is that increasing
the number of packets in the network also increases the length of the queues at each
router. Longer queues, in turn, mean packets are delayed longer in the network.

2As we will see in Section 6.5, resource reservations might be made by network managers rather than by hosts.
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To describe this relationship, some network designers have proposed using the ratio
of throughput to delay as a metric for evaluating the effectiveness of a resource allocation
scheme. This ratio is sometimes referred to as the power of the network:3

Power = Throughput/Delay

Note that it is not obvious that power is the right metric for judging resource allocation
effectiveness. For one thing, the theory behind power is based on an M/M/1 queuing
network4 that assumes infinite queues; real networks have finite buffers and sometimes
have to drop packets. For another, power is typically defined relative to a single connec-
tion (flow); it is not clear how it extends to multiple, competing connections. Despite
these rather severe limitations, however, no alternatives have gained wide acceptance, and
so power continues to be used.

The objective is to maximize this ratio, which is a function of how much load you
place on the network. The load, in turn, is set by the resource allocation mechanism. Fig-
ure 6.3 gives a representative power curve, where, ideally, the resource allocation mech-
anism would operate at the peak of this curve. To the left of the peak, the mechanism
is being too conservative, that is, it is not allowing enough packets to be sent to keep
the links busy. To the right of the peak, so many packets are being allowed into the net-
work that increases in delay due to queuing are starting to dominate any small gains in
throughput.

Figure 6.3 Ratio of throughput to delay as a function of load.

3The actual definition is Power = Throughputα/Delay, where 0 < α < 1; α = 1 results in power being maximized at
the knee of the delay curve. Throughput is measured in units of data (e.g., bits) per second; delay in seconds.
4Since this is not a queuing theory book, we provide only this brief description of an M/M/1 queue. The 1 means it has
a single server, and the M’s mean that the distribution of both packet arrival and service times is “Markovian,” that is,
exponential.
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Interestingly, this power curve looks very much like the system throughput curve
in a multiprogrammed computer system. System throughput improves as more jobs are
admitted into the system, until it reaches a point when there are so many jobs running
that the system begins to thrash (spends all of its time swapping memory pages) and the
throughput begins to drop.

As we will see in later sections of this chapter, many congestion-control schemes are
able to control load in only very crude ways. That is, it is simply not possible to turn the
“knob” a little and allow only a small number of additional packets into the network. As
a consequence, network designers need to be concerned about what happens even when
the system is operating under extremely heavy load, that is, at the rightmost end of the
curve in Figure 6.3. Ideally, we would like to avoid the situation in which the system
throughput goes to zero because the system is thrashing. In networking terminology,
we want a system that is stable—where packets continue to get through the network
even when the network is operating under heavy load. If a mechanism is not stable, the
network may experience congestion collapse.

Fair Resource Allocation

The effective utilization of network resources is not the only criterion for judging a
resource allocation scheme. We must also consider the issue of fairness. However, we
quickly get into murky waters when we try to define what exactly constitutes fair re-
source allocation. For example, a reservation-based resource allocation scheme provides
an explicit way to create controlled unfairness. With such a scheme, we might use reser-
vations to enable a video stream to receive 1 Mbps across some link while a file transfer
receives only 10 Kbps over the same link.

In the absence of explicit information to the contrary, when several flows share
a particular link, we would like for each flow to receive an equal share of the band-
width. This definition presumes that a fair share of bandwidth means an equal share of
bandwidth. But even in the absence of reservations, equal shares may not equate to fair
shares. Should we also consider the length of the paths being compared? For example,
as illustrated in Figure 6.4, what is fair when one four-hop flow is competing with three
one-hop flows?

Figure 6.4 One four-hop flow competing with three one-hop flows.
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Assuming that fair implies equal and that all paths are of equal length, Raj Jain
has proposed a metric that can be used to quantify the fairness of a congestion-control
mechanism. Jain’s fairness index is defined as follows. Given a set of flow throughputs
(x1, x2, . . . , xn) (measured in consistent units such as bits/second), the following func-
tion assigns a fairness index to the flows:

f (x1, x2, . . . , xn) = (
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

The fairness index always results in a number between 0 and 1, with 1 representing
greatest fairness. To understand the intuition behind this metric, consider the case where
all n flows receive a throughput of 1 unit of data per second. We can see that the fairness
index in this case is

n2

n × n
= 1

Now suppose one flow receives a throughput of 1 + �. Now the fairness index is

((n − 1) + 1 + �)2

n(n − 1 + (1 + �)2)

= n2 + 2n� + �2

n2 + 2n� + n�2

Note that the denominator exceeds the numerator by (n − 1)�2. Thus, whether the
odd flow out was getting more or less than all the other flows (positive or negative �),
the fairness index has now dropped below one. Another simple case to consider is where
only k of the n flows receive equal throughput, and the remaining n − k users receive
zero throughput, in which case the fairness index drops to k/n.

6.2 Queuing Disciplines
Regardless of how simple or how sophisticated the rest of the resource allocation mecha-
nism is, each router must implement some queuing discipline that governs how packets
are buffered while waiting to be transmitted. The queuing algorithm can be thought of
as allocating both bandwidth (which packets get transmitted) and buffer space (which
packets get discarded). It also directly affects the latency experienced by a packet, by
determining how long a packet waits to be transmitted. This section introduces two
common queuing algorithms—first-in-first-out (FIFO) and fair queuing (FQ)—and
identifies several variations that have been proposed.
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6.2.1 FIFO
The idea of FIFO queuing, also called first-come-first-served (FCFS) queuing, is sim-
ple: The first packet that arrives at a router is the first packet to be transmitted. This is
illustrated in Figure 6.5(a), which shows a FIFO with “slots” to hold up to eight pack-
ets. Given that the amount of buffer space at each router is finite, if a packet arrives
and the queue (buffer space) is full, then the router discards that packet, as shown in
Figure 6.5(b). This is done without regard to which flow the packet belongs to or how
important the packet is. This is sometimes called tail drop, since packets that arrive at
the tail end of the FIFO are dropped.

Note that tail drop and FIFO are two separable ideas. FIFO is a scheduling dis-
cipline—it determines the order in which packets are transmitted. Tail drop is a drop
policy—it determines which packets get dropped. Because FIFO and tail drop are the
simplest instances of scheduling discipline and drop policy, respectively, they are some-
times viewed as a bundle—the vanilla queuing implementation. Unfortunately, the bun-
dle is often referred to simply as “FIFO queuing,” when it should more precisely be called
“FIFO with tail drop.” Section 6.4 provides an example of another drop policy, which
uses a more complex algorithm than “Is there a free buffer?” to decide when to drop

Figure 6.5 (a) FIFO queuing; (b) tail drop at a FIFO queue.
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packets. Such a drop policy may be used with FIFO, or with more complex scheduling
disciplines.

FIFO with tail drop, as the simplest of all queuing algorithms, is the most widely
used in Internet routers at the time of writing. This simple approach to queuing pushes
all responsibility for congestion control and resource allocation out to the edges of the
network. Thus, the prevalent form of congestion control in the Internet currently as-
sumes no help from the routers: TCP takes responsibility for detecting and responding
to congestion. We will see how this works in Section 6.3.

A simple variation on basic FIFO queuing is priority queuing. The idea is to mark
each packet with a priority; the mark could be carried, for example, in the IP Type of
Service (TOS) field. The routers then implement multiple FIFO queues, one for each
priority class. The router always transmits packets out of the highest-priority queue if that
queue is nonempty before moving on to the next priority queue. Within each priority,
packets are still managed in a FIFO manner. This idea is a small departure from the best-
effort delivery model, but it does not go so far as to make guarantees to any particular
priority class. It just allows high-priority packets to cut to the front of the line.

The problem with priority queuing, of course, is that the high-priority queue can
starve out all the other queues. That is, as long as there is at least one high-priority
packet in the high-priority queue, lower-priority queues do not get served. For this to be
viable, there need to be hard limits on how much high-priority traffic is inserted in the
queue. It should be immediately clear that we can’t allow users to set their own packets
to high priority in an uncontrolled way; we must either prevent them from doing this
altogether, or provide some form of “pushback” on users. One obvious way to do this is
to use economics—the network could charge more to deliver high-priority packets than
low-priority packets. However, there are significant challenges to implementing such a
scheme in a decentralized environment such as the Internet.

One situation in which priority queuing is used in the Internet is to protect the
most important packets—typically the routing updates that are necessary to stabilize the
routing tables after a topology change. Often there is a special queue for such packets,
which can be identified by the TOS field in the IP header. This is in fact a simple case
of the idea of Differentiated Services, the subject of Section 6.5.3.

6.2.2 Fair Queuing
The main problem with FIFO queuing is that it does not discriminate between different
traffic sources, or in the language introduced in the previous section, it does not separate
packets according to the flow to which they belong. This is a problem at two different
levels. At one level, it is not clear that any congestion-control algorithm implemented
entirely at the source will be able to adequately control congestion with so little help
from the routers. We will suspend judgment on this point until the next section when
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Figure 6.6 Round-robin service of four flows at a router.

we discuss TCP congestion control. At another level, because the entire congestion-
control mechanism is implemented at the sources and FIFO queuing does not provide
a means to police how well the sources adhere to this mechanism, it is possible for an
ill-behaved source (flow) to capture an arbitrarily large fraction of the network capacity.
Considering the Internet again, it is certainly possible for a given application not to
use TCP, and as a consequence, to bypass its end-to-end congestion-control mechanism.
(Applications such as Internet telephony do this today.) Such an application is able to
flood the Internet’s routers with its own packets, thereby causing other applications’
packets to be discarded.

Fair queuing (FQ) is an algorithm that has been proposed to address this problem.
The idea of FQ is to maintain a separate queue for each flow currently being handled by
the router. The router then services these queues in a sort of round-robin, as illustrated
in Figure 6.6. When a flow sends packets too quickly, then its queue fills up. When a
queue reaches a particular length, additional packets belonging to that flow’s queue are
discarded. In this way, a given source cannot arbitrarily increase its share of the network’s
capacity at the expense of other flows.

Note that FQ does not involve the router telling the traffic sources anything about
the state of the router or in any way limiting how quickly a given source sends pack-
ets. In other words, FQ is still designed to be used in conjunction with an end-to-
end congestion-control mechanism. It simply segregates traffic so that ill-behaved traffic
sources do not interfere with those that are faithfully implementing the end-to-end algo-
rithm. FQ also enforces fairness among a collection of flows managed by a well-behaved
congestion-control algorithm.

As simple as the basic idea is, there are still a modest number of details that you
have to get right. The main complication is that the packets being processed at a router
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are not necessarily the same length. To truly allocate the bandwidth of the outgoing link
in a fair manner, it is necessary to take packet length into consideration. For example,
if a router is managing two flows, one with 1,000-byte packets and the other with 500-
byte packets (perhaps because of fragmentation upstream from this router), then a simple
round-robin servicing of packets from each flow’s queue will give the first flow two-thirds
of the link’s bandwidth and the second flow only one-third of its bandwidth.

What we really want is bit-by-bit round-robin, that is, the router transmits a bit
from flow 1, then a bit from flow 2, and so on. Clearly, it is not feasible to interleave
the bits from different packets. The FQ mechanism, therefore, simulates this behavior
by first determining when a given packet would finish being transmitted if it were being
sent using bit-by-bit round-robin, and then using this finishing time to sequence the
packets for transmission.

To understand the algorithm for approximating bit-by-bit round-robin, consider
the behavior of a single flow and imagine a clock that ticks once each time one bit is
transmitted from all of the active flows. (A flow is active when it has data in the queue.)
For this flow, let Pi denote the length of packet i, let Si denote the time when the
router starts to transmit packet i, and let Fi denote the time when the router finishes
transmitting packet i. If Pi is expressed in terms of how many clock ticks it takes to
transmit packet i (keeping in mind that time advances 1 tick each time this flow gets 1
bit’s worth of service), then it is easy to see that Fi = Si + Pi .

When do we start transmitting packet i? The answer to this question depends on
whether packet i arrived before or after the router finished transmitting packet i−1 from
this flow. If it was before, then logically the first bit of packet i is transmitted immediately
after the last bit of packet i − 1. On the other hand, it is possible that the router finished
transmitting packet i − 1 long before i arrived, meaning that there was a period of time
during which the queue for this flow was empty, so the round-robin mechanism could
not transmit any packets from this flow. If we let Ai denote the time that packet i arrives
at the router, then Si = max(Fi−1,Ai). Thus, we can compute

Fi = max(Fi−1,Ai) + Pi

Now we move on to the situation in which there is more than one flow, and we find
that there is a catch to determining Ai . We can’t just read the wall clock when the packet
arrives. As noted above, we want time to advance by one tick each time all the active flows
get one bit of service under bit-by-bit round-robin, so we need a clock that advances more
slowly when there are more flows. Specifically, the clock must advance by one tick when
n bits are transmitted if there are n active flows. This clock will be used to calculate Ai .

Now, for every flow, we calculate Fi for each packet that arrives using the above
formula. We then treat all the Fi as timestamps, and the next packet to transmit is always
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Figure 6.7 Example of fair queuing in action: (a) packets with earlier finishing times

are sent first; (b) sending of a packet already in progress is completed.

the packet that has the lowest timestamp—the packet that, based on the above reasoning,
should finish transmission before all others.

Note that this means that a packet can arrive on a flow, and because it is shorter
than a packet from some other flow that is already in the queue waiting to be transmit-
ted, it can be inserted into the queue in front of that longer packet. However, this does
not mean that a newly arriving packet can preempt a packet that is currently being trans-
mitted. It is this lack of preemption that keeps the implementation of FQ just described
from exactly simulating the bit-by-bit round-robin scheme that we are attempting to
approximate.

To better see how this implementation of fair queuing works, consider the example
given in Figure 6.7. Part (a) shows the queues for two flows; the algorithm selects both
packets from flow 1 to be transmitted before the packet in the flow 2 queue, because
of their earlier finishing times. In (b), the router has already begun to send a packet
from flow 2 when the packet from flow 1 arrives. Though the packet arriving on flow 1
would have finished before flow 2 if we had been using perfect bit-by-bit fair queuing,
the implementation does not preempt the flow 2 packet.

There are two things to notice about fair queuing. First, the link is never left idle
as long as there is at least one packet in the queue. Any queuing scheme with this char-
acteristic is said to be work-conserving. One effect of being work-conserving is that if I
am sharing a link with a lot of flows that are not sending any data, I can use the full link
capacity for my flow. As soon as the other flows start sending, however, they will start to
use their share and the capacity available to my flow will drop.

The second thing to notice is that if the link is fully loaded and there are n flows
sending data, I cannot use more than 1/nth of the link bandwidth. If I try to send
more than that, my packets will be assigned increasingly large timestamps, causing them
to sit in the queue longer awaiting transmission. Eventually the queue will overflow—
although whether it is my packets or someone else’s that are dropped is a decision that
is not determined by the fact that we are using fair queuing. This is determined by the
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drop policy; FQ is a scheduling algorithm, which, like FIFO, may be combined with
various drop policies.

Because FQ is work-conserving, any bandwidth that is not used by one flow is au-
tomatically available to other flows. For example, if we have four flows passing through
a router, and all of them are sending packets, then each one will receive one-quarter
of the bandwidth. But if one of them is idle long enough that all its packets drain out
of the router’s queue, then the available bandwidth will be shared among the remain-
ing three flows, which will each now receive one-third of the bandwidth. Thus, we can
think of FQ as providing a guaranteed minimum share of bandwidth to each flow, with
the possibility that it can get more than its guarantee if other flows are not using their
shares.

It is possible to implement a variation of FQ, called weighted fair queuing (WFQ),
that allows a weight to be assigned to each flow (queue). This weight logically speci-
fies how many bits to transmit each time the router services that queue, which effec-
tively controls the percentage of the link’s bandwidth that that flow will get. Simple
FQ gives each queue a weight of 1, which means that logically only 1 bit is trans-
mitted from each queue each time around. This results in each flow getting 1/nth of
the bandwidth when there are n flows. With WFQ, however, one queue might have a
weight of 2, a second queue might have a weight of 1, and a third queue might have
a weight of 3. Assuming that each queue always contains a packet waiting to be trans-
mitted, the first flow will get one-third of the available bandwidth, the second will get
one-sixth of the available bandwidth, and the third will get one-half of the available
bandwidth.

While we have described WFQ in terms of flows, note that it could be imple-
mented on “classes” of traffic, where classes are defined in some other way than the
simple flows introduced at the start of this chapter. For example, we could use the Type
of Service (TOS) bits in the IP header to identify classes, and allocate a queue and a
weight to each class. This is exactly what is proposed as part of the Differentiated Ser-
vices architecture described in Section 6.5.3.

Note that a router performing WFQ must learn what weights to assign to each
queue from somewhere, either by manual configuration or by some sort of signalling
from the sources. In the latter case, we are moving toward a reservation-based model. Just
assigning a weight to a queue provides a rather weak form of reservation because these
weights are only indirectly related to the bandwidth the flow receives. (The bandwidth
available to a flow also depends, for example, on how many other flows are sharing
the link.) We will see in Section 6.5.2 how WFQ can be used as a component of a
reservation-based resource allocation mechanism.▲

Finally, we observe that this whole discussion of queue management illustrates an
important system design principle known as separating policy and mechanism. The idea
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is to view each mechanism as a black box that provides a multifaceted service that can
be controlled by a set of knobs. A policy specifies a particular setting of those knobs,
but does not know (or care) about how the black box is implemented. In this case, the
mechanism in question is the queuing discipline, and the policy is a particular setting of
which flow gets what level of service (e.g., priority or weight). We discuss some policies
that can be used with the WFQ mechanism in Section 6.5.

6.3 TCP Congestion Control
This section describes the predominant example of end-to-end congestion control in use
today, that implemented by TCP. The essential strategy of TCP is to send packets into
the network without a reservation and then to react to observable events that occur. TCP
assumes only FIFO queuing in the network’s routers, but also works with fair queuing.

TCP congestion control was introduced into the Internet in the late 1980s by Van
Jacobson, roughly eight years after the TCP/IP protocol stack had become operational.
Immediately preceding this time, the Internet was suffering from congestion collapse—
hosts would send their packets into the Internet as fast as the advertised window would
allow, congestion would occur at some router (causing packets to be dropped), and the
hosts would time out and retransmit their packets, resulting in even more congestion.

Broadly speaking, the idea of TCP congestion control is for each source to deter-
mine how much capacity is available in the network, so that it knows how many packets
it can safely have in transit. Once a given source has this many packets in transit, it uses
the arrival of an ACK as a signal that one of its packets has left the network, and that it
is therefore safe to insert a new packet into the network without adding to the level of
congestion. By using ACKs to pace the transmission of packets, TCP is said to be self-
clocking. Of course, determining the available capacity in the first place is no easy task. To
make matters worse, because other connections come and go, the available bandwidth
changes over time, meaning that any given source must be able to adjust the number of
packets it has in transit. This section describes the algorithms used by TCP to address
these and other problems.

Note that although we describe these mechanisms one at a time, thereby giving
the impression that we are talking about three independent mechanisms, it is only when
they are taken as a whole that we have TCP congestion control.

6.3.1 Additive Increase/Multiplicative Decrease
TCP maintains a new state variable for each connection, called CongestionWindow,
which is used by the source to limit how much data it is allowed to have in transit at
a given time. The congestion window is congestion control’s counterpart to flow con-
trol’s advertised window. TCP is modified such that the maximum number of bytes of
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unacknowledged data allowed is now the minimum of the congestion window and the
advertised window. Thus, using the variables defined in Section 5.2.4, TCP’s effective
window is revised as follows:

MaxWindow = MIN(CongestionWindow,AdvertisedWindow)

EffectiveWindow = MaxWindow − (LastByteSent − LastByteAcked)

That is, MaxWindow replaces AdvertisedWindow in the calculation of Effec-
tiveWindow. Thus, a TCP source is allowed to send no faster than the slowest
component—the network or the destination host—can accommodate.

The problem, of course, is how TCP comes to learn an appropriate value for Con-
gestionWindow. Unlike the AdvertisedWindow, which is sent by the receiving
side of the connection, there is no one to send a suitable CongestionWindow to the
sending side of TCP. The answer is that the TCP source sets the CongestionWindow
based on the level of congestion it perceives to exist in the network. This involves de-
creasing the congestion window when the level of congestion goes up and increasing the
congestion window when the level of congestion goes down. Taken together, the mecha-
nism is commonly called additive increase/multiplicative decrease (AIMD); the reason for
this mouthful of a name will become apparent below.

The key question, then, is how does the source determine that the network is
congested and that it should decrease the congestion window? The answer is based on
the observation that the main reason packets are not delivered, and a timeout results, is
that a packet was dropped due to congestion. It is rare that a packet is dropped because of
an error during transmission. Therefore, TCP interprets timeouts as a sign of congestion
and reduces the rate at which it is transmitting. Specifically, each time a timeout occurs,
the source sets CongestionWindow to half of its previous value. This halving of the
CongestionWindow for each timeout corresponds to the “multiplicative decrease”
part of AIMD.

Although CongestionWindow is defined in terms of bytes, it is easiest to un-
derstand multiplicative decrease if we think in terms of whole packets. For example,
suppose the CongestionWindow is currently set to 16 packets. If a loss is detected,
CongestionWindow is set to 8. (Normally, a loss is detected when a timeout occurs,
but as we see below, TCP has another mechanism to detect dropped packets.) Additional
losses cause CongestionWindow to be reduced to 4, then 2, and finally to 1 packet.
CongestionWindow is not allowed to fall below the size of a single packet, or in TCP
terminology, the maximum segment size (MSS).

A congestion-control strategy that only decreases the window size is obviously too
conservative. We also need to be able to increase the congestion window to take advan-
tage of newly available capacity in the network. This is the “additive increase” part of
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Figure 6.8 Packets in transit during additive increase, with one packet being added

each RTT.

AIMD, and it works as follows. Every time the source successfully sends a Conges-
tionWindow’s worth of packets—that is, each packet sent out during the last RTT has
been ACKed—it adds the equivalent of 1 packet to CongestionWindow. This linear
increase is illustrated in Figure 6.8. Note that in practice, TCP does not wait for an entire
window’s worth of ACKs to add 1 packet’s worth to the congestion window, but instead
increments CongestionWindow by a little for each ACK that arrives. Specifically, the
congestion window is incremented as follows each time an ACK arrives:

Increment = MSS × (MSS/CongestionWindow)

CongestionWindow+ = Increment

That is, rather than incrementing CongestionWindow by an entire MSS bytes
each RTT, we increment it by a fraction of MSS every time an ACK is received. As-
suming that each ACK acknowledges the receipt of MSS bytes, then that fraction is
MSS/CongestionWindow.
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Figure 6.9 Typical TCP sawtooth pattern.

This pattern of continually increasing and decreasing the congestion window con-
tinues throughout the lifetime of the connection. In fact, if you plot the current value of
CongestionWindow as a function of time, you get a sawtooth pattern, as illustrated
in Figure 6.9. The important concept to understand about AIMD is that the source is
willing to reduce its congestion window at a much faster rate than it is willing to in-
crease its congestion window. This is in contrast to an additive increase/additive decrease
strategy in which the window would be increased by 1 packet when an ACK arrives and
decreased by 1 when a timeout occurs. It has been shown that AIMD is a necessary con-
dition for a congestion-control mechanism to be stable (see the Further Reading section).
One intuitive reason to decrease the window aggressively and increase it conservatively
is that the consequences of having too large a window are much worse than those of it
being too small. For example, when the window is too large, packets that are dropped
will be retransmitted, making congestion even worse, thus, it is important to get out of
this state quickly.

Finally, since a timeout is an indication of congestion that triggers multiplicative
decrease, TCP needs the most accurate timeout mechanism it can afford. We already
covered TCP’s timeout mechanism in Section 5.2.6, so we do not repeat it here. The
two main things to remember about that mechanism are that (1) timeouts are set as a
function of both the average RTT and the standard deviation in that average, and (2) due
to the cost of measuring each transmission with an accurate clock, TCP only samples the
round-trip time once per RTT (rather than once per packet) using a coarse-grained (500-
ms) clock.

6.3.2 Slow Start
The additive increase mechanism just described is the right approach to use when the
source is operating close to the available capacity of the network, but it takes too long
to ramp up a connection when it is starting from scratch. TCP, therefore, provides a
second mechanism, ironically called slow start, that is used to increase the congestion
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Figure 6.10 Packets in transit during slow start.

window rapidly from a cold start. Slow start effectively increases the congestion window
exponentially, rather than linearly.

Specifically, the source starts out by setting CongestionWindow to one packet.
When the ACK for this packet arrives, TCP adds 1 to CongestionWindow and then
sends two packets. Upon receiving the corresponding two ACKs, TCP increments Con-
gestionWindow by 2—one for each ACK—and next sends four packets. The end
result is that TCP effectively doubles the number of packets it has in transit every RTT.
Figure 6.10 shows the growth in the number of packets in transit during slow start.
Compare this to the linear growth of additive increase illustrated in Figure 6.8.

Why any exponential mechanism would be called “slow” is puzzling at first, but it
can be explained if put in the proper historical context. We need to compare slow start
not against the linear mechanism of the previous subsection, but against the original
behavior of TCP. Consider what happens when a connection is established and the source
first starts to send packets, that is, when it currently has no packets in transit. If the source
sends as many packets as the advertised window allows—which is exactly what TCP did
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before slow start was developed—then even if there is a fairly large amount of bandwidth
available in the network, the routers may not be able to consume this burst of packets. It
all depends on how much buffer space is available at the routers. Slow start was therefore
designed to space packets out so that this burst does not occur. In other words, even
though its exponential growth is faster than linear growth, slow start is much “slower”
than sending an entire advertised window’s worth of data all at once.

There are actually two different situations in which slow start runs. The first is at
the very beginning of a connection, at which time the source has no idea how many
packets it is going to be able to have in transit at a given time. (Keep in mind that TCP
runs over everything from 9,600-bps links to 2.4-Gbps links, so there is no way for the
source to know the network’s capacity.) In this situation, slow start continues to double
CongestionWindow each RTT until there is a loss, at which time a timeout causes
multiplicative decrease to divide CongestionWindow by 2.

The second situation in which slow start is used is a bit more subtle; it occurs when
the connection goes dead while waiting for a timeout to occur. Recall how TCP’s sliding
window algorithm works: When a packet is lost, the source eventually reaches a point
where it has sent as much data as the advertised window allows, and so it blocks while
waiting for an ACK that will not arrive. Eventually, a timeout happens, but by this time
there are no packets in transit, meaning that the source will receive no ACKs to “clock”
the transmission of new packets. The source will instead receive a single cumulative ACK
that reopens the entire advertised window, but as explained above, the source then uses
slow start to restart the flow of data rather than dumping a whole window’s worth of
data on the network all at once.

Although the source is using slow start again, it now knows more information than
it did at the beginning of a connection. Specifically, the source has a current (and useful)
value of CongestionWindow; this is the value of CongestionWindow that existed
prior to the last packet loss, divided by 2 as a result of the loss. We can think of this as
the “target” congestion window. Slow start is used to rapidly increase the sending rate up
to this value, and then additive increase is used beyond this point. Notice that we have
a small bookkeeping problem to take care of, in that we want to remember the “target”
congestion window resulting from multiplicative decrease as well as the “actual” conges-
tion window being used by slow start. To address this problem, TCP introduces a tempo-
rary variable to store the target window, typically called CongestionThreshold, that
is set equal to the CongestionWindow value that results from multiplicative decrease.
The variable CongestionWindow is then reset to one packet, and it is incremented
by one packet for every ACK that is received until it reaches CongestionThreshold,
at which point it is incremented by one packet per RTT.

In other words, TCP increases the congestion window as defined by the following
code fragment:
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Figure 6.11 Behavior of TCP congestion control. Colored line = value of

CongestionWindow over time; solid bullets at top of graph = timeouts; hash marks at

top of graph = time when each packet is transmitted; vertical bars = time when a

packet that was eventually retransmitted was first transmitted.

{

u_int cw = state->CongestionWindow;

u_int incr = state->maxseg;

if (cw > state->CongestionThreshold)

incr = incr * incr / cw;

state->CongestionWindow = MIN(cw + incr, TCP_MAXWIN);

}

where state represents the state of a particular TCP connection and TCP_MAXWIN
defines an upper bound on how large the congestion window is allowed to grow.

Figure 6.11 traces how TCP’s CongestionWindow increases and decreases over
time and serves to illustrate the interplay of slow start and additive increase/multiplicative
decrease. This trace was taken from an actual TCP connection and shows the current
value of CongestionWindow—the colored line—over time.

There are several things to notice about this trace. The first is the rapid increase
in the congestion window at the beginning of the connection. This corresponds to the
initial slow start phase. The slow start phase continues until several packets are lost at
about 0.4 seconds into the connection, at which time CongestionWindow flattens
out at about 34. (Why so many packets are lost during slow start is discussed below.)
The reason the congestion window flattens is that there are no ACKs arriving, due to the
fact that several packets were lost. In fact, no new packets are sent during this time, as
denoted by the lack of hash marks at the top of the graph. A timeout eventually happens
at approximately 2 seconds, at which time the congestion window is divided by 2 (i.e.,
cut from approximately 34 to around 17 KB) and CongestionThreshold is set to
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this value. Slow start then causes CongestionWindow to be reset to one packet and
to start ramping up from there.

There is not enough detail in the trace to see exactly what happens when a couple
of packets are lost just after 2 seconds, so we jump ahead to the linear increase in the
congestion window that occurs between 2 and 4 seconds. This corresponds to additive
increase. At about 4 seconds, CongestionWindow flattens out, again due to a lost
packet. Now, at about 5.5 seconds:

1 A timeout happens, causing the congestion window to be divided by 2, dropping
it from approximately 22 to 11 KB, and CongestionThreshold is set to this
amount;

2 CongestionWindow is reset to one packet, as the sender enters slow start;

3 Slow start causes CongestionWindow to grow exponentially until it reaches
CongestionThreshold;

4 CongestionWindow then grows linearly.

The same pattern is repeated at around 8 seconds when another timeout occurs.
We now return to the question of why so many packets are lost during the ini-

tial slow start period. At this point, TCP is attempting to learn how much bandwidth
is available on the network. This is a very difficult task. If the source is not aggres-
sive at this stage—for example, if it only increases the congestion window linearly—
then it takes a long time for it to discover how much bandwidth is available. This can
have a dramatic impact on the throughput achieved for this connection. On the other

A Faster TCP?

Many times in the last two decades the
argument over how fast TCP can be
made to run has reared its head. First
there was the claim that TCP was too
complex to run fast in host software
as networks headed toward the giga-
bit range. This claim was repeatedly
disproved. More recently, however, an
important theoretical result has shown
that there are limits to how well TCP
can perform in very high bandwidth-

hand, if the source is aggressive at this
stage, as TCP is during exponential
growth, then the source runs the risk of
having half a window’s worth of packets
dropped by the network.

To see what can happen during ex-
ponential growth, consider the situation
in which the source was just able to suc-
cessfully send 16 packets through the net-
work, causing it to double its congestion
window to 32. Suppose, however, that
the network happens to have just enough
capacity to support 16 packets from this
source. The likely result is that 16 of the
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32 packets sent under the new conges-
tion window will be dropped by the
network; actually, this is the worst-case
outcome, since some of the packets will
be buffered in some router. This prob-
lem will become increasingly severe as
the delay × bandwidth product of net-
works increases. For example, a delay ×
bandwidth product of 500 KB means
that each connection has the potential to
lose up to 500 KB of data at the begin-
ning of each connection. Of course, this
assumes that both the source and the des-
tination implement the “big windows”
extension.

Some protocol designers have pro-
posed alternatives to slow start, whereby
the source tries to estimate the available
bandwidth by more sophisticated means.
A recent example is the “quick start”
mechanism undergoing standardization
at the IETF. The basic idea is that a TCP
sender can “ask” for an initial sending
rate greater than slow start would allow
by putting a requested rate in its SYN
packet as an IP option. Routers along
the path can examine the option, eval-
uate the current level of congestion on
the outgoing link for this flow, and de-
cide if that rate is acceptable, if a lower
rate would be acceptable, or if standard
slow start should be used. By the time
the SYN reaches the receiver, it will con-
tain either a rate that was acceptable to all
routers on the path, or an indication that
one or more routers on the path could
not support the quick start request. In
the former case, the TCP sender uses that
rate to begin transmission; in the latter

delay environments. An analysis of the
congestion-control behavior of TCP
has shown that, in the steady state,
TCP’s throughput is approximately

Rate =
( 1.2 × MSS

RTT × √
ρ

)

In a network with an RTT of 100 ms
and 10 Gbps links, it follows that a
single TCP connection will only be
able to achieve a throughput close to
link speed if the loss rate is below
one per 5 billion packets—equivalent
to one congestion event every 100
minutes. Even very rare packet losses
due to bit errors on the fiber will typ-
ically produce a considerably higher
loss rate than this, making it impossi-
ble to fill the pipe with a single TCP
connection. A number of proposals to
improve on TCP’s behavior in net-
works with very high bandwidth de-
lay products have been put forward,
and they range from the incremen-
tal to the dramatic. Observing the de-
pendency on MSS, one simple change
that has been proposed is to increase
the packet size. Unfortunately, in-
creasing packet sizes also increases the
chance that a given packet will suffer
from a bit error, so at some point in-
creasing the MSS alone may not be
sufficient. Other proposals that have
been advanced at the IETF and else-
where make changes to the way TCP
avoids congestion, in an attempt to
make TCP better able to use band-
width that is available. The challenges
here are to be fair to standard TCP
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implementations and also to avoid the
congestion collapse issues that led to
the current behavior of TCP.

The “High-Speed TCP” pro-
posal, now an experimental RFC,
makes TCP more aggressive only when
it is clearly operating in a very high
bandwidth-delay product environment
and not competing with a lot of
other traffic. In essence, when the
congestion window gets very large,
high speed TCP starts to increase
CongestionWindow by a larger
amount than standard TCP. In the
normal environment where Conges-
tionWindow is relatively small
(about 40 × MSS), high speed TCP is
indistinguishable from standard
TCP.

The “Quick Start” proposal,
which changes the start-up behavior
of TCP, was mentioned above. Since it
can enable a TCP connection to ramp
up its sending rate more quickly, its
effect on TCP performance is most
noticeable when connections are short
or when an application periodically
stops sending data and TCP would
otherwise return to slow start. Several
proposals that involve more dramatic
changes to TCP or even replace it with
a new protocol have been developed.
These have considerable potential to
fill the pipe quickly and fairly in high
bandwidth-delay environments, but
they also face higher deployment chal-
lenges. We refer the reader to the end
of this chapter for references to ongo-
ing work in this area.

case it falls back to standard slow start.
If TCP is allowed to start off sending
at a higher rate, a session could more
quickly reach the point of filling the pipe,
rather than taking many round-trip times
to do so.

Clearly one of the challenges to
this sort of enhancement to TCP is that
it requires substantially more coopera-
tion from the routers than standard TCP
does. If a single router in the path does
not support quick start, then the system
reverts to standard slow start. Thus, it
could be a long time before these types of
enhancements could make it into the In-
ternet; for now, they are more likely to be
used in controlled network environments
(e.g., research networks).

6.3.3 Fast Retransmit and
Fast Recovery

The mechanisms described so far were
part of the original proposal to add con-
gestion control to TCP. It was soon dis-
covered, however, that the coarse-grained
implementation of TCP timeouts led to
long periods of time during which the
connection went dead while waiting for
a timer to expire. Because of this, a
new mechanism called fast retransmit was
added to TCP. Fast retransmit is a heuris-
tic that sometimes triggers the retrans-
mission of a dropped packet sooner than
the regular timeout mechanism. The fast
retransmit mechanism does not replace
regular timeouts; it just enhances that fa-
cility.

The idea of fast retransmit is
straightforward. Every time a data packet
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Figure 6.12 Fast retransmit based on duplicate ACKs.

arrives at the receiving side, the receiver responds with an acknowledgment, even if this
sequence number has already been acknowledged. Thus, when a packet arrives out of
order—that is, TCP cannot yet acknowledge the data the packet contains because ear-
lier data has not yet arrived—TCP resends the same acknowledgment it sent the last
time. This second transmission of the same acknowledgment is called a duplicate ACK.
When the sending side sees a duplicate ACK, it knows that the other side must have
received a packet out of order, which suggests that an earlier packet might have been
lost. Since it is also possible that the earlier packet has only been delayed rather than
lost, the sender waits until it sees some number of duplicate ACKs and then retransmits
the missing packet. In practice, TCP waits until it has seen three duplicate ACKs before
retransmitting the packet.

Figure 6.12 illustrates how duplicate ACKs lead to a fast retransmit. In this exam-
ple, the destination receives packets 1 and 2, but packet 3 is lost in the network. Thus,
the destination will send a duplicate ACK for packet 2 when packet 4 arrives, again
when packet 5 arrives, and so on. (To simplify this example, we think in terms of packets
1, 2, 3, and so on, rather than worrying about the sequence numbers for each byte.)
When the sender sees the third duplicate ACK for packet 2—the one sent because the
receiver had gotten packet 6—it retransmits packet 3. Note that when the retransmitted
copy of packet 3 arrives at the destination, the receiver then sends a cumulative ACK for
everything up to and including packet 6 back to the source.
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Figure 6.13 Trace of TCP with fast retransmit. Colored line = CongestionWindow; solid

bullet = timeout; hash marks = time when each packet is transmitted; vertical

bars = time when a packet that was eventually retransmitted was first transmitted.

Figure 6.13 illustrates the behavior of a version of TCP with the fast retrans-
mit mechanism. It is interesting to compare this trace with that given in Figure 6.11,
where fast retransmit was not implemented—the long periods during which the con-
gestion window stays flat and no packets are sent has been eliminated. In general, this
technique is able to eliminate about half of the coarse-grained timeouts on a typical
TCP connection, resulting in roughly a 20% improvement in the throughput over what
could otherwise have been achieved. Notice, however, that the fast retransmit strategy
does not eliminate all coarse-grained timeouts. This is because for a small window size,
there will not be enough packets in transit to cause enough duplicate ACKs to be de-
livered. Given enough lost packets—for example, as happens during the initial slow
start phase—the sliding window algorithm eventually blocks the sender until a time-
out occurs. Given the current 64-KB maximum advertised window size, TCP’s fast
retransmit mechanism is able to detect up to three dropped packets per window in
practice.

Finally, there is one last improvement we can make. When the fast retrans-
mit mechanism signals congestion, rather than drop the congestion window all the
way back to one packet and run slow start, it is possible to use the ACKs that are
still in the pipe to clock the sending of packets. This mechanism, which is called
fast recovery, effectively removes the slow start phase that happens between when fast
retransmit detects a lost packet and additive increase begins. For example, fast re-
covery avoids the slow start period between 3.8 and 4 seconds in Figure 6.13 and
instead simply cuts the congestion window in half (from 22 to 11 KB) and re-
sumes additive increase. In other words, slow start is only used at the beginning
of a connection and whenever a coarse-grained timeout occurs. At all other times,
the congestion window is following a pure additive increase/multiplicative decrease
pattern.
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6.4 Congestion-Avoidance Mechanisms
It is important to understand that TCP’s strategy is to control congestion once it hap-
pens, as opposed to trying to avoid congestion in the first place. In fact, TCP repeatedly
increases the load it imposes on the network in an effort to find the point at which
congestion occurs, and then it backs off from this point. Said another way, TCP needs
to create losses to find the available bandwidth of the connection. An appealing alter-
native, but one that has not yet been widely adopted, is to predict when congestion is
about to happen and then to reduce the rate at which hosts send data just before packets
start being discarded. We call such a strategy congestion avoidance, to distinguish it from
congestion control.

This section describes three different congestion-avoidance mechanisms. The first
two take a similar approach: They put a small amount of additional functionality into
the router to assist the end node in the anticipation of congestion. The third mechanism
is very different from the first two: It attempts to avoid congestion purely from the end
nodes.

6.4.1 DECbit
The first mechanism was developed for use on the Digital Network Architecture (DNA),
a connectionless network with a connection-oriented transport protocol. This mecha-
nism could, therefore, also be applied to TCP and IP. As noted above, the idea here is to
more evenly split the responsibility for congestion control between the routers and the
end nodes. Each router monitors the load it is experiencing and explicitly notifies the
end nodes when congestion is about to occur. This notification is implemented by set-
ting a binary congestion bit in the packets that flow through the router; hence the name
DECbit. The destination host then copies this congestion bit into the ACK it sends back
to the source. Finally, the source adjusts its sending rate so as to avoid congestion. The
following discussion describes the algorithm in more detail, starting with what happens
in the router.

A single congestion bit is added to the packet header. A router sets this bit in a
packet if its average queue length is greater than or equal to 1 at the time the packet
arrives. This average queue length is measured over a time interval that spans the last
busy + idle cycle, plus the current busy cycle. (The router is busy when it is transmitting
and idle when it is not.) Figure 6.14 shows the queue length at a router as a function
of time. Essentially, the router calculates the area under the curve and divides this value
by the time interval to compute the average queue length. Using a queue length of 1
as the trigger for setting the congestion bit is a trade-off between significant queuing
(and hence higher throughput) and increased idle time (and hence lower delay). In other
words, a queue length of 1 seems to optimize the power function.
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Figure 6.14 Computing average queue length at a router.

Now turning our attention to the host half of the mechanism, the source records
how many of its packets resulted in some router setting the congestion bit. In particular,
the source maintains a congestion window, just as in TCP, and watches to see what
fraction of the last window’s worth of packets resulted in the bit being set. If less than
50% of the packets had the bit set, then the source increases its congestion window by
one packet. If 50% or more of the last window’s worth of packets had the congestion
bit set, then the source decreases its congestion window to 0.875 times the previous
value. The value 50% was chosen as the threshold based on analysis that showed it
to correspond to the peak of the power curve. The “increase by 1, decrease by 0.875”
rule was selected because additive increase/multiplicative decrease makes the mechanism
stable.

6.4.2 Random Early Detection (RED)
A second mechanism, called random early detection (RED), is similar to the DECbit
scheme in that each router is programmed to monitor its own queue length, and when it
detects that congestion is imminent, to notify the source to adjust its congestion window.
RED, invented by Sally Floyd and Van Jacobson in the early 1990s, differs from the
DECbit scheme in two major ways.

The first is that rather than explicitly sending a congestion notification message
to the source, RED is most commonly implemented such that it implicitly notifies the
source of congestion by dropping one of its packets. The source is, therefore, effec-
tively notified by the subsequent timeout or duplicate ACK. In case you haven’t already
guessed, RED is designed to be used in conjunction with TCP, which currently detects
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congestion by means of timeouts (or some other means of detecting packet loss such as
duplicate ACKs). As the “early” part of the RED acronym suggests, the gateway drops
the packet earlier than it would have to, so as to notify the source that it should decrease
its congestion window sooner than it would normally have. In other words, the router
drops a few packets before it has exhausted its buffer space completely, so as to cause
the source to slow down, with the hope that this will mean it does not have to drop
lots of packets later on. Note that RED could easily be adapted to work with an explicit
feedback scheme simply by marking a packet instead of dropping it, as discussed in the
sidebar on Explicit Congestion Notification.

The second difference between RED
and DECbit is in the details of how RED
decides when to drop a packet and what
packet it decides to drop. To understand
the basic idea, consider a simple FIFO
queue. Rather than wait for the queue
to become completely full and then be
forced to drop each arriving packet (the
tail drop policy of Section 6.2.1), we could
decide to drop each arriving packet with
some drop probability whenever the queue
length exceeds some drop level. This idea is
called early random drop. The RED algo-
rithm defines the details of how to moni-
tor the queue length and when to drop a
packet.

In the following paragraphs, we de-
scribe the RED algorithm as originally
proposed by Floyd and Jacobson. We note
that several modifications have since been
proposed both by the inventors and by
other researchers; some of these are dis-
cussed in the Further Reading section.
However, the key ideas are the same as
those presented below, and most current
implementations are close to the algorithm
that follows.

First, RED computes an average
queue length using a weighted running av-
erage similar to the one used in the original

Explicit Congestion

Notification (ECN)

While current deployments of RED
almost always signal congestion by
dropping packets, there has recently
been much attention given to whether
or not explicit notification is a better
strategy. This has led to an effort to
standardize ECN for the Internet.

The basic argument is that while
dropping a packet certainly acts as a
signal of congestion, and is probably
the right thing to do for long-lived
bulk transfers, doing so hurts appli-
cations that are sensitive to the delay
or loss of one or more packets. Inter-
active traffic such as telnet and web
browsing are prime examples. Learn-
ing of congestion through explicit no-
tification is more appropriate for such
applications.

Technically, ECN requires two
bits; the proposed standard uses bits
6 and 7 in the IP TOS field. One
is set by the source to indicate that
it is ECN-capable, that is, able to
react to a congestion notification.
The other is set by routers along the
end-to-end path when congestion is
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encountered. The latter bit is also
echoed back to the source by the
destination host. TCP running on
the source responds to the ECN bit
set in exactly the same way it re-
sponds to a dropped packet. As with
any good idea, this recent focus on
ECN has caused people to stop and
think about other ways in which net-
works can benefit from an ECN-
style exchange of information between
hosts at the edge of the networks and
routers in the middle of the network,
piggybacked on data packets. The
general strategy is sometimes called
active queue management, and recent
research seems to indicate that it is
particularly valuable to TCP flows
that have large delay-bandwidth prod-
ucts. The interested reader can pursue
the relevant references given at the end
of the chapter.

TCP timeout computation. That is, Avg-
Len is computed as

AvgLen = (1 − Weight) × AvgLen

+ Weight × SampleLen

where 0 < Weight < 1 and Sample-
Len is the length of the queue when a
sample measurement is made. In most
software implementations, the queue
length is measured every time a new
packet arrives at the gateway. In hard-
ware, it might be calculated at some fixed
sampling interval.

The reason for using an average
queue length rather than an instanta-
neous one is that it more accurately cap-
tures the notion of congestion. Because
of the bursty nature of Internet traffic,
queues can become full very quickly and
then become empty again. If a queue is
spending most of its time empty, then
it’s probably not appropriate to conclude

that the router is congested and to tell the hosts to slow down. Thus, the weighted run-
ning average calculation tries to detect long-lived congestion, as indicated in the right-
hand portion of Figure 6.15, by filtering out short-term changes in the queue length. You
can think of the running average as a low-pass filter, where Weight determines the time
constant of the filter. The question of how we pick this time constant is discussed below.

Second, RED has two queue length thresholds that trigger certain activity:
MinThreshold and MaxThreshold. When a packet arrives at the gateway, RED
compares the current AvgLen with these two thresholds, according to the following
rules:

if AvgLen ≤ MinThreshold
−→ queue the packet

if MinThreshold < AvgLen < MaxThreshold
−→ calculate probability P
−→ drop the arriving packet with probability P
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Figure 6.15 Weighted running average queue length.

Figure 6.16 RED thresholds on a FIFO queue.

if MaxThreshold ≤ AvgLen
−→ drop the arriving packet

That is, if the average queue length is smaller than the lower threshold, no action is
taken, and if the average queue length is larger than the upper threshold, then the packet
is always dropped. If the average queue length is between the two thresholds, then the
newly arriving packet is dropped with some probability P. This situation is depicted in
Figure 6.16. The approximate relationship between P and AvgLen is shown in Fig-
ure 6.17. Note that the probability of drop increases slowly when AvgLen is between
the two thresholds, reaching MaxP at the upper threshold, at which point it jumps to
unity. The rationale behind this is that if AvgLen reaches the upper threshold, then
the gentle approach (dropping a few packets) is not working and drastic measures are
called for, that is, dropping all arriving packets. Some research has suggested that a more
smooth transition from random dropping to complete dropping, rather than the discon-
tinuous approach shown here, may be appropriate.
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Figure 6.17 Drop probability function for RED.

Although Figure 6.17 shows the probability of drop as a function only of
AvgLen, the situation is actually a little more complicated. In fact, P is a function of
both AvgLen and how long it has been since the last packet was dropped. Specifically,
it is computed as follows:

TempP = MaxP × (AvgLen − MinThreshold)

(MaxThreshold − MinThreshold)

P = TempP/(1 − count × TempP)

TempP is the variable that is plotted on the y-axis in Figure 6.17. count keeps track
of how many newly arriving packets have been queued (not dropped) while AvgLen
has been between the two thresholds. P increases slowly as count increases, thereby
making a drop increasingly likely as the time since the last drop increases. This makes
closely-spaced drops relatively less likely than widely-spaced drops. This extra step in
calculating P was introduced by the inventors of RED when they observed that, without
it, the packet drops were not well distributed in time, but instead tended to occur in
clusters. Because packet arrivals from a certain connection are likely to arrive in bursts,
this clustering of drops is likely to cause multiple drops in a single connection. This is
not desirable, since only one drop per round-trip time is enough to cause a connection
to reduce its window size, whereas multiple drops might send it back into slow start.

As an example, suppose that we set MaxP to 0.02 and count is initialized to zero.
If the average queue length were halfway between the two thresholds, then TempP, and
the initial value of P, would be half of MaxP, or 0.01. An arriving packet, of course, has
a 99 in 100 chance of getting into the queue at this point. With each successive packet
that is not dropped, P slowly increases, and by the time 50 packets have arrived without
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a drop, P would have doubled to 0.02. In the unlikely event that 99 packets arrived
without loss, P reaches 1, guaranteeing that the next packet is dropped. The important
thing about this part of the algorithm is that it ensures a roughly even distribution of
drops over time.

Hopefully, if RED drops a small percentage of packets when AvgLen exceeds
MinThreshold, the effect will be to cause a few TCP connections to reduce their
window sizes, which in turn will reduce the rate at which packets arrive at the router. All
going well, AvgLen will then decrease and congestion is avoided. The queue length can
be kept short, while throughput remains high since few packets are dropped.

Note that, because RED is operating on a queue length averaged over time, it is
possible for the instantaneous queue length to be much longer than AvgLen. In this
case, if a packet arrives and there is nowhere to put it, then it will have to be dropped.
When this happens, RED is operating in tail drop mode. One of the goals of RED is to
prevent tail drop behavior if possible.

The random nature of RED confers an interesting property on the algorithm. Be-
cause RED drops packets randomly, the probability that RED decides to drop a par-
ticular flow’s packet(s) is roughly proportional to the share of the bandwidth that that
flow is currently getting at that router. This is because a flow that is sending a relatively
large number of packets is providing more candidates for random dropping. Thus, there
is some sense of fair resource allocation built into RED, although it is by no means
precise.▲

Note that a fair amount of analysis has gone into setting the various RED
parameters—for example, MaxThreshold, MinThreshold, MaxP, and Weight—
all in the name of optimizing the power function (throughput-to-delay ratio). The per-
formance of these parameters has also been confirmed through simulation, and the algo-
rithm has been shown not to be overly sensitive to them. It is important to keep in mind,
however, that all of this analysis and simulation hinges on a particular characterization
of the network workload. The real contribution of RED is a mechanism by which the
router can more accurately manage its queue length. Defining precisely what constitutes
an optimal queue length depends on the traffic mix and is still a subject of research,
with real information now being gathered from operational deployment of RED in the
Internet.

Consider the setting of the two thresholds, MinThreshold and MaxThresh-
old. If the traffic is fairly bursty, then MinThreshold should be sufficiently large to
allow the link utilization to be maintained at an acceptably high level. Also, the difference
between the two thresholds should be larger than the typical increase in the calculated
average queue length in one RTT. Setting MaxThreshold to twice MinThreshold
seems to be a reasonable rule of thumb given the traffic mix on today’s Internet. In
addition, since we expect the average queue length to hover between the two thresh-
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olds during periods of high load, there should be enough free buffer space above Max-
Threshold to absorb the natural bursts that occur in Internet traffic without forcing
the router to enter tail drop mode.

We noted above that Weight determines the time constant for the running average
low-pass filter, and this gives us a clue as to how we might pick a suitable value for it.
Recall that RED is trying to send signals to TCP flows by dropping packets during times
of congestion. Suppose that a router drops a packet from some TCP connection and
then immediately forwards some more packets from the same connection. When those
packets arrive at the receiver, it starts sending duplicate ACKs to the sender. When the
sender sees enough duplicate ACKs, it will reduce its window size. So from the time
the router drops a packet until the time when the same router starts to see some relief
from the affected connection in terms of a reduced window size, at least one round-
trip time must elapse for that connection. There is probably not much point in having
the router respond to congestion on timescales much less than the round-trip time of
the connections passing through it. As noted previously, 100 ms is not a bad estimate
of average round-trip times in the Internet. Thus, Weight should be chosen such that
changes in queue length over timescales much less than 100 ms are filtered out.

Since RED works by sending signals to TCP flows to tell them to slow down, you
might wonder what would happen if those signals are ignored. This is often called the
“unresponsive flow” problem, and it has been a matter of some concern for several years.
Unresponsive flows use more than their “fair share” of network resources, and could
cause congestive collapse if there were enough of them, just as in the days before TCP
congestion control. Some of the techniques described in Section 6.5 can help with this
problem by isolating certain classes of traffic from others. There is also the possibility
that a variant of RED could drop more heavily from flows that are unresponsive to the
initial hints that it sends; this continues to be an area of active research.

6.4.3 Source-Based Congestion Avoidance
Unlike the two previous congestion-avoidance schemes, which depended on new mech-
anisms in the routers, we now describe a strategy for detecting the incipient stages of
congestion—before losses occur—from the end hosts. We first give a brief overview of a
collection of related mechanisms that use different information to detect the early stages
of congestion, and then we describe a specific mechanism in some detail.

The general idea of these techniques is to watch for some sign from the network
that some router’s queue is building up and that congestion will happen soon if noth-
ing is done about it. For example, the source might notice that as packet queues build
up in the network’s routers, there is a measurable increase in the RTT for each succes-
sive packet it sends. One particular algorithm exploits this observation as follows: The
congestion window normally increases as in TCP, but every two round-trip delays the
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algorithm checks to see if the current RTT is greater than the average of the minimum
and maximum RTTs seen so far. If it is, then the algorithm decreases the congestion
window by one-eighth.

A second algorithm does something similar. The decision as to whether or not to
change the current window size is based on changes to both the RTT and the window
size. The window is adjusted once every two round-trip delays based on the product

(CurrentWindow − OldWindow)

×(CurrentRTT − OldRTT)

If the result is positive, the source decreases the window size by one-eighth; if the result
is negative or 0, the source increases the window by one maximum packet size. Note

Tahoe, Reno, and Vegas

The name “TCP Vegas” is a take-off
on earlier implementations of TCP
that were distributed in releases of 4.3
BSD Unix. These releases were known
as Tahoe and Reno (which, like Las
Vegas, are places in Nevada), and
the versions of TCP became known
by the names of the BSD release.
TCP Tahoe, which is also known as
BSD Network Release 1.0 (BNR1),
corresponds to the original imple-
mentation of Jacobson’s congestion-
control mechanism and includes all
of the mechanisms described in Sec-
tion 6.3 except fast recovery. TCP
Reno, which is also known as BSD
Network Release 2.0 (BNR2), adds
the fast recovery mechanism, along
with an optimization known as header
prediction—optimizing for the com-
mon case that segments arrive in or-
der. TCP Reno also supports delayed
ACKs—acknowledging every other seg-
ment rather than every segment—
although this is a selectable option

that the window changes during every ad-
justment, that is, it oscillates around its
optimal point.

Another change seen as the network
approaches congestion is the flattening of
the sending rate. A third scheme takes
advantage of this fact. Every RTT, it in-
creases the window size by one packet
and compares the throughput achieved
to the throughput when the window
was one packet smaller. If the differ-
ence is less than one-half the through-
put achieved when only one packet was
in transit—as was the case at the begin-
ning of the connection—the algorithm
decreases the window by one packet.
This scheme calculates the throughput
by dividing the number of bytes out-
standing in the network by the RTT.
A fourth mechanism, the one we are go-
ing to describe in more detail, is similar
to this last algorithm in that it looks at
changes in the throughput rate, or more
specifically, changes in the sending rate.
However, it differs from the third algo-
rithm in the way it calculates throughput,
and instead of looking for a change in
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the slope of the throughput, it compares the measured throughput rate with an expected
throughput rate. The algorithm, which is called TCP Vegas, is not widely deployed in
the Internet, but the strategy it takes continues to be studied. (See the Further Reading
section for additional information.)

The intuition behind the Vegas algorithm can be seen in the trace of standard TCP
given in Figure 6.18. (See the sidebar for an explanation of the name TCP Vegas.) The
top graph shown in Figure 6.18 traces the connection’s congestion window; it shows
the same information as the traces given earlier in this section. The middle and bottom
graphs depict new information: The middle graph shows the average sending rate as mea-

that is sometimes turned off. A more
recent version of TCP distributed in
4.4 BSD Unix adds the “big windows”
extensions described in Section 5.2.

One point you should take away
from this discussion of TCP’s lineage
is that TCP has been a rather fluid
protocol over the last several years,
especially in its congestion-control
mechanism. In fact, you would not
even find universal agreement about
which technique was introduced in
which release, due to the availability of
intermediate versions of the code and
the fact that patch has been layered on
top of patch.

All that can be said with any cer-
tainty is that any two implementations
of TCP that follow the original spec-
ification, while they should interoper-
ate, will not necessarily perform well.
Recognizing the performance impli-
cations of having TCP Tahoe inter-
operate with TCP Reno is a tricky
business. In other words, you could ar-
gue that TCP is no longer defined by
a specification, but rather by an im-
plementation. The only question is,
which implementation?

sured at the source, and the bottom
graph shows the average queue length
as measured at the bottleneck router. All
three graphs are synchronized in time. In
the period between 4.5 and 6.0 seconds
(shaded region), the congestion window
increases (top graph). We expect the
observed throughput to also increase,
but instead it stays flat (middle graph).
This is because the throughput cannot
increase beyond the available bandwidth.
Beyond this point, any increase in the
window size only results in packets
taking up buffer space at the bottleneck
router (bottom graph).

A useful metaphor that describes
the phenomenon illustrated in Fig-
ure 6.18 is driving on ice. The speedome-
ter (congestion window) may say that you
are going 30 miles an hour, but by look-
ing out the car window and seeing people
pass you on foot (measured sending rate),
you know that you are going no more
than 5 miles an hour. The extra energy
is being absorbed by the car’s tires (router
buffers).

TCP Vegas uses this idea to measure
and control the amount of extra data this
connection has in transit, where by “extra
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Figure 6.18 Congestion window versus observed throughput rate (the three graphs

are synchronized). Top, congestion window; middle, observed throughput; bottom,

buffer space taken up at the router. Colored line = CongestionWindow; solid bullet =

timeout; hash marks = time when each packet is transmitted; vertical bars = time when

a packet that was eventually retransmitted was first transmitted.

data” we mean data that the source would not have transmitted had it been trying to
match exactly the available bandwidth of the network. The goal of TCP Vegas is to main-
tain the “right” amount of extra data in the network. Obviously, if a source is sending too
much extra data, it will cause long delays and possibly lead to congestion. Less obviously,
if a connection is sending too little extra data, it cannot respond rapidly enough to tran-
sient increases in the available network bandwidth. TCP Vegas’s congestion-avoidance
actions are based on changes in the estimated amount of extra data in the network, not
only on dropped packets. We now describe the algorithm in detail.

First, define a given flow’s BaseRTT to be the RTT of a packet when the flow is
not congested. In practice, TCP Vegas sets BaseRTT to the minimum of all measured
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Evaluating a New Congestion-

Control Mechanism

Suppose you develop a new conges-
tion-control mechanism and want to
evaluate its performance. For exam-
ple, you might want to compare it
to the current mechanism running on
the Internet. How do you go about
measuring and evaluating your mech-
anism? Although at one time the In-
ternet’s primary purpose in life was
to support networking research, today
it is a large production network and
therefore completely inappropriate for
running a controlled experiment.

If your approach is purely end-
to-end—that is, if it assumes only
FIFO routers within the Internet—
then it is possible to run your con-
gestion-control mechanism on a small
set of hosts and to measure the
throughput your connections are able
to achieve. We need to add a word
of caution here, however. It is sur-
prisingly easy to invent a congestion-
control mechanism that achieves five
times the throughput of TCP across
the Internet. You simply blast pack-
ets into the Internet at a high rate,
thereby causing congestion. All the
other hosts running TCP detect this
congestion and reduce the rate at
which they are sending packets. Your
mechanism then happily consumes
all the bandwidth. This strategy is
fast but hardly fair. Experimenting
directly on the Internet, even when
done carefully, will not work when

round-trip times; it is commonly the
RTT of the first packet sent by the con-
nection, before the router queues increase
due to traffic generated by this flow. If we
assume that we are not overflowing the
connection, then the expected through-
put is given by

ExpectedRate

= CongestionWindow
BaseRTT

where CongestionWindow is the TCP
congestion window, which we assume
(for the purpose of this discussion) to be
equal to the number of bytes in transit.

Second, TCP Vegas calculates the
current sending rate, ActualRate. This
is done by recording the sending time
for a distinguished packet, recording how
many bytes are transmitted between the
time that packet is sent and when its
acknowledgment is received, computing
the sample RTT for the distinguished
packet when its acknowledgment arrives,
and dividing the number of bytes trans-
mitted by the sample RTT. This calcula-
tion is done once per round-trip time.

Third, TCP Vegas compares Actu-
alRate to ExpectedRate and adjusts
the window accordingly. We let Diff =
ExpectedRate − ActualRate. Note
that Diff is positive or 0 by definition,
since ActualRate > ExpectedRate
implies that we need to change BaseRTT
to the latest sampled RTT. We also de-
fine two thresholds, α < β , roughly cor-
responding to having too little and too
much extra data in the network, respec-
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your congestion-control mechanism
involves changes to the routers. It is
simply not practical to change the
software running on thousands of
routers for the sake of evaluating a
new congestion-control algorithm. In
this case, network designers are forced
to test their systems on simulated net-
works or private testbed networks. For
example, the TCP traces presented in
this chapter were generated by an im-
plementation of TCP that was run-
ning on a network simulator. The
challenge in either a simulation or a
testbed is coming up with a topology
and a traffic workload that are repre-
sentative of the real Internet.

tively. When Diff < α, TCP Vegas in-
creases the congestion window linearly
during the next RTT, and when Diff >

β , TCP Vegas decreases the congestion
window linearly during the next RTT.
TCP Vegas leaves the congestion window
unchanged when α < Diff < β .

Intuitively, we can see that the far-
ther away the actual throughput gets
from the expected throughput, the more
congestion there is in the network, which
implies that the sending rate should be
reduced. The β threshold triggers this
decrease. On the other hand, when the
actual throughput rate gets too close to
the expected throughput, the connection
is in danger of not utilizing the available
bandwidth. The α threshold triggers this increase. The overall goal is to keep between α

and β extra bytes in the network.
Figure 6.19 traces the TCP Vegas congestion-avoidance algorithm. The top graph

traces the congestion window, showing the same information as the other traces given
throughout this chapter. The bottom graph traces the expected and actual throughput
rates that govern how the congestion window is set. It is this bottom graph that best
illustrates how the algorithm works. The colored line tracks the ExpectedRate, while
the black line tracks the ActualRate. The wide shaded strip gives the region between the
α and β thresholds; the top of the shaded strip is α KBps away from ExpectedRate,
and the bottom of the shaded strip is β KBps away from ExpectedRate. The goal
is to keep the ActualRate between these two thresholds, that is, within the shaded
region. Whenever ActualRate falls below the shaded region (i.e., gets too far from
ExpectedRate), TCP Vegas decreases the congestion window because it fears that too
many packets are being buffered in the network. Likewise, whenever ActualRate goes
above the shaded region (i.e., gets too close to the ExpectedRate), TCP Vegas increases
the congestion window because it fears that it is underutilizing the network.

Because the algorithm, as just presented, compares the difference between the ac-
tual and expected throughput rates to the α and β thresholds, these two thresholds are
defined in terms of KBps. However, it is perhaps more accurate to think in terms of
how many extra buffers the connection is occupying in the network. For example, on a
connection with a BaseRTT of 100 ms and a packet size of 1 KB, if α = 30 KBps and
β = 60 KBps, then we can think of α as specifying that the connection needs to be occu-
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Figure 6.19 Trace of TCP Vegas congestion-avoidance mechanism. Top, congestion

window; bottom, expected (colored line) and actual (black line) throughput. The

shaded area is the region between the α and β thresholds.

pying at least three extra buffers in the network and β as specifying that the connection
should occupy no more than six extra buffers in the network. In practice, a setting of α

to one buffer and β to three buffers works well.
Finally, you will notice that TCP Vegas decreases the congestion window linearly,

seemingly in conflict with the rule that multiplicative decrease is needed to ensure stabil-
ity. The explanation is that TCP Vegas does use multiplicative decrease when a timeout
occurs; the linear decrease just described is an early decrease in the congestion window
that, hopefully, happens before congestion occurs and packets start being dropped.

6.5 Quality of Service
For many years, packet-switched networks have offered the promise of supporting mul-
timedia applications, that is, those that combine audio, video, and data. After all, once
digitized, audio and video information become just another form of data—a stream of
bits to be transmitted. One obstacle to the fulfillment of this promise has been the need
for higher-bandwidth links. Recently, however, improvements in coding have reduced
the bandwidth needs of audio and video applications, while at the same time link speeds
have increased.
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There is more to transmitting audio and video over a network than just providing
sufficient bandwidth, however. Participants in a telephone conversation, for example,
expect to be able to converse in such a way that one person can respond to something said
by the other and be heard almost immediately. Thus, the timeliness of delivery can be
very important. We refer to applications that are sensitive to the timeliness of data as real-
time applications. Voice and video applications tend to be the canonical examples, but
there are others such as industrial control—you would like a command sent to a robot
arm to reach it before the arm crashes into something. Even file transfer applications
can have timeliness constraints, such as a requirement that a database update complete
overnight before the business that needs the data resumes on the next day.

The distinguishing characteristic of real-time applications is that they need some
sort of assurance from the network that data is likely to arrive on time (for some definition
of “on time”). Whereas a non-real-time application can use an end-to-end retransmission
strategy to make sure that data arrives correctly, such a strategy cannot provide timeliness:
Retransmission only adds to total latency if data arrives late. Timely arrival must be
provided by the network itself (the routers), not just at the network edges (the hosts).
We therefore conclude that the best-effort model, in which the network tries to deliver
your data but makes no promises and leaves the cleanup operation to the edges, is not
sufficient for real-time applications. What we need is a new service model in which
applications that need higher assurances can ask the network for them. The network
may then respond by providing an assurance that it will do better or perhaps by saying
that it cannot promise anything better at the moment. Note that such a service model
is a superset of the current model: Applications that are happy with best-effort service
should be able to use the new service model; their requirements are just less stringent.
This implies that the network will treat some packets differently from others—something
that is not done in the best-effort model. A network that can provide these different levels
of service is often said to support quality of service (QoS).

6.5.1 Application Requirements
Before looking at the various protocols and mechanisms that may be used to provide
quality of service to applications, we should try to understand what the needs of those
applications are. To begin, we can divide applications into two types: real-time and non-
real-time. The latter are sometimes called “traditional data” applications, since they have
traditionally been the major applications found on data networks. They include most
popular applications like Telnet, FTP, email, web browsing, and so on. All of these ap-
plications can work without guarantees of timely delivery of data. Another term for this
nonreal-time class of applications is elastic, since they are able to stretch gracefully in
the face of increased delay. Note that these applications can benefit from shorter-length
delays, but they do not become unusable as delays increase. Also note that their delay
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Figure 6.20 An audio application.

requirements vary from the interactive applications like Telnet to more asynchronous
ones like email, with interactive bulk transfers like FTP in the middle.

Real-Time Audio Example
As a concrete example of a real-time application, consider an audio application similar
to the one illustrated in Figure 6.20. Data is generated by collecting samples from a mi-
crophone and digitizing them using an analog-to-digital (A → D) converter. The digital
samples are placed in packets, which are transmitted across the network and received at
the other end. At the receiving host, the data must be played back at some appropriate
rate. For example, if the voice samples were collected at a rate of one per 125 µs, they
should be played back at the same rate. Thus, we can think of each sample as having a
particular playback time: the point in time at which it is needed in the receiving host. In
the voice example, each sample has a playback time that is 125 µs later than the pre-
ceding sample. If data arrives after its appropriate playback time, either because it was
delayed in the network or because it was dropped and subsequently retransmitted, it is
essentially useless. It is the complete worthlessness of late data that characterizes real-time
applications. In elastic applications, it might be nice if data turns up on time, but we can
still use it when it does not.

One way to make our voice application work would be to make sure that all samples
take exactly the same amount of time to traverse the network. Then, since samples are
injected at a rate of one per 125 µs, they will appear at the receiver at the same rate, ready
to be played back. However, it is generally difficult to guarantee that all data traversing
a packet-switched network will experience exactly the same delay. Packets encounter
queues in switches or routers and the lengths of these queues vary with time, meaning
that the delays tend to vary with time, and as a consequence, are potentially different
for each packet in the audio stream. The way to deal with this at the receiver end is to
buffer up some amount of data in reserve, thereby always providing a store of packets
waiting to be played back at the right time. If a packet is delayed a short time, it goes in
the buffer until its playback time arrives. If it gets delayed a long time, then it will not
need to be stored for very long in the receiver’s buffer before being played back. Thus,
we have effectively added a constant offset to the playback time of all packets as a form
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Figure 6.21 A playback buffer.

of insurance. We call this offset the playback point. The only time we run into trouble
is if packets get delayed in the network for such a long time that they arrive after their
playback time, causing the playback buffer to be drained.

The operation of a playback buffer is illustrated in Figure 6.21. The left-hand
diagonal line shows packets being generated at a steady rate. The wavy line shows when
the packets arrive, some variable amount of time after they were sent, depending on what
they encountered in the network. The right-hand diagonal line shows the packets being
played back at a steady rate, after sitting in the playback buffer for some period of time.
As long as the playback line is far enough to the right in time, the variation in network
delay is never noticed by the application. However, if we move the playback line a little
to the left, then some packets will begin to arrive too late to be useful.

For our audio application, there are limits to how far we can delay playing back
data. It is hard to carry on a conversation if the time between when you speak and when
your listener hears you is more than 300 ms. Thus, what we want from the network in
this case is a guarantee that all our data will arrive within 300 ms. If data arrives early, we
buffer it until its correct playback time. If it arrives late, we have no use for it and must
discard it.

To get a better appreciation of how variable network delay can be, Figure 6.22
shows the one-way delay measured over a certain path across the Internet over the course
of one particular day. While the exact numbers would vary depending on the path and
the date, the key factor here is the variability of the delay, which is consistently found on
almost any path at any time. As denoted by the cumulative percentages given across the
top of the graph, 97% of the packets in this case had a latency of 100 ms or less. This
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Figure 6.22 Example distribution of delays for an Internet connection.

means that if our example audio application were to set the playback point at 100 ms,
then on average, 3 out of every 100 packets would arrive too late to be of any use. One
important thing to notice about this graph is that the tail of the curve—how far it extends
to the right—is very long. We would have to set the playback point at over 200 ms to
ensure that all packets arrived in time.

Taxonomy of Real-Time Applications
Now that we have a concrete idea of how real-time applications work, we can look at
some different classes of applications, which serve to motivate our service model. The
following taxonomy owes much to the work of Clark, Braden, Shenker, and Zhang,
whose papers on this subject can be found in the Further Reading section for this chapter.
The taxonomy of applications is summarized in Figure 6.23.

The first characteristic by which we can categorize applications is their tolerance
of loss of data, where “loss” might occur because a packet arrived too late to be played
back as well as arising from the usual causes in the network. On the one hand, one
lost audio sample can be interpolated from the surrounding samples with relatively little
effect on the perceived audio quality. It is only as more and more samples are lost that
quality declines to the point that the speech becomes incomprehensible. On the other
hand, a robot control program is likely to be an example of a real-time application that
cannot tolerate loss—losing the packet that contains the command instructing the robot
arm to stop is unacceptable. Thus, we can categorize real-time applications as tolerant
or intolerant depending on whether they can tolerate occasional loss. (As an aside, note
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Figure 6.23 Taxonomy of applications.

that many real-time applications are more tolerant of occasional loss than nonreal-time
applications. For example, compare our audio application to FTP, where the uncorrected
loss of one bit might render a file completely useless.)

A second way to characterize real-time applications is by their adaptability. For
example, an audio application might be able to adapt to the amount of delay that pack-
ets experience as they traverse the network. If we notice that packets are almost always
arriving within 300 ms of being sent, then we can set our playback point accordingly,
buffering any packets that arrive in less than 300 ms. Suppose that we subsequently
observe that all packets are arriving within 100 ms of being sent. If we moved up our
playback point to 100 ms, then the users of the application would probably perceive an
improvement. The process of shifting the playback point would actually require us to
play out samples at an increased rate for some period of time. With a voice application,
this can be done in a way that is barely perceptible simply by shortening the silences be-
tween words. Thus, playback point adjustment is fairly easy in this case, and it has been
effectively implemented for several voice applications such as the audio teleconferencing
program known as vat. Note that playback point adjustment can happen in either di-
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rection, but that doing so actually involves distorting the played-back signal during the
period of adjustment, and that the effects of this distortion will very much depend on
how the end user uses the data.

Observe that if we set our playback point on the assumption that all packets will
arrive within 100 ms and then find that some packets are arriving slightly late, we will
have to drop them, whereas we would not have had to drop them if we had left the
playback point at 300 ms. Thus, we should advance the playback point only when it
provides a perceptible advantage and only when we have some evidence that the number
of late packets will be acceptably small. We may do this because of observed recent history
or because of some assurance from the network.

We call applications that can adjust their playback point delay-adaptive applica-
tions. Another class of adaptive applications are rate adaptive. For example, many video
coding algorithms can trade-off bit rate versus quality. Thus, if we find that the network
can support a certain bandwidth, we can set our coding parameters accordingly. If more
bandwidth becomes available later, we can change parameters to increase the quality.

Approaches to QoS Support

Considering this rich space of application requirements, what we need is a richer service
model that meets the needs of any application. This leads us to a service model with
not just one class (best effort), but with several classes, each available to meet the needs
of some set of applications. Toward this end, we are now ready to look at some of the
approaches that have been developed to provide a range of qualities of service. These can
be divided into two broad categories:

■ Fine-grained approaches, which provide QoS to individual applications or flows;

■ Coarse-grained approaches, which provide QoS to large classes of data or aggre-
gated traffic.

In the first category we find “Integrated Services,” a QoS architecture developed
in the IETF and often associated with RSVP (Resource Reservation Protocol). ATM’s
approach to QoS was also in this category. In the second category lies “Differentiated
Services,” which is probably the most widely deployed QoS mechanism at the time of
writing. We discuss these in turn in the next two subsections.

Finally, adding QoS support to the network isn’t necessarily the entire story about
supporting real-time applications. We conclude our discussion by revisiting what the end
host might do to better support real-time streams, independent of how widely deployed
QoS mechanisms like Integrated or Differentiated Services become.



506 6 Congestion Control and Resource Allocation

6.5.2 Integrated Services (RSVP)
The term “Integrated Services” (often called IntServ for short) refers to a body of work
that was produced by the IETF around 1995–1997. The IntServ working group devel-
oped specifications of a number of service classes designed to meet the needs of some of
the application types described above. It also defined how RSVP could be used to make
reservations using these service classes. The following paragraphs provide an overview of
these specifications and the mechanisms that are used to implement them.

Service Classes

One of the service classes is designed for intolerant applications. These applications re-
quire that a packet never arrive late. The network should guarantee that the maximum
delay that any packet will experience has some specified value; the application can then
set its playback point so that no packet will ever arrive after its playback time. We assume
that early arrival of packets can always be handled by buffering. This service is referred
to as the guaranteed service.

In addition to the guaranteed service, the IETF considered several other services,
but eventually settled on one to meet the needs of tolerant, adaptive applications. The
service is known as controlled load and was motivated by the observation that existing
applications of this type run quite well on networks that are not heavily loaded. The
audio application vat, for example, adjusts its playback point as network delay varies,
and produces reasonable audio quality as long as loss rates remain on the order of 10%
or less.

The aim of the controlled load service is to emulate a lightly loaded network for
those applications that request the service, even though the network as a whole may in
fact be heavily loaded. The trick to this is to use a queuing mechanism such as WFQ (see
Section 6.2) to isolate the controlled load traffic from the other traffic, and some form
of admission control to limit the total amount of controlled load traffic on a link such
that the load is kept reasonably low. We discuss admission control in more detail below.

Clearly, these two service classes are a subset of all the classes that might be pro-
vided. It remains to be seen as Integrated Services are deployed whether these two are
adequate to meet the needs of all the application types described above.

Overview of Mechanisms

Now that we have augmented our best-effort service model with some new service classes,
the next question is how we implement a network that provides these services to applica-
tions. This section outlines the key mechanisms. Keep in mind while reading this section
that the mechanisms being described are still being hammered out by the Internet design
community. The main thing to take away from the discussion is a general understanding
of the pieces involved in supporting the service model outlined above.
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First, whereas with a best-effort service we can just tell the network where we want
our packets to go and leave it at that, a real-time service involves telling the network
something more about the type of service we require. We may give it qualitative infor-
mation such as “use a controlled load service,” or quantitative information such as “I need
a maximum delay of 100 ms.” In addition to describing what we want, we need to tell
the network something about what we are going to inject into it, since a low-bandwidth
application is going to require fewer network resources than a high-bandwidth applica-
tion. The set of information that we provide to the network is referred to as a flowspec.
This name comes from the idea that a set of packets associated with a single application
and that share common requirements is called a flow, consistent with our use of the term
“flow” in Section 6.1.

Second, when we ask the network to provide us with a particular service, the net-
work needs to decide if it can in fact provide that service. For example, if 10 users ask for
a service in which each will consistently use 2 Mbps of link capacity, and they all share
a link with 10-Mbps capacity, the network will have to say no to some of them. The
process of deciding when to say no is called admission control.

Third, we need a mechanism by which the users of the network and the compo-
nents of the network itself exchange information such as requests for service, flowspecs,
and admission control decisions. This is sometimes called signalling, but since that word
has several meanings, we refer to this process as resource reservation, and it is achieved
using a resource reservation protocol.

Finally, when flows and their requirements have been described, and admission
control decisions have been made, the network switches and routers need to meet the
requirements of the flows. A key part of meeting these requirements is managing the way
packets are queued and scheduled for transmission in the switches and routers. This last
mechanism is packet scheduling.

Flowspecs

There are two separable parts to the flowspec: the part that describes the flow’s traffic
characteristics (called the TSpec) and the part that describes the service requested from
the network (the RSpec). The RSpec is very service-specific and relatively easy to describe.
For example, with a controlled load service, the RSpec is trivial: The application just re-
quests controlled load service with no additional parameters. With a guaranteed service,
you could specify a delay target or bound. (In the IETF’s guaranteed service specification,
you specify not a delay but another quantity from which delay can be calculated.)

The TSpec is a little more complicated. As our example above showed, we need
to give the network enough information about the bandwidth used by the flow to al-
low intelligent admission control decisions to be made. For most applications, however,
the bandwidth is not a single number; it is something that varies constantly. A video
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application, for example, will generally generate more bits per second when the scene
is changing rapidly than when it is still. Just knowing the long-term average bandwidth
is not enough, as the following example illustrates. Suppose that we have 10 flows that
arrive at a switch on separate input ports and that all leave on the same 10-Mbps link.
Assume that over some suitably long interval each flow can be expected to send no more
than 1 Mbps. You might think that this presents no problem. However, if these are vari-
able bit rate applications, such as compressed video, then they will occasionally send
more than their average rates. If enough sources send at above their average rates, then
the total rate at which data arrives at the switch will be greater than 10 Mbps. This
excess data will be queued before it can be sent on the link. The longer this condition
persists, the longer the queue will get. Packets might have to be dropped, and even if it
doesn’t come to that, data sitting in the queue is being delayed. If packets are delayed
long enough, the service that was requested will not be provided.

Exactly how we manage our queues to control delay and avoid dropping packets is
something we discuss below. However, note here that we need to know something about
how the bandwidth of our sources varies with time. One way to describe the bandwidth
characteristics of sources is called a token bucket filter. Such a filter is described by two
parameters: a token rate r, and a bucket depth B. It works as follows. To be able to send
a byte, I must have a token. To send a packet of length n, I need n tokens. I start with
no tokens and I accumulate them at a rate of r per second. I can accumulate no more
than B tokens. What this means is that I can send a burst of as many as B bytes into
the network as fast as I want, but over a sufficiently long interval, I can’t send more than
r bytes per second. It turns out that this information is very helpful to the admission
control algorithm when it tries to figure out whether it can accommodate a new request
for service.

Figure 6.24 illustrates how a token bucket can be used to characterize a flow’s
bandwidth requirements. For simplicity, assume that each flow can send data as individ-
ual bytes rather than as packets. Flow A generates data at a steady rate of 1 MBps, so it
can be described by a token bucket filter with a rate r = 1 MBps and a bucket depth of
1 byte. This means that it receives tokens at a rate of 1 MBps but that it cannot store
more than 1 token—it spends them immediately. Flow B also sends at a rate that aver-
ages out to 1 MBps over the long term, but does so by sending at 0.5 MBps for 2 seconds
and then at 2 MBps for 1 second. Since the token bucket rate r is, in a sense, a long-term
average rate, flow B can be described by a token bucket with a rate of 1 MBps. Unlike
flow A, however, flow B needs a bucket depth B of at least 1 MB, so that it can store up
tokens while it sends at less than 1 MBps to be used when it sends at 2 MBps. For the
first 2 seconds in this example, it receives tokens at a rate of 1 MBps but spends them at
only 0.5 MBps, so it can save up 2 × 0.5 = 1 MB of tokens, which it then spends in the
third second (along with the new tokens that continue to accrue in that second) to send
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Figure 6.24 Two flows with equal average rates but different token bucket

descriptions.

data at 2 MBps. At the end of the third second, having spent the excess tokens, it starts
to save them up again by sending at 0.5 MBps again.

It is interesting to note that a single flow can be described by many different token
buckets. As a trivial example, flow A could be described by the same token bucket as
flow B, with a rate of 1 MBps and a bucket depth of 1 MB. The fact that it never
actually needs to accumulate tokens does not make that an inaccurate description, but
it does mean that we have failed to convey some useful information to the network—
the fact that flow A is actually very consistent in its bandwidth needs. In general, it is
good to be as explicit about the bandwidth needs of an application as possible, to avoid
overallocation of resources in the network.

Admission Control
The idea behind admission control is simple: When some new flow wants to receive a
particular level of service, admission control looks at the TSpec and RSpec of the flow
and tries to decide if the desired service can be provided to that amount of traffic, given
the currently available resources, without causing any previously admitted flow to receive
worse service than it had requested. If it can provide the service, the flow is admitted; if
not, then it is denied. The hard part is figuring out when to say yes and when to say no.

Admission control is very dependent on the type of requested service and on the
queuing discipline employed in the routers; we discuss the latter topic later in this sec-
tion. For a guaranteed service, you need to have a good algorithm to make a definitive
yes/no decision. The decision is fairly straightforward if weighted fair queuing, as dis-
cussed in Section 6.2, is used at each router. For a controlled load service, the decision
may be based on heuristics, such as “The last time I allowed a flow with this TSpec into
this class, the delays for the class exceeded the acceptable bound, so I’d better say no,” or
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“My current delays are so far inside the bounds that I should be able to admit another
flow without difficulty.”

Admission control should not be confused with policing. The former is a per-flow
decision to admit a new flow or not. The latter is a function applied on a per-packet basis
to make sure that a flow conforms to the TSpec that was used to make the reservation. If
a flow does not conform to its TSpec—for example, because it is sending twice as many
bytes per second as it said it would—then it is likely to interfere with the service provided
to other flows, and some corrective action must be taken. There are several options, the
obvious one being to drop offending packets. However, another option would be to
check if the packets really are interfering with the service of other flows. If they are not
interfering, the packets could be sent on after being marked with a tag that says, in effect,
“This is a nonconforming packet. Drop it first if you need to drop any packets.”

Admission control is closely related to the important issue of policy. For example, a
network administrator might wish to allow reservations made by his company’s CEO to
be admitted while rejecting reservations made by more lowly employees. Of course, the
CEO’s reservation request might still fail if the requested resources aren’t available, so we
see that issues of policy and resource availability may both be addressed when admission
control decisions are made. The application of policy to networking is an area receiving
much attention at the time of writing.

Reservation Protocol

While connection-oriented networks have always needed some sort of setup protocol to
establish the necessary virtual circuit state in the switches, connectionless networks like
the Internet have had no such protocols. As this section has indicated, however, we need
to provide a lot more information to our network when we want a real-time service from
it. While there have been a number of setup protocols proposed for the Internet, the
one on which most current attention is focused is called Resource Reservation Protocol
(RSVP). It is particularly interesting because it differs so substantially from conventional
signalling protocols for connection-oriented networks.

One of the key assumptions underlying RSVP is that it should not detract from the
robustness that we find in today’s connectionless networks. Because connectionless net-
works rely on little or no state being stored in the network itself, it is possible for routers
to crash and reboot and for links to go up and down while end-to-end connectivity is
still maintained. RSVP tries to maintain this robustness by using the idea of soft state
in the routers. Soft state—in contrast to the hard state found in connection-oriented
networks—does not need to be explicitly deleted when it is no longer needed. Instead, it
times out after some fairly short period (say, a minute) if it is not periodically refreshed.
We will see later how this helps robustness.
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Another important characteristic of RSVP is that it aims to support multicast
flows just as effectively as unicast flows. This is not surprising, since many of the first
applications that could benefit from improved quality of service were also multicast
applications—vat and vic, for example. One of the insights of RSVP’s designers is that
most multicast applications have many more receivers than senders, as typified by the
large audience and one speaker for a lecture. Also, receivers may have different require-
ments. For example, one receiver might want to receive data from only one sender, while
others might wish to receive data from all senders. Rather than having the senders keep
track of a potentially large number of receivers, it makes more sense to let the receivers
keep track of their own needs. This suggests the receiver-oriented approach adopted by
RSVP. In contrast, connection-oriented networks usually leave resource reservation to
the sender, just as it is normally the originator of a phone call who causes resources to be
allocated in the phone network.

The soft state and receiver-oriented nature of RSVP give it a number of nice prop-
erties. One nice property is that it is very straightforward to increase or decrease the level
of resource allocation provided to a receiver. Since each receiver periodically sends refresh
messages to keep the soft state in place, it is easy to send a new reservation that asks for
a new level of resources. In the event of a host crash, resources allocated by that host
to a flow will naturally time out and be released. To see what happens in the event of a
router or link failure, we need to look a little more closely at the mechanics of making a
reservation.

Initially, consider the case of one sender and one receiver trying to get a reservation
for traffic flowing between them. There are two things that need to happen before a
receiver can make the reservation. First, the receiver needs to know what traffic the sender
is likely to send so that it can make an appropriate reservation. That is, it needs to know
the sender’s TSpec. Second, it needs to know what path the packets will follow from
sender to receiver, so that it can establish a resource reservation at each router on the
path. Both of these requirements can be met by sending a message from the sender to the
receiver that contains the TSpec. Obviously, this gets the TSpec to the receiver. The other
thing that happens is that each router looks at this message (called a PATH message) as
it goes past, and it figures out the reverse path that will be used to send reservations from
the receiver back to the sender in an effort to get the reservation to each router on the
path. Building the multicast tree in the first place is done by mechanisms such as those
described in Section 4.4.

Having received a PATH message, the receiver sends a reservation back “up” the
multicast tree in an RESV message. This message contains the sender’s TSpec and an
RSpec describing the requirements of this receiver. Each router on the path looks at
the reservation request and tries to allocate the necessary resources to satisfy it. If the
reservation can be made, the RESV request is passed on to the next router. If not, an
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error message is returned to the receiver who made the request. If all goes well, the
correct reservation is installed at every router between the sender and the receiver. As
long as the receiver wants to retain the reservation, it sends the same RESV message
about once every 30 seconds.

Now we can see what happens when a router or link fails. Routing protocols will
adapt to the failure and create a new path from sender to receiver. PATH messages are
sent about every 30 seconds, and may be sent sooner if a router detects a change in its
forwarding table, so the first one after the new route stabilizes will reach the receiver over
the new path. The receiver’s next RESV message will follow the new path and (hopefully)
establish a new reservation on the new path. Meanwhile, the routers that are no longer
on the path will stop getting RESV messages, and these reservations will time out and
be released. Thus, RSVP deals quite well with changes in topology, as long as routing
changes are not excessively frequent.

The next thing we need to consider is how to cope with multicast, where there
may be multiple senders to a group and multiple receivers. This situation is illustrated
in Figure 6.25. First, let’s deal with multiple receivers for a single sender. As an RESV
message travels up the multicast tree, it is likely to hit a piece of the tree where some

Figure 6.25 Making reservations on a multicast tree.
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other receiver’s reservation has already been established. It may be the case that the re-
sources reserved upstream of this point are adequate to serve both receivers. For example,
if receiver A has already made a reservation that provides for a guaranteed delay of less
than 100 ms, and the new request from receiver B is for a delay of less than 200 ms, then
no new reservation is required. On the other hand, if the new request were for a delay of
less than 50 ms, then the router would first need to see if it could accept the request, and
if so, it would send the request on upstream. The next time receiver A asked for a min-
imum of a 100-ms delay, the router would not need to pass this request on. In general,
reservations can be merged in this way to meet the needs of all receivers downstream of
the merge point.

If there are also multiple senders in the tree, receivers need to collect the TSpecs
from all senders and make a reservation that is large enough to accommodate the traffic
from all senders. However, this may not mean that the TSpecs need to be added up. For
example, in an audioconference with 10 speakers, there is not much point in allocating
enough resources to carry 10 audio streams, since the result of 10 people speaking at once
would be incomprehensible. Thus, we could imagine a reservation that is large enough
to accommodate two speakers and no more. Calculating the correct overall TSpec from
all the sender TSpecs is clearly application-specific. Also, we may only be interested in
hearing from a subset of all possible speakers; RSVP has different reservation “styles” to
deal with such options as “Reserve resources for all speakers,” “Reserve resources for any
n speakers,” and “Reserve resources for speakers A and B only.”

Packet Classifying and Scheduling
Once we have described our traffic and our desired network service and have installed a
suitable reservation at all the routers on the path, the only thing that remains is for the
routers to actually deliver the requested service to the data packets. There are two things
that need to be done:

■ Associate each packet with the appropriate reservation so that it can be handled
correctly, a process known as classifying packets;

■ Manage the packets in the queues so that they receive the service that has been
requested, a process known as packet scheduling.

The first part is done by examining up to five fields in the packet: the source
address, destination address, protocol number, source port, and destination port. (In
IPv6, it is possible that the FlowLabel field in the header could be used to enable
the lookup to be done based on a single, shorter key.) Based on this information, the
packet can be placed in the appropriate class. For example, it may be classified into the
controlled load classes, or it may be part of a guaranteed flow that needs to be handled
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separately from all other guaranteed flows. In short, there is a mapping from the flow-
specific information in the packet header to a single class identifier that determines how
the packet is handled in the queue. For guaranteed flows, this might be a one-to-one

Where Are They Now ????
RSVP and Integrated Services

Deployment

RSVP and the Integrated Services ar-
chitecture have, at the time of writ-
ing, not been very widely deployed,
in large part because of scalability
concerns described at the end of this
section. In fact, it is common to as-
sert that they are “dead” as technolo-
gies. However, it may be premature to
write the obituaries for RSVP and in-
tegrated services just yet.

Separated from IntServ, RSVP
has been quite widely deployed as a
protocol for establishing MPLS paths
for the purposes of traffic engineering,
as described in Section 4.5. For this
reason alone, most routers in the In-
ternet have some sort of RSVP imple-
mentation. However, that is probably
the full extent of RSVP deployment
in the Internet at the time of writing.
This usage of RSVP is largely inde-
pendent of IntServ, but it does at least
demonstrate that the protocol itself is
deployable.

There is some evidence that
RSVP and IntServ may get a second
chance more than 10 years after they
were first proposed. For example, the
IETF is standardizing extensions to
RSVP to support aggregate reserva-

mapping, while for other services, it
might be many to one. The details of clas-
sification are closely related to the details
of queue management.

It should be clear that something as
simple as a FIFO queue in a router will
be inadequate to provide many different
services and to provide different levels of
delay within each service. Several more
sophisticated queue management disci-
plines were discussed in Section 6.2, and
some combination of these is likely to be
used in a router.

The details of packet scheduling
ideally should not be specified in the
service model. Instead, this is an area
where implementors can try to do cre-
ative things to realize the service model
efficiently. In the case of guaranteed
service, it has been established that a
weighted fair queuing discipline, in which
each flow gets its own individual queue
with a certain share of the link, will
provide a guaranteed end-to-end delay
bound that can readily be calculated. For
controlled load, simpler schemes may be
used. One possibility includes treating
all the controlled load traffic as a single,
aggregated flow (as far as the schedul-
ing mechanism is concerned), with the
weight for that flow being set based on
the total amount of traffic admitted in
the controlled load class. The problem is
made harder when you consider that in
a single router, many different services
are likely to be provided concurrently,
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Where Are They Now ????
tions—extensions that directly address
the scalability concerns that have been
raised about RSVP and IntServ in the
past. And there is increasing support
for RSVP as a resource reservation
protocol in commercial products.

Various factors can be identi-
fied that may lead to greater adop-
tion of RSVP and IntServ in the near
future. First, applications that actu-
ally require QoS, such as voiceover
IP and real-time video conferencing,
are much more widespread than they
were 10 years ago, creating a greater
demand for sophisticated QoS mech-
anisms. Second, admission control—
which enables the network to say “no”
to an application when resources are
scarce—is a good match to applica-
tions that cannot work well unless suf-
ficient resources are available. Most
users of IP telephones, for example,
would prefer to get a busy signal from
the network than to have a call pro-
ceed at unacceptably bad quality. And
a network operator would prefer to
send a busy signal to one user than
to provide bad quality to a large num-
ber of users. A third factor is the large
resource requirements of new appli-
cations such as high-definition video
delivery: because they need so much
bandwidth to work well, it may be
more cost-effective to build networks
that can say “no” occasionally than to
provide enough bandwidth to meet all

and that each of these services may re-
quire a different scheduling algorithm.
Thus, some overall queue management al-
gorithm is needed to manage the resources
between the different services.

Scalability Issues

While the Integrated Services architecture
and RSVP represented a significant en-
hancement of the best-effort service model
of IP, many Internet service providers felt
that it was not the right model for them to
deploy. The reason for this reticence relates
to one of the fundamental design goals
of IP: scalability. In the best-effort service
model, routers in the Internet store little or
no state about the individual flows pass-
ing through them. Thus, as the Internet
grows, the only thing routers have to do to
keep up with that growth is to move more
bits per second and to deal with larger
routing tables. But RSVP raises the pos-
sibility that every flow passing through a
router might have a corresponding reser-
vation. To understand the severity of this
problem, suppose that every flow on an
OC-48 (2.5-Gbps) link represents a 64-
Kbps audio stream. The number of such
flows is

2.5 × 109/64 × 103 = 39,000

Each of those reservations needs some
amount of state that needs to be stored
in memory and refreshed periodically. The
router needs to classify, police, and queue
each of those flows. Admission control de-
cisions need to be made every time such
a flow requests a reservation. And some
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mechanisms are needed to “push back” on
users so that they don’t make arbitrarily
large reservations for long periods of time.5

These scalability concerns have, at the time
of writing, prevented the widespread de-
ployment of IntServ. Because of these con-
cerns, other approaches that do not require
so much per-flow state have been devel-
oped. The next section discusses a number
of such approaches.

Where Are They Now ????
possible application demands. How-
ever this is a complex trade-off and
the debate over the value of admis-
sion control, and RSVP and IntServ as
tools to provide it, is likely to continue
for some time.

6.5.3 Differentiated Services (EF, AF)
Whereas the Integrated Services architecture allocates resources to individual flows, the
Differentiated Services model (often called DiffServ for short) allocates resources to a
small number of classes of traffic. In fact, some proposed approaches to DiffServ simply
divide traffic into two classes. This is an eminently sensible approach to take: If you con-
sider the difficulty that network operators experience just trying to keep a best-effort in-
ternet running smoothly, it makes sense to add to the service model in small increments.

Suppose that we have decided to enhance the best-effort service model by adding
just one new class, which we’ll call “premium.” Clearly we will need some way to figure
out which packets are premium and which are regular old best-effort. Rather than using
a protocol like RSVP to tell all the routers that some flow is sending premium packets,
it would be much easier if the packets could just identify themselves to the router when
they arrive. This could obviously be done by using a bit in the packet header—if that bit
is a 1, the packet is a premium packet; if it’s a 0, the packet is best-effort. With this in
mind, there are two questions we need to address:

■ Who sets the premium bit, and under what circumstances?

■ What does a router do differently when it sees a packet with the bit set?

There are many possible answers to the first question, but a common approach is
to set the bit at an administrative boundary. For example, the router at the edge of an
Internet service provider’s network might set the bit for packets arriving on an interface
that connects to a particular company’s network. The Internet service provider might do
this because that company has paid for a higher level of service than best-effort. It is also

5Charging per reservation would be one way to push back, consistent with the telephony model of billing for each phone
call. This is not the only way to push back, and per-call billing is believed to be one of the major costs of operating the
phone network.
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possible that not all packets would be marked as premium; for example, the router might
be configured to mark packets as premium up to some maximum rate, and to leave all
excess packets as best-effort.

Assuming that packets have been marked in some way, what do the routers that
encounter marked packets do with them? Here again there are many answers. In fact,
the IETF standardized a set of router behaviors to be applied to marked packets. These
are called per-hop behaviors (PHBs), a term that indicates that they define the behavior
of individual routers rather than end-to-end services. Because there is more than one
new behavior, there is also a need for more than 1 bit in the packet header to tell the
routers which behavior to apply. The IETF decided to take the old TOS byte from the
IP header, which had not been widely used, and redefine it. Six bits of this byte have
been allocated for DiffServ code points (DSCP), where each DSCP is a 6-bit value that
identifies a particular PHB to be applied to a packet.

Expedited Forwarding (EF) PHB

One of the simplest PHBs to explain is known as expedited forwarding (EF). Packets
marked for EF treatment should be forwarded by the router with minimal delay and loss.
The only way that a router can guarantee this to all EF packets is if the arrival rate of EF
packets at the router is strictly limited to be less than the rate at which the router can
forward EF packets. For example, a router with a 100-Mbps interface needs to be sure
that the arrival rate of EF packets destined for that interface never exceeds 100 Mbps. It
might also want to be sure that the rate will be somewhat below 100 Mbps, so that it
occasionally has time to send other packets such as routing updates.

The rate limiting of EF packets is achieved by configuring the routers at the edge
of an administrative domain to allow a certain maximum rate of EF packet arrivals into
the domain. A simple, albeit conservative, approach would be to ensure that the sum of
the rates of all EF packets entering the domain is less than the bandwidth of the slowest
link in the domain. This would ensure that, even in the worst case where all EF packets
converge on the slowest link, it is not overloaded and can provide the correct behavior.

There are several possible implementation strategies for the EF behavior. One is to
give EF packets strict priority over all other packets. Another is to perform weighted fair
queuing between EF packets and other packets, with the weight of EF set sufficiently
high that all EF packets can be delivered quickly. This has an advantage over strict pri-
ority: The non-EF packets can be assured of getting some access to the link, even if the
amount of EF traffic is excessive. This might mean that the EF packets fail to get ex-
actly the specified behavior, but it could also prevent essential routing traffic from being
locked out of the network in the event of an excessive load of EF traffic.
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Where Are They Now ????
The Quiet Success of DiffServ

As recently as 2003, many people
were ready to declare that DiffServ
was dead. At that year’s ACM SIG-
COMM conference, one of the most
prestigious networking research con-
ferences, a workshop with the provoca-
tive title “RIPQoS” was held—the
official name of the workshop was
“Revisiting IP QoS” but the impli-
cation that QoS might be ready to
rest in peace was clear in the work-
shop announcement. However, just as
Mark Twain quipped that reports of
his death were greatly exaggerated, it
seems that the demise of IP QoS, and
DiffServ in particular, was also over-
stated.

Much of the pessimism about
DiffServ arose from the fact that it had
not been deployed to any significant
extent by Internet service providers.

Assured Forwarding (AF)
PHB

The assured forwarding (AF) PHB has its
roots in an approach known as “RED
with In and Out” (RIO) or “Weighted
RED,” both of which are enhancements
to the basic RED algorithm of Sec-
tion 6.4.2. Figure 6.26 shows how RIO
works; like Figure 6.17, we see drop prob-
ability on the y-axis increasing as average
queue length increases along the x-axis.
But now, for our two classes of traffic,
we have two separate drop probability
curves. RIO calls the two classes “in”
and “out” for reasons that will become
clear shortly. Because the “out” curve has
a lower MinThreshold than the “in”
curve, it is clear that, under low levels
of congestion, only packets marked “out”
will be discarded by the RED algorithm.
If the congestion becomes more serious,
a higher percentage of “out” packets are
dropped, and then if the average queue
length exceeds Minin, RED starts to drop
“in” packets as well.

Figure 6.26 RED with “in” and “out” drop probabilities.
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Not only that, but the fact that real-
time applications such as IP tele-
phony and video streaming appear to
be working so well over the Inter-
net without any QoS mechanisms in
place makes one wonder if any QoS
will every be needed. In part this is
the result of aggressive deployment
of high-bandwidth links and routers
by many ISPs, especially during the
“boom” years of the late 1990s.

To see where DiffServ has suc-
ceeded, you need to look outside the
ISP backbones. For example, corpora-
tions that have deployed IP telephony
solutions—and there are over ten mil-
lion “enterprise class” IP phones in
use at the time of writing—routinely
use “EF” behavior for the voice me-
dia packets to ensure that they are not
delayed when sharing links with other
traffic. The same holds for many resi-
dential voiceover-IP solutions: Just to
get priority on the upstream link out
of the residence (e.g., the “slow” direc-
tion of a DSL link), it is common for
the voice endpoint to set the DSCP to
EF, and for a consumer’s router con-
nected to the broadband link to use
DiffServ to give low latency and jit-
ter to those packets. There are even
some large national telephone com-
panies that have migrated their tradi-
tional voice services onto IP networks,
with DiffServ providing the means to
protect the QoS of the voice.

The reason for calling the two clas-
ses of packets “in” and “out” stems from
the way the packets are marked. We al-
ready noted that packet marking can be
performed by a router at the edge of
an administrative domain. We can think
of this router as being at the boundary
between a network service provider and
some customer of that network. The cus-
tomer might be any other network, for
example, the network of a corporation
or of another network service provider.
The customer and the network service
provider agree on some sort of profile for
the assured service (and perhaps the cus-
tomer pays the network service provider
for this profile). The profile might be
something like “Customer Xis allowed to
send up to y Mbps of assured traffic,”
or it could be significantly more com-
plex Whatever the profile is, the edge
router can clearly mark the packets that
arrive from this customer as being either
in or out of profile. In the example just
mentioned, as long as the customer sends
less than y Mbps, all his packets will be
marked “in,” but once he exceeds that
rate, the excess packets will be marked
“out.”

The combination of a profile me-
ter at the edge and RIO in all the routers
of the service provider’s network should
provide the customer with a high assur-
ance (but not a guarantee) that packets
within his profile can be delivered. In par-
ticular, if the majority of packets, includ-
ing those sent by customers who have not
paid extra to establish a profile, are “out”
packets, then it should usually be the case
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Where Are They Now ????
There are other applications beside
voice that are benefiting from Diff-
Serv, notably business data services.
And no doubt the maturing of IP-
based video in the coming years will
provide another driver. In general,
two factors make DiffServ deploy-
ment worthwhile: a high demand for
QoS assurance from the application,
and a lack of assurance that the link
bandwidth will be sufficient to deliver
that QoS to all the traffic traversing
the link. It is important to realize that
DiffServ, like any other QoS mecha-
nism, cannot create bandwidth—all it
can do is ensure that what bandwidth
there is gets preferentially allocated to
the applications that have more de-
manding QoS needs.

that the RIO mechanism will act to keep
congestion low enough that “in” packets
are rarely dropped. Clearly, there must be
enough bandwidth in the network so that
the “in” packets alone are rarely able to
congest a link to the point where RIO
starts dropping “in” packets.

Just like RED, the effectiveness of
a mechanism like RIO depends to some
extent on correct parameter choices, and
there are considerably more parameters to
set for RIO. Exactly how well the scheme
will work in production networks is not
known at the time of writing.

One interesting property of RIO is
that it does not change the order of “in”
and “out” packets. For example, if a TCP
connection is sending packets through a
profile meter, and some packets are be-
ing marked “in” while others are marked
“out,” those packets will receive different
drop probabilities in the router queues,
but they will be delivered to the receiver in the same order in which they were sent.
This is important for most TCP implementations, which perform much better when
packets arrive in order, even if they are designed to cope with misordering. Note also
that mechanisms such as fast retransmit can be falsely triggered when misordering
happens.

The idea of RIO can be generalized to provide more than two drop probability
curves, and this is the idea behind the approach known as weighted RED (WRED). In
this case, the value of the DSCP field is used to pick one of several drop probability
curves, so that several different classes of service can be provided.

A third way to provide Differentiated Services is to use the DSCP value to deter-
mine which queue to put a packet into in a weighted fair queuing scheduler as described
in Section 6.2.2. As a very simple case, we might use one code point to indicate the
“best-effort” queue and a second code point to select the “premium” queue. We then
need to choose a weight for the premium queue that makes the premium packets get
better service than the best-effort packets. This depends on the offered load of premium
packets. For example, if we give the premium queue a weight of one and the best-effort
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queue a weight of four, that ensures that the bandwidth available to premium packets is

Bpremium = Wpremium

(Wpremium + Wbest_effort)
= 1/(1 + 4) = 0.2

ATM Quality of Service

ATM is a rather less important tech-
nology today than it was 10 years ago,
but one of its real contributions was
in the area of QoS. In some respects,
the fact that ATM was designed with
fairly rich QoS capabilities was one of
the things that spurred interest in QoS
for IP. It also helped the early adoption
of ATM.

In many respects, the QoS capa-
bilities that are provided in ATM net-
works are similar to those provided in
an IP network using Integrated Ser-
vices. However, the ATM standards
bodies came up with a total of five
service classes compared to the IETF’s
three.6 The five ATM service classes
are:

■ Constant bit rate (CBR);

■ Variable bit rate—real-time
(VBR-rt);

■ Variable bit rate—nonreal-time
(VBR-nrt);

■ Available bit rate (ABR);

■ Unspecified bit rate (UBR).

Mostly the ATM and IP service classes
are quite similar, but one of them,

That is, we have effectively reserved
20% of the link for premium packets, so
if the offered load of premium traffic is
only 10% of the link on average, then
the premium traffic will behave as if it is
running on a very underloaded network
and the service will be very good. In par-
ticular, the delay experienced by the pre-
mium class can be kept low, since WFQ
will try to transmit premium packets as
soon as they arrive in this scenario. On
the other hand, if the premium traffic
load were 30%, it would behave like a
highly loaded network, and delay could
be very high for the “premium” packets—
even worse than the so-called best-effort
packets. Thus, knowledge of the offered
load and careful setting of weights is im-
portant for this type of service. However,
note that the safe approach is to be very
conservative in setting the weight for the
premium queue. If this weight is made
very high relative to the expected load, it
provides a margin of error and yet does
not prevent the best-effort traffic from us-
ing any bandwidth that has been reserved
for premium but is not used by premium
packets.

Just as in WRED, we can generalize
this WFQ-based approach to allow more
than two classes represented by different
code points. Furthermore, we can com-
bine the idea of a queue selector with a

6We count best-effort as a service class along with controlled load and guaranteed service.
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ABR, has no real counterpart in IP.
More on ABR in a moment. VBR-
rt is very much like the guaranteed
service class in IP Integrated Services.
The exact parameters that are used to
set up a VBR-rt VC are slightly differ-
ent than those used to make a guaran-
teed service reservation, but the basic
idea is the same. The traffic generated
by the source is characterized by a to-
ken bucket, and the maximum total
delay required through the network is
specified. CBR is also similar to guar-
anteed service except that sources of
CBR traffic are expected to send at a
constant rate. Note that this is really a
special case of VBR, where the source’s
peak rate and average rate of transmis-
sion are equal.

VBR-nrt bears some similarity
to IP’s controlled load service. Again,
the source traffic is specified by a to-
ken bucket, but there is not the same
hard delay guarantee of VBR-rt or
IP’s guaranteed service. UBR is ATM’s
best-effort service.

Finally, we come to ABR, which
is more than just a service class; it
also defines a set of congestion-control
mechanisms. It is rather complex, so
we mention only the high points.

The ABR mechanisms operate
over a virtual circuit by exchang-
ing special ATM cells called resource
management (RM) cells between the
source and destination of the VC.
The goal of sending the RM cells is
to get information about the state of

drop preference. For example, with 12
code points we can have four queues with
different weights, each of which has three
drop preferences. This is exactly what the
IETF has done in the definition of as-
sured service.

6.5.4 Equation-Based
Congestion Control

We conclude our discussion of QoS by
returning full circle to TCP congestion
control, but this time in the context of
real-time applications. Recall that TCP
adjusts the sender’s congestion window
(and hence, the rate at which it can trans-
mit) in response to ACK and timeout
events. One of the strengths of this ap-
proach is that it does not require co-
operation from the network’s routers; it
is a purely host-based strategy. Such a
strategy complements the QoS mecha-
nisms we’ve been considering, because
(1) applications can use host-based so-
lutions today, before QoS mechanisms
are widely deployed, and (2) even with
DiffServ fully deployed, it is still possible
for a router queue to be oversubscribed,
and we would like real-time applications
to react in a reasonable way should this
happen.

While we would like to take advan-
tage of TCP’s congestion control algo-
rithm, TCP itself is not appropriate for
real-time applications. One reason is that
TCP is a reliable protocol, and real-time
applications often cannot afford the de-
lays introduced by retransmission. How-
ever, what if we were to decouple TCP
from its congestion control mechanism,
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congestion in the network back to the
source so that it can send traffic at an
appropriate rate. In this respect, RM
cells are an explicit congestion feed-
back mechanism. This is similar to the
DECbit (see Section 6.4.1), but con-
trasts with TCP’s use of implicit feed-
back, which depends on packet losses
to detect congestion. It is also similar
to the new “quick start” mechanism
for TCP described in Section 6.3.2.

Initially, the source sends the
cell to the destination and includes
in it the rate at which it would like
to send data cells. Switches along
the path look at the requested rate
and decide if sufficient resources are
available to handle that rate, based
on the amount of traffic being car-
ried on other circuits. If enough re-
sources are available, the RM cell is
passed on unmodified; otherwise, the
requested rate is decreased before the
cell is passed along. At the destina-
tion, the RM cell is turned around
and sent back to the source, which
thereby learns what rate it can send
at. RM cells are sent periodically and
may contain either higher or lower re-
quested rates.

Given the relative decline of
ATM in real networks today, the in-
teresting point of ATM QoS is how
many mechanisms are common across
different technologies. Mechanisms
that are found in both ATM and
IP QoS include admission control,
scheduling algorithms, token bucket
policers, and explicit congestion feed-
back mechanisms.

that is, add TCP-like congestion con-
trol to an unreliable protocol like UDP?
Could real-time applications make use of
such a protocol?

On the one hand, this is an ap-
pealing idea because it would cause real-
time streams to compete fairly with TCP
streams. The alternative (which happens
today) is that video applications use UDP
without any form of congestion control,
and as a consequence, steal bandwidth
away from TCP flows that backoff in
the presence of congestion. On the other
hand, the sawtooth behavior of TCP’s
congestion control algorithm (see Fig-
ure 6.9) is not appropriate for real-time
applications: It means that the rate at
which the application transmits is con-
stantly going up and down. In contrast,
real-time applications work best when
they are able to sustain a smooth trans-
mission rate over a relatively long period
of time.

Is it possible to achieve the best
of both worlds: compatibility with TCP
congestion control for the sake of fairness,
while sustaining a smooth transmission
rate for the sake of the application? Re-
cent work suggests that the answer is
yes. Specifically, several so-called “TCP-
friendly” congestion control algorithms
have been proposed. These algorithms
have two main goals. One is to slowly
adapt the congestion window. This is
done by adapting over relatively longer
time periods (e.g., an RTT) rather than
on a per-packet basis. This smoothes out
the transmission rate. The second is to
be TCP-friendly in the sense of being
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fair to competing TCP flows. This property is often enforced by ensuring that the flow’s
behavior adheres to an equation that models TCP’s behavior. Hence, this approach is
sometimes called equation-based congestion control.

We saw a simplified form of the TCP rate equation in Section 6.3. The interested
reader is referred to the papers cited at the end of this chapter for details about the full
model. For our purposes, it is sufficient to note that the equation takes this general form:

Rate ∝
( 1

RTT × √
ρ

)

which says that to be TCP-friendly, the transmission rate must be inversely proportional
to the round-trip time (RTT) and the square root of the loss rate (ρ). In other words, to
build a congestion control mechanism out of this relationship, the receiver must period-
ically report the loss rate it is experiencing back to the sender (e.g., it might report that
it failed to received 10% of the last 100 packets), and the sender then adjusts its sending
rate up or down, such that this relationship continues to hold. Of course, it is still up to
the application to adapt to these changes in the available rate, but as we will see in the
next chapter, many real-time applications are quite adaptable.

6.6 Summary
As we have just seen, the issue of resource allocation is not only central to computer
networking, it is also a very hard problem. This chapter has examined two aspects of
resource allocation. The first, congestion control, is concerned with preventing overall
degradation of service when the demand for resources by hosts exceeds the supply avail-
able in the network. The second aspect is the provision of different qualities of service to
applications that need more assurances than those provided by the best-effort model.

Most congestion-control mechanisms are targeted at the best-effort service model
of today’s Internet, where the primary responsibility for congestion control falls on the
end nodes of the network. Typically, the source uses feedback—either implicitly learned
from the network or explicitly sent by a router—to adjust the load it places on the
network; this is precisely what TCP’s congestion-control mechanism does. Independent
of exactly what the end nodes are doing, the routers implement a queuing discipline that
governs which packets get transmitted and which packets get dropped. Sometimes this
queuing algorithm is sophisticated enough to segregate traffic (e.g., WFQ), and in other
cases, the router attempts to monitor its queue length and then signals the source host
when congestion is about to occur (e.g., RED gateways and DECbit).

Emerging quality-of-service approaches aim to do substantially more than just con-
trol congestion. Their goal is to enable applications with widely varying requirements for
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delay, loss, and throughput to have those requirements met through new mechanisms in-
side the network. The Integrated Services approach allows individual application flows to
specify their needs to the routers using an explicit signalling mechanism (RSVP), while
Differentiated Services assigns packets into a small number of classes that receive differ-
entiated treatment in the routers. While the signalling used by ATM is very different
from RSVP, there is considerable similarity between ATM’s service classes and those of
Integrated Services.

Perhaps the larger question we
should be asking is how much can
we expect from the network and how
much responsibility will ultimately
fall to the end hosts. The emerging
reservation-based strategies certainly
have the advantage of providing for

O P E N I S S U E

Inside versus Outside
the Network

more varied qualities of service than today’s feedback-based schemes; being able to sup-
port different qualities of service is a strong reason to put more functionality into the
network’s routers. Does this mean that the days of TCP-like end-to-end congestion con-
trol are numbered? This seems highly unlikely. TCP and the applications that use it are
well entrenched, and in many cases have no need of much more help from the network.
Furthermore, it is most unlikely that all the routers in a worldwide, heterogeneous net-
work like the Internet will implement precisely the same resource reservation algorithm.
Ultimately, it seems that the endpoints are going to have to look out for themselves, at
least to some extent. The end-to-end principle argues that we should be very selective
about putting additional functionality inside the network. How this all plays out in the
next few years, in more areas than resource allocation, will be very interesting indeed.

In some sense, the Differentiated Services approach represents the middle ground
between absolutely minimal intelligence in the network and the rather significant
amount of intelligence (and stored state information) that is required in an Integrated
Services network. Certainly most Internet service providers have balked at allowing their
customers to make RSVP reservations inside the providers’ networks. One important
question is whether the Differentiated Services approach will meet the requirements of
more stringent applications. For example, if a service provider is trying to offer a large-
scale telephony service over an IP network, will Differentiated Services techniques be
adequate to deliver the quality of service that traditional telephone users expect? It seems
likely that yet more QoS options, with varying amounts of intelligence in the network,
will need to be explored.
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F U R T H E R R E A D I N G
The recommended reading list for this chapter is long, reflecting the breadth of inter-
esting work being done in congestion control and resource allocation. It includes the
original papers introducing the various mechanisms discussed in this chapter. In addi-
tion to a more detailed description of these mechanisms, including thorough analysis of
their effectiveness and fairness, these papers are must reading because of the insights they
give into the interplay of the various issues related to congestion control. In addition, the
first paper gives a nice overview of some of the early work on this topic, while the last
is considered one of the seminal papers in the development of QoS capabilities in the
Internet.

■ Gerla, M., and L. Kleinrock. “Flow Control: A Comparative Survey.” IEEE
Transactions on Communications COM-28(4):553–573, April 1980.

■ Demers, A., S. Keshav, and S. Shenker. “Analysis and Simulation of a Fair Queu-
ing Algorithm.” Proceedings of the SIGCOMM ’89 Symposium, pp. 1–12, Sep-
tember 1989.

■ Jacobson, V. “Congestion Avoidance and Control.” Proceedings of the SIG-
COMM ’88 Symposium, pp. 314–329, August 1988.

■ Floyd, S., and V. Jacobson. “Random Early Detection Gateways for Conges-
tion Avoidance.” IEEE/ACM Transactions on Networking 1(4):397–413, August
1993.

■ Clark, D., S. Shenker, and L. Zhang. “Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism.” Proceedings
of the SIGCOMM ’92 Symposium, pp. 14–26, August 1992.

■ Parekh, A., and R. Gallager. “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Multiple Node Case.” IEEE/ACM
Transactions on Networking 2(2):137–150, April 1994.

Beyond these recommended papers, there is a wealth of other valuable material on
resource allocation. For starters, two early papers by Kleinrock [Kle79] and Jaffe [Jaf81]
set the foundation for using power as a measure of congestion-control effectiveness. Also,
Jain [Jai91] gives a thorough discussion of various issues related to performance evalua-
tion, including a description of Jain’s fairness index.

More details about TCP Vegas can be found in Brakmo and Peterson [BP95],
with follow-up work presented in Low et al. [LPW02b]. Similar congestion-avoidance
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techniques introduced in Section 6.4 can be found in Wang and Crowcroft [WC92,
WC91] and Jain [Jai89], with the first paper giving an especially nice overview of con-
gestion avoidance based on a common understanding of how the network changes as it
approaches congestion. Some issues with and proposed modifications to the RED algo-
rithm including “Flow RED” (FRED) are described by Lin and Morris [LM97].

The proposed ECN standard is spelled out by Ramakrishnan, Floyd, and Black in
[RFB01]. Efforts to generalize this idea in the form of active queue management are put
forth by Stoica et al. [SSZ98], Low et al. [LPW+02a], and Katabi et al. [KHR02]. The
Katabi paper introduces XCP, one of the proposed new transport protocols that tackles
the issue of improving on TCP’s throughput in high bandwidth-delay product networks.

There is a considerable body of work on packet scheduling that has extended the
original fair queuing and processor sharing papers cited above. Excellent examples in-
clude articles by Stoica and Zhang [SZ97], Bennett and Zhang [BZ96], and Goyal, Vin,
and Chen [GVC96].

Many additional articles have been published on the Integrated Services architec-
ture, including an overview by Braden et al. [BCS94] and a description of RSVP by
Zhang et al. [ZDE+93]. The first paper to address the topic of Differentiated Services is
that of Clark [Cla97], which introduces the RIO mechanism as well as the overall archi-
tecture of Differentiated Services. A follow-on paper by Clark and Fang [CF98] presents
some simulation results. [BBC+98] defines the Differentiated Services architecture, while
[DCB+02] defines the EF per-hop behavior.

Finally, several TCP-friendly congestion control algorithms have recently been pro-
posed, and tailored for use by real-time applications. These include algorithms by Floyd
et al. [FHPW00], Sisalem and Schulzrinne [SS98], Rhee et al. [ROY00], and Rejaie et al.
[RHE99]. These algorithms build on the earlier equation-based model of TCP through-
put by Padhye et al. [PFTK98]. A TCP-friendly rate control protocol has been specified
by the IETF [HFPW03], and the idea of adding congestion control to UDP has led to
the Datagram Congestion Control Protocol (DCCP) [KHF06].

E X E R C I S E S
1 It is possible to define flows on either a host-to-host basis or on a process-to-

process basis.

(a) Discuss the implications of each approach to application programs.

(b) IPv6 includes a FlowLabel field for supplying hints to routers about in-
dividual flows. The originating host is to put here a pseudorandom hash of
all the other fields serving to identify the flow; the router can thus use any
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subset of these bits as a hash value for fast lookup of the flow. What exactly
should the FlowLabel be based on, for each of these two approaches?

2 TCP uses a host-centric, feedback-based, window-based resource allocation
model. How might TCP have been designed to use instead the following
models?

(a) Host-centric, feedback-based, and rate-based.

(b) Router-centric and feedback-based.

★ 3 Sketch curves for throughput, delay, and power, each as a function of load, for
the following networks. Throughput is to be measured as a percentage of the
maximum. Load is to be measured (somewhat unnaturally) as the number of
stations (N ) ready to send at any one time; note this implies there is always
(unless N = 0, which you may ignore) a station ready to send. Assume each
station has only one packet to send at a time.

(a) Ethernet. Assume, as in Exercise 52 of Chapter 2, that the average packet
size is 5 slot times, and that when N stations are trying to transmit, the
average delay until one station succeeds is N/2 slot times.

(b) Token ring, with TRT = 0.

4 Suppose two hosts A and B are connected via a router R. The A–R link has
infinite bandwidth; the R–B link can send one packet per second. R’s queue is
infinite. Load is to be measured as the number of packets per second sent from
A to B. Sketch the throughput-versus-load and delay-versus-load graphs, or if
a graph cannot be drawn, explain why. Would another way to measure load be
more appropriate?

5 Is it possible for TCP Reno to reach a state with the congestion window size
much larger than (e.g., twice as large as) RTT× bandwidth? Is it likely?

6 Consider the arrangement of hosts H and routers R and R1 in Figure 6.27.
All links are full-duplex, and all routers are faster than their links. Show that
R1 cannot become congested, and for any other router R we can find a traffic
pattern that congests that router alone.

7 Suppose a congestion-control scheme results in a collection of competing flows
that achieve the following throughput rates: 100 KBps, 60 KBps, 110 KBps,
95 KBps, and 150 KBps.
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Figure 6.27 Diagram for Exercise 6.

(a) Calculate the fairness index for this scheme.

(b) Now add a flow with a throughput rate of 1,000 KBps to the above, and
recalculate the fairness index.

8 In fair queuing, the value Fi was interpreted as a timestamp: the time when the
ith packet would finish transmitting. Give an interpretation of Fi for weighted
fair queuing, and also give a formula for it in terms of Fi−1, arrival time Ai ,
packet size Pi , and weight w assigned to the flow.

9 Give an example of how nonpreemption in the implementation of fair queu-
ing leads to a different packet transmission order from bit-by-bit round-robin
service.

10 Suppose a router has three input flows and one output. It receives the packets
listed in Table 6.1 all at about the same time, in the order listed, during a period
in which the output port is busy but all queues are otherwise empty. Give the
order in which the packets are transmitted, assuming:

(a) Fair queuing.

(b) Weighted fair queuing, with flow 2 having weight 2, and the other two
with weight 1

✓ 11 Suppose a router has three input flows and one output. It receives the packets
listed in Table 6.2 all at about the same time, in the order listed, during a period
in which the output port is busy but all queues are otherwise empty. Give the
order in which the packets are transmitted, assuming:
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Packet Size Flow

1 100 1

2 100 1

3 100 1

4 100 1

5 190 2

6 200 2

7 110 3

8 50 3

Table 6.1 Packets for Exercise 10.

Packet Size Flow

1 200 1

2 200 1

3 160 2

4 120 2

5 160 2

6 210 3

7 150 3

8 90 3

Table 6.2 Packets for Exercise 11.

(a) Fair queuing.

(b) Weighted fair queuing with flow 2 having twice as much share as flow 1,
and flow 3 having 1.5 times as much share as flow 1. Note that ties are to
be resolved in order flow 1, flow 2, flow 3.

12 Suppose a router’s drop policy is to drop the highest-cost packet whenever
queues are full, where it defines the “cost” of a packet to be the product of
its size by the time remaining that it will spend in the queue. (Note that in
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calculating cost it is equivalent to use the sum of the sizes of the earlier packets
in lieu of remaining time.)

(a) What advantages and disadvantages might such a policy offer, compared to
tail drop?

(b) Give an example of a sequence of queued packets for which dropping the
highest-cost packet differs from dropping the largest packet.

(c) Give an example where two packets exchange their relative cost ranks as
time progresses.

13 Two users, one using Telnet and one sending files with FTP, both send their
traffic out via router R. The outbound link from R is slow enough that both
users keep packets in R’s queue at all times. Discuss the relative performance
seen by the Telnet user if R’s queuing policy for these two flows is:

(a) Round-robin service.

(b) Fair queuing.

(c) Modified fair queuing, where we count the cost only of data bytes, and not
IP or TCP headers.

Consider outbound traffic only. Assume Telnet packets have 1 byte of data,
FTP packets have 512 bytes of data, and all packets have 40 bytes of headers.

14 Consider a router that is managing three flows, on which packets of constant
size arrive at the following wall clock times:

Flow A: 1, 2, 4, 6, 7, 9, 10

Flow B: 2, 6, 8, 11, 12, 15

Flow C: 1, 2, 3, 5, 6, 7, 8

All three flows share the same outbound link, on which the router can transmit
one packet per time unit. Assume that there is an infinite amount of buffer
space.

(a) Suppose the router implements fair queuing. For each packet, give the wall
clock time when it is transmitted by the router. Arrival time ties are to be
resolved in order A, B, C. Note that wall clock time T = 2 is FQ-clock
time Ai = 1.5.
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(b) Suppose the router implements weighted fair queuing, where flows A and
B are given an equal share of the capacity, and flow C is given twice the
capacity of flow A. For each packet, give the wall clock time when it is
transmitted.

✓ 15 Consider a router that is managing three flows, on which packets of constant
size arrive at the following wall clock times:

Flow A: 1, 3, 5, 6, 8, 9, 11

Flow B: 1, 4, 7, 8, 9, 13, 15

Flow C: 1, 2, 4, 6, 7, 12

All three flows share the same outbound link, on which the router can transmit
one packet per time unit. Assume that there is an infinite amount of buffer
space.

(a) Suppose the router implements fair queuing. For each packet, give the wall
clock time when it is transmitted by the router. Arrival time ties are to be
resolved in order A, B, C. Note that wall clock time T = 2 is FQ-clock
time Ai = 1.333.

(b) Suppose the router implements weighted fair queuing, where flows A and
C are given an equal share of the capacity, and flow B is given twice the
capacity of flow A. For each packet, give the wall clock time when it is
transmitted.

16 Assume that TCP implements an extension that allows window sizes much
larger than 64 KB. Suppose that you are using this extended TCP over a 1-Gbps
link with a latency of 100 ms to transfer a 10-MB file, and the TCP receive
window is 1 MB. If TCP sends 1-KB packets (assuming no congestion and no
lost packets):

(a) How many RTTs does it take until slow start opens the send window to
1 MB?

(b) How many RTTs does it take to send the file?

(c) If the time to send the file is given by the number of required RTTs multi-
plied by the link latency, what is the effective throughput for the transfer?
What percentage of the link bandwidth is utilized?
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17 Consider a simple congestion-control algorithm that uses linear increase and
multiplicative decrease but not slow start, that works in units of packets rather
than bytes, and that starts each connection with a congestion window equal to
one packet. Give a detailed sketch of this algorithm. Assume the delay is latency
only, and that when a group of packets is sent, only a single ACK is returned.
Plot the congestion window as a function of round-trip times for the situation
in which the following packets are lost: 9, 25, 30, 38, and 50. For simplicity,
assume a perfect timeout mechanism that detects a lost packet exactly 1 RTT
after it is transmitted.

18 For the situation given in the previous problem, compute the effective through-
put achieved by this connection. Assume that each packet holds 1 KB of data
and that the RTT = 100 ms.

19 During linear increase, TCP computes an increment to the congestion window
as

Increment = MSS × (MSS/CongestionWindow)

Explain why computing this increment each time an ACK arrives may not re-
sult in the correct increment. Give a more precise definition for this increment.
(Hint: A given ACK can acknowledge more or less than one MSS’s worth of
data.)

20 Under what circumstances may coarse-grained timeouts still occur in TCP
even when the fast retransmit mechanism is being used?

21 Suppose that between A and B there is a router R. The A–R bandwidth is infi-
nite (that is, packets are not delayed), but the R–B link introduces a bandwidth
delay of 1 packet per second (that is, 2 packets take 2 seconds, etc.). Acknowl-
edgments from B to R, though, are sent instantaneously. A sends data to B
over a TCP connection, using slow start but with an arbitrarily large window
size. R has a queue size of one, in addition to the packet it is sending. At each
second, the sender first processes any arriving ACKs and then responds to any
timeouts.

(a) Assuming a fixed TimeOut period of 2 seconds, what is sent and received
for T = 0,1, . . . ,6 seconds? Is the link ever idle due to timeouts?

(b) What changes if TimeOut is 3 seconds instead?

22 Suppose A, R, and B are as in the previous exercise, except that R’s queue now
has a size of three packets, in addition to the one being transmitted. A starts a



534 6 Congestion Control and Resource Allocation

connection using slow start, with an infinite receive window. Fast retransmit is
done on the second duplicate ACK (that is, the third ACK of the same packet);
the TimeOut interval is infinite. Ignore fast recovery; when a packet is lost,
let the window size be 1. Give a table showing, for the first 15 seconds, what A
receives, what A sends, what R sends, R’s queue, and what R drops.

23 Suppose the R–B link in the previous exercise changes from a bandwidth delay
to a propagation delay, so that two packets now take 1 second to send. List
what is sent and received during the first 8 seconds. Assume a static timeout
value of 2 seconds, that slow start is used on a timeout, and that ACKs sent at
about the same time are consolidated. Note that R’s queue size is now irrelevant
(why?).

24 Suppose host A reaches host B via routers R1 and R2: A–R1–R2–B. Fast re-
transmit is not used, and A calculates TimeOut as 2 × EstimatedRTT. As-
sume that the A–R1 and R2–B links have infinite bandwidth; the R1−→R2
link, however, introduces a 1-second-per-packet bandwidth delay for data
packets (though not ACKs). Describe a scenario in which the R1–R2 link is
not 100% utilized, even though A always has data ready to send. (Hint: Sup-
pose A’s CongestionWindow increases from N to N + 1, where N is R1’s
queue size.)

25 You are an Internet service provider; your client hosts connect directly to your
routers. You know some hosts are using experimental TCPs and suspect some
may be using a “greedy” TCP with no congestion control. What measurements
might you make at your router to establish that a client was not using slow start
at all? If a client used slow start on startup but not after a timeout, could you
detect that?

26 Defeating TCP congestion-control mechanisms usually requires explicit coop-
eration of the sender. However, consider the receiving end of a large data trans-
fer using a TCP modified to ACK packets that have not yet arrived. It may do
this either because not all of the data is necessary or because data that is lost can
be recovered in a separate transfer later. What effect does this receiver behavior
have on the congestion control properties of the session? Can you devise a way
to modify TCP to avoid the possibility of senders being taken advantage of in
this manner?

27 Consider the TCP trace in Figure 6.28. Identify time intervals representing
slow start on startup, slow start after timeout, and linear-increase congestion
avoidance. Explain what is going on from T = 0.5 to T = 1.9. The TCP ver-
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Figure 6.28 TCP trace for Exercise 27.

sion that generated this trace includes a feature absent from the TCP that gen-
erated Figure 6.11. What is this feature? This trace and the one in Figure 6.13
both lack a feature. What is it?

28 Suppose you are downloading a large file over a 3-Kbps phone link. Your soft-
ware displays an average-bytes-per-second counter. How will TCP congestion
control and occasional packet losses cause this counter to fluctuate? Assume
that only a third, say, of the total RTT is spent on the phone link.

29 Suppose TCP is used over a lossy link that loses on average one segment in
four. Assume the bandwidth × delay window size is considerably larger than
four segments.

(a) What happens when we start a connection? Do we ever get to the linear-
increase phase of congestion avoidance?

(b) Without using an explicit feedback mechanism from the routers, would
TCP have any way to distinguish such link losses from congestion losses,
at least over the short term?

(c) Suppose TCP senders did reliably get explicit congestion indications from
routers. Assuming links as above were common, would it be feasible to
support window sizes much larger than four segments? What would TCP
have to do?

30 Suppose two TCP connections share a path through a router R. The router’s
queue size is six segments; each connection has a stable congestion window of
three segments. No congestion control is used by these connections. A third
TCP connection now is attempted, also through R. The third connection does
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not use congestion control either. Describe a scenario in which, for at least a
while, the third connection gets none of the available bandwidth, and the first
two connections proceed with 50% each. Does it matter if the third connection
uses slow start? How does full congestion avoidance on the part of the first two
connections help solve this?

31 Suppose a TCP connection has a window size of eight segments, an RTT of
800 ms, the sender sends segments at a regular rate of one every 100 ms, and
the receiver sends ACKs back at the same rate without delay. A segment is lost,
and the loss is detected by the fast retransmit algorithm on the receipt of the
third duplicate ACK. At the point when the ACK of the retransmitted segment
finally arrives, how much total time has the sender lost (compared to lossless
transmission) if

(a) The sender waits for the ACK from the retransmitted lost packet before
sliding the window forward again?

(b) The sender uses the continued arrival of each duplicate ACK as an indica-
tion it may slide the window forward one segment?

32 The text states that additive increase is a necessary condition for a congestion-
control mechanism to be stable. Outline a specific instability that might arise
if all increases were exponential, that is, if TCP continued to use “slow” start
after CongestionWindow increased beyond CongestionThreshold.

33 Discuss the relative advantages and disadvantages of marking a packet (as in
the DECbit mechanism) versus dropping a packet (as in RED gateways).

34 Consider a RED gateway with MaxP = 0.02, and with an average queue
length halfway between the two thresholds.

(a) Find the drop probability Pcount for count = 1 and count = 50.

(b) Calculate the probability that none of the first 50 packets are dropped.
Note that this is (1 − P1) × · · · × (1 − P50).

✓ 35 Consider a RED gateway with MaxP = p, and with an average queue length
halfway between the two thresholds.

(a) Calculate the probability that none of the first n packets are dropped.

(b) Find p such that the probability that none of the first n packets are dropped
is α.
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36 Explain the intuition behind setting MaxThreshold = 2×MinThreshold
in RED gateways.

37 In RED gateways, explain why MaxThreshold is actually less than the actual
size of the available buffer pool.

38 Explain the fundamental conflict between tolerating burstiness and controlling
network congestion.

39 Why do you think that the drop probability P of a RED gateway does not
simply increase linearly from P = 0 at MinThresh to P = 1 at MaxThresh?

★ 40 In TCP Vegas, the calculation of ActualRate is done by dividing the amount
of data transmitted in one RTT interval by the length of the RTT.

(a) Show that for any TCP, if the window size remains constant, then the
amount of data transmitted in one RTT interval is constant once a full
windowful is sent. Assume that the sender transmits each segment instantly
upon receiving an ACK, packets are not lost and are delivered in order,
segments are all the same size, and the first link along the path is not the
slowest.

(b) Give a timeline sketch showing that the amount of data per RTT above
can be less than CongestionWindow.

41 Suppose a TCP Vegas connection measures the RTT of its first packet and sets
BaseRTT to that, but then a network link failure occurs and all subsequent
traffic is routed via an alternative path with twice the RTT. How will TCP
Vegas respond? What will happen to the value of CongestionWindow? As-
sume no actual timeouts occur, and that β is much smaller than the initial
ExpectedRate.

42 Consider the following two causes of a 1-second network delay (assume ACKs
return instantaneously):

■ One intermediate router with a 1-second outbound per-packet band-
width delay and no competing traffic.

■ One intermediate router with a 100-ms outbound per-packet band-
width delay and with a steadily replenished (from another source)
10 packets in the queue.



538 6 Congestion Control and Resource Allocation

(a) How might a transport protocol in general distinguish between these two
cases?

(b) Suppose TCP Vegas sends over the above connections, with an initial Con-
gestionWindow of three packets. What will happen to Congestion-
Window in each case? Assume BaseRTT = 1 second and β is one packet
per second.

43 Give an argument why the congestion-control problem is better managed at
the internet level than the ATM level, at least when only part of the internet is
ATM. In an exclusively IP-over-ATM network, is congestion better managed
at the cell level or at the TCP level? Why?

44 Consider the taxonomy of Figure 6.23.

(a) Give an example of a real-time application that is intolerant/rate adaptive.

(b) Explain why you might expect a loss-tolerant application to be at least
somewhat rate adaptive.

(c) Part (b) notwithstanding, give an example of an application that might be
considered tolerant/nonadaptive. (Hint: Tolerating even small losses quali-
fies an application as loss tolerant; you will need to interpret rate adaptive
as the ability to adjust to substantial bandwidth changes.)

45 The transmission schedule (Table 6.3) for a given flow lists for each second the
number of packets sent between that time and the following second. The flow
must stay within the bounds of a token bucket filter. What bucket depth does
the flow need for the following token rates? Assume the bucket is initially full.

(a) 2 packets per second.

(b) 4 packets per second.

✓ 46 The transmission schedule (Table 6.4) for a given flow is for each second the
number of packets sent between that time and the following second. The flow
must stay within the bounds of a token bucket filter. Find the necessary bucket
depth D as a function of token rate r. Note that r takes only positive integer
values. Assume the bucket is initially full.

47 Suppose a router has accepted flows with the TSpecs shown in Table 6.5, de-
scribed in terms of token bucket filters with token rate r packets per second
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Time (seconds) Packets Sent

0 5

1 5

2 1

3 0

4 6

5 1

Table 6.3 Transmission schedule for Exercise 45.

Time (seconds) Packets Sent

0 5

1 5

2 1

3 0

4 6

5 1

Table 6.4 Transmission schedule for Exercise 46.

r B

1 10

2 4

4 1

Table 6.5 TSpecs for Exercise 47.

and bucket depth B packets. All flows are in the same direction, and the router
can forward one packet every 0.1 second.

(a) What is the maximum delay a packet might face?

(b) What is the minimum number of packets from the third flow that the
router would send over 2.0 seconds, assuming the flow sent packets at its
maximum rate uniformly?
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48 Suppose an RSVP router suddenly loses its reservation state, but otherwise
remains running.

(a) What will happen to the existing reserved flows if the router handles re-
served and nonreserved flows via a single FIFO queue?

(b) What might happen to the existing reserved flows if the router used
weighted fair queuing to segregate reserved and nonreserved traffic?

(c) Eventually the receivers on these flows will request that their reservations
be renewed. Give a scenario in which these requests are denied.





End-to-End Data

It is a capital mistake to theorize before one has data.

—Sir Arthur Conan Doyle

rom the network’s perspective, application programs send messages to each other.FEach of these messages is just an uninterpreted string of bytes. From the applica-
tion’s perspective, however, these messages contain various kinds of data—arrays

of integers, video frames, lines of text, digital images, and so on. In other words, these
bytes have meaning. We now consider the problem of how to best encode the

P R O B L E M

What Do We Do with the
Data?

different kinds of data that applica-
tion programs want to exchange into
byte strings. In many respects, this is
similar to the problem of encoding
byte strings into electromagnetic sig-
nals that we saw in Section 2.2.

Thinking back to our discussion of encoding in Chapter 2, there were essentially
two concerns. The first was that the receiver be able to extract the same message from
the signal as the transmitter sent; this was the framing problem. The second was making
the encoding as efficient as possible. Both of these concerns are present when encoding
application data into network messages.

In the case of the sender and receiver seeing the same data, the issue is one of the
two sides agreeing to a message format, often called the presentation format. If the sender
wants to send the receiver an array of integers, for example, then the two sides have to
agree what each integer looks like (how big it is and whether the most significant bit
comes first or last) and how many elements are in the array. Section 7.1 describes var-
ious encodings of traditional computer data, such as integers, floating-point numbers,
character strings, arrays, and structures. Well-established formats also exist for multime-
dia data: Video, for example, is typically transmitted in Moving Picture Experts Group
(MPEG) format, and still images are usually transmitted in Joint Photographic Experts
Group (JPEG) format or graphical interchange format (GIF). Because these formats
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are primarily noteworthy for the compression algorithms they use,
we consider them in that context in Section 7.2.

The second main concern of this chapter, the efficiency of
the encoding, has a rich history, dating back to Shannon’s pioneer
work on information theory in the 1940s. In effect, there are two
opposing forces at work here. In one direction, you would like
as much redundancy in the data as possible so that the receiver
is able to extract the right data even if errors are introduced into
the message. The error detection and correcting codes we saw in
Section 2.4 add redundant information to messages for exactly
this purpose. In the other direction, we would like to remove as
much redundancy from the data as possible so that we may encode
it in as few bits as possible. This is the goal of data compression,
which we discuss in Section 7.2.

Compression is important to the designers of networks for a
wealth of reasons, not just because we rarely find ourselves with an
abundance of bandwidth everywhere in the network. For exam-
ple, the way we design a compression algorithm affects our sensi-
tivity to lost or delayed data, and thus may influence the design of
resource allocation mechanisms and end-to-end protocols. Con-
versely, if the underlying network is unable to guarantee a fixed
amount of bandwidth for the duration of a videoconference, we
may choose to design compression algorithms that can adapt to
changing network conditions.

An important aspect of both presentation formatting and
data compression is that they require the sending and receiving
hosts to process every byte of data in the message. It is for this rea-
son that presentation formatting and compression are sometimes
called data manipulation functions. This is in contrast to most of
the protocols we have seen up to this point, which process a mes-
sage without ever looking at its contents. Because of this need to
read, compute on, and write every byte of data in a message, data
manipulations affect end-to-end throughput over the network. In
fact, these manipulations can be the limiting factor.
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7.1 Presentation Formatting
One of the most common transformations of network data is from the representation
used by the application program into a form that is suitable for transmission over a
network and vice versa. This transformation is typically called presentation formatting.
As illustrated in Figure 7.1, the sending program translates the data it wants to transmit
from the representation it uses internally into a message that can be transmitted over the
network; that is, the data is encoded in a message. On the receiving side, the application
translates this arriving message into a representation that it can then process; that is, the
message is decoded. Encoding is sometimes called argument marshalling, and decoding is
sometimes called unmarshalling. This terminology comes from the RPC world, where
the client thinks it is invoking a procedure with a set of arguments, but these arguments
are then “brought together and ordered in an appropriate and effective way”1 to form a
network message.

You might ask what makes this problem challenging enough to warrant a name like
marshalling. One reason is that computers represent data in different ways. For example,
some computers represent floating-point numbers in IEEE standard 754 format, while
other machines still use their own nonstandard format. Even for something as simple as
integers, different architectures use different sizes (e.g., 16 bit, 32 bit, 64 bit). To make
matters worse, on some machines integers are represented in big-endian form (the most
significant bit of a word is in the byte with the “lowest” address), while on other machines
integers are represented in little-endian form (the most significant bit is in the byte with
the “highest” address). The MIPS and PowerPC processors are examples of big-endian
machines, and the Intel x86 family is an example of a little-endian architecture. For
example, the big-endian and little-endian representations of the integer 34,677,374 are
given in Figure 7.2.

Figure 7.1 Presentation formatting involves encoding and decoding application data.

1This is a definition of marshalling taken from Webster’s New Collegiate Dictionary.
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Figure 7.2 Big-endian and little-endian byte order for the integer 34,677,374.

Another reason that marshalling is difficult is that application programs are written
in different languages, and even when you are using a single language, there may be more
than one compiler. For example, compilers have a fair amount of latitude in how they
lay out structures (records) in memory, such as how much padding they put between
the fields that make up the structure. Thus, you could not simply transmit a structure
from one machine to another, even if both machines were of the same architecture and
the program was written in the same language, because the compiler on the destination
machine might align the fields in the structure differently.

7.1.1 Taxonomy
Although anyone who has worked on argument marshalling would tell you that no
rocket science is involved—it is a small matter of bit twiddling—there are a surprising
number of design choices that you must address. We begin by giving a simple taxon-
omy for argument marshalling systems. The following is by no means the only viable
taxonomy, but it is sufficient to cover most of the interesting alternatives.

Data Types
The first question is what data types the system is going to support. In general, we can
classify the types supported by an argument marshalling mechanism at three levels. Each
level complicates the task faced by the marshalling system.

At the lowest level, a marshalling system operates on some set of base types. Typi-
cally, the base types include integers, floating-point numbers, and characters. The system
might also support ordinal types and booleans. As described above, the implication of
the set of base types is that the encoding process must be able to convert each base type
from one representation to another, for example, convert an integer from big-endian to
little-endian.

At the next level are flat types—structures and arrays. While flat types might at
first not appear to complicate argument marshalling, the reality is that they do. The
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problem is that the compilers used to compile application programs sometimes insert
padding between the fields that make up the structure so as to align these fields on word
boundaries. The marshalling system typically packs structures so that they contain no
padding.

At the highest level, the marshalling system might have to deal with complex types—
those types that are built using pointers. That is, the data structure that one program
wants to send to another might not be contained in a single structure, but might instead
involve pointers from one structure to another. A tree is a good example of a complex
type that involves pointers. Clearly, the data encoder must prepare the data structure for
transmission over the network because pointers are implemented by memory addresses,
and just because a structure lives at a certain memory address on one machine does not
mean it will live at the same address on another machine. In other words, the marshalling
system must serialize (flatten) complex data structures.▲

In summary, depending on how complicated the type system is, the task of argu-
ment marshalling usually involves converting the base types, packing the structures, and
linearizing the complex data structures, all to form a contiguous message that can be
transmitted over the network. Figure 7.3 illustrates this task.

Conversion Strategy

Once the type system is established, the next issue is what conversion strategy the argu-
ment marshaller will use. There are two general options: canonical intermediate form and
receiver-makes-right. We consider each, in turn.

The idea of canonical intermediate form is to settle on an external representation
for each type; the sending host translates from its internal representation to this external

Figure 7.3 Argument marshalling: converting, packing, and linearizing.
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representation before sending data, and the receiver translates from this external repre-
sentation into its local representation when receiving data. To illustrate the idea, consider
integer data; other types are treated in a similar manner. You might declare that the big-
endian format will be used as the external representation for integers. The sending host
must translate each integer it sends into big-endian form, and the receiving host must
translate big-endian integers into whatever representation it uses. (This is what is done in
the Internet for protocol headers.) Of course, a given host might already use big-endian
form, in which case no conversion is necessary.

The alternative, which is sometimes called receiver-makes-right, has the sender
transmit data in its own internal format; the sender does not convert the base types,
but usually has to pack and flatten more complex data structures. The receiver is then
responsible for translating the data from the sender’s format into its own local format.
The problem with this strategy is that every host must be prepared to convert data from
all other machine architectures. In networking, this is known as an N-by-N solution: each
of N machine architectures must be able to handle all N architectures. In contrast, in
a system that uses a canonical intermediate form, each host needs to know only how to
convert between its own representation and a single other representation—the external
one.

Using a common external format is clearly the correct thing to do, right? This has
certainly been the conventional wisdom in the networking community for the past 25
years. The answer is not cut-and-dried, however. It turns out that there are not that many
different representations for the various base classes, or said another way, N is not that
large. In addition, the most common case is for two machines of the same type to be
communicating with each other. In this situation, it seems silly to translate data from
that architecture’s representation into some foreign external representation, only to have
to translate the data back into the same architecture’s representation on the receiver.

A third option, although we know of no existing system that exploits it, is to use
receiver-makes-right if the sender knows that the destination has the same architecture;
the sender would use some canonical intermediate form if the two machines use different
architectures. How would a sender learn the receiver’s architecture? It could learn this
information either from a name server or by first using a simple test case to see if the
appropriate result occurs.

Tags

The third issue in argument marshalling is how the receiver knows what kind of data
is contained in the message it receives. There are two common approaches: tagged and
untagged data. The tagged approach is most intuitive, so we describe it first.

A tag is any additional information included in a message—beyond the concrete
representation of the base types—that helps the receiver decode the message. There are
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Figure 7.4 A 32-bit integer encoded in a tagged message.

several possible tags that might be included in a message. For example, each data item
might be augmented with a type tag. A type tag indicates that the value that follows is
an integer, a floating-point number, or whatever. Another example is a length tag. Such
a tag is used to indicate the number of elements in an array or the size of an integer.
A third example is an architecture tag, which might be used in conjunction with the
receiver-makes-right strategy to specify the architecture on which the data contained in
the message was generated. Figure 7.4 depicts how a simple 32-bit integer might be
encoded in a tagged message.

The alternative, of course, is not to use tags. How does the receiver know how
to decode the data in this case? It knows because it was programmed to know. In other
words, if you call a remote procedure that takes two integers and a floating-point number
as arguments, then there is no reason for the remote procedure to inspect tags to know
what it has just received. It simply assumes that the message contains two integers and
a float, and decodes it accordingly. Note that while this works for most cases, the one
place it breaks down is when sending variable-length arrays. In such a case, a length tag
is commonly used to indicate how long the array is.

It is also worth noting that the untagged approach means that the presentation
formatting is truly end-to-end. It is not possible for some intermediate agent to interpret
the message unless the data is tagged. Why would an intermediate agent need to interpret
a message, you might ask? Stranger things have happened, mostly resulting from ad hoc
solutions to unexpected problems that the system was not engineered to handle. Poor
network design is beyond the scope of this book.

Stubs

A stub is the piece of code that implements argument marshalling. Stubs are typi-
cally used to support RPC. On the client side, the stub marshalls the procedure ar-
guments into a message that can be transmitted by means of the RPC protocol. On
the server side, the stub converts the message back into a set of variables that can be
used as arguments to call the remote procedure. Stubs can either be interpreted or com-
piled.

In a compilation-based approach, each procedure has a “customized” client and
server stub. While it is possible to write stubs by hand, they are typically generated by
a stub compiler, based on a description of the procedure’s interface. This situation is
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Figure 7.5 Stub compiler takes interface description as input and outputs client and

server stubs.

illustrated in Figure 7.5. Since the stub is compiled, it is usually very efficient. In an
interpretation-based approach, the system provides “generic” client and server stubs that
have their parameters set by a description of the procedure’s interface. Because it is easy to
change this description, interpreted stubs have the advantage of being flexible. Compiled
stubs are more common in practice.

7.1.2 Examples (XDR, ASN.1, NDR)
We now briefly describe three popular network data representations in terms of this
taxonomy. We use the integer base type to illustrate how each system works.

XDR

External Data Representation (XDR) is the network format used with SunRPC. In the
taxonomy just introduced, XDR:

■ Supports the entire C type system with the exception of function pointers.

■ Defines a canonical intermediate form.
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■ Does not use tags (except to indicate array lengths).

■ Uses compiled stubs.

An XDR integer is a 32-bit data item that encodes a C integer. It is represented in
twos complement notation, with the most significant byte of the C integer in the first
byte of the XDR integer, and the least significant byte of the C integer in the fourth byte
of the XDR integer. That is, XDR uses big-endian format for integers. XDR supports
both signed and unsigned integers, just as C does.

XDR represents variable-length arrays by first specifying an unsigned integer
(4 bytes) that gives the number of elements in the array, followed by that many ele-
ments of the appropriate type. XDR encodes the components of a structure in the or-
der of their declaration in the structure. For both arrays and structures, the size of each
element/component is represented in a multiple of 4 bytes. Smaller data types are padded
out to 4 bytes with 0s. The exception to this “pad to 4 bytes” rule is made for characters,
which are encoded one per byte.

The following code fragment gives an example C structure (item) and the XDR
routine that encodes/decodes this structure (xdr_item). Figure 7.6 schematically de-
picts XDR’s on-the-wire representation of this structure when the field name is seven
characters long and the array list has three values in it.

In this example, xdr_array, xdr_int, and xdr_string are three primitive func-
tions provided by XDR to encode and decode arrays, integers, and character strings,
respectively. Argument xdrs is a context variable that XDR uses to keep track of where
it is in the message being processed; it includes a flag that indicates whether this routine is
being used to encode or decode the message. In other words, routines like xdr_item are
used on both the client and the server. Note that the application programmer can either
write the routine xdr_item by hand or use a stub compiler called rpcgen (not shown)
to generate this encoding/decoding routine. In the latter case, rpcgen takes the remote
procedure that defines the data structure item as input, and outputs the corresponding
stub.

Figure 7.6 Example encoding of a structure in XDR.
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#define MAXNAME 256;
#define MAXLIST 100;

struct item {
int count;
char name[MAXNAME];
int list[MAXLIST];

};

bool_t
xdr_item(XDR *xdrs, struct item *ptr)
{

return(xdr_int(xdrs, &ptr->count) &&
xdr_string(xdrs, &ptr->name, MAXNAME) &&
xdr_array(xdrs, &ptr->list, &ptr->count, MAXLIST,

sizeof(int), xdr_int));
}

Exactly how XDR performs depends, of course, on the complexity of the data. In a
simple case of an array of integers, where each integer has to be converted from one byte
order to another, an average of three instructions are required for each byte, meaning
that converting the whole array is a memory-bound operation. On a typical machine
today, this means an upper limit on the order of 100 MBps (800 Mbps). More complex
conversions that require more instructions per byte will obviously run slower.

ASN.1

Abstract Syntax Notation One (ASN.1) is an ISO standard that defines, among other
things, a representation for data sent over a network. The representation-specific part
of ASN.1 is called the Basic Encoding Rules (BER). ASN.1 supports the C type system
without function pointers, defines a canonical intermediate form, and uses type tags. Its
stubs can be either interpreted or compiled. One of the claims to fame of ASN.1 BER is
that it is used by the Internet standard Simple Network Management Protocol (SNMP).

ASN.1 represents each data item with a triple of the form

〈 tag, length, value 〉
The tag is typically an 8-bit field, although ASN.1 allows for the definition of multibyte
tags. The length field specifies how many bytes make up the value; we discuss length
more below. Compound data types such as structures can be constructed by nesting
primitive types, as illustrated in Figure 7.7.

If the value is 127 or fewer bytes long, then the length is specified in a single
byte. Thus, for example, a 32-bit integer is encoded as a 1-byte type, a 1-byte length,
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Figure 7.7 Compound types created by means of nesting in ASN.1/BER.

Figure 7.8 ASN.1/BER representation for a 4-byte integer.

Figure 7.9 ASN.1/BER representation for length: (a) 1 byte; (b) multibyte.

and the 4 bytes that encode the integer, as illustrated in Figure 7.8. The value itself, in
the case of an integer, is represented in twos complement notation and big-endian form,
just as in XDR. Keep in mind that even though the value of the integer is represented
in exactly the same way in both XDR and ASN.1, the XDR representation has neither
the type nor the length tags associated with that integer. These two tags both take
up space in the message and, more importantly, require processing during marshalling
and unmarshalling. This is one reason that ASN.1 is not as efficient as XDR. Another is
that the very fact that each data value is preceded by a length field means that the data
value is unlikely to fall on a natural byte boundary (e.g., an integer beginning on a word
boundary). This complicates the encoding/decoding process.

If the value is 128 or more bytes long, then multiple bytes are used to specify
its length. At this point you may be asking why a byte can specify a length of up to
127 bytes rather than 256. The reason is that 1 bit of the length field is used to denote
how long the length field is. A 0 in the eighth bit indicates a 1-byte length field. To
specify a longer length, the eighth bit is set to 1, and the other 7 bits indicate how many
additional bytes make up the length. Figure 7.9 illustrates a simple 1-byte length and
a multibyte length.
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Figure 7.10 NDR’s architecture tag.

NDR

Network Data Representation (NDR) is the data-encoding standard used in the Distrib-
uted Computing Environment (DCE). Unlike XDR and ASN.1, NDR uses receiver-
makes-right. It does this by inserting an architecture tag at the front of each message;
individual data items are untagged. NDR uses a compiler to generate stubs. This com-
piler takes a description of a program written in the Interface Definition Language (IDL)
and generates the necessary stubs. IDL looks pretty much like C, and so essentially sup-
ports the C type system.

Figure 7.10 illustrates the 4-byte architecture definition tag that is included at the
front of each NDR-encoded message. The first byte contains two 4-bit fields. The first
field, IntegrRep, defines the format for all integers contained in the message. A 0 in this
field indicates big-endian integers, and a 1 indicates little-endian integers. The CharRep
field indicates what character format is used: 0 means ASCII (American Standard Code
for Information Interchange) and 1 means EBCDIC (an older, IBM-defined alternative
to ASCII). Next, the FloatRep byte defines which floating-point representation is being
used: 0 means IEEE 754, 1 means VAX, 2 means Cray, and 3 means IBM. The final
2 bytes are reserved for future use. Note that in simple cases, such as arrays of integers,
NDR does the same amount of work as XDR, and so it is able to achieve the same
performance.

7.1.3 Markup Languages (XML)
Although we have been discussing the presentation formatting problem from the per-
spective of RPC—that is, how does one encode primitive data types and compound data
structures so they can be sent from a client program to a server program—the same basic
problem occurs in other settings. For example, how does a web server describe a web
page so that any number of different browsers know what to display on the screen? In
this specific case, the answer is the HyperText Markup Language (HTML), which indi-
cates that certain character strings should be displayed in bold or italics, what font type
and size should be used, and where images should be positioned.

Markup languages, of which HTML is one, take the tagged data approach to the
extreme. Data is represented as text, and text tags known as markup are intermingled
with the data text to express information about the data. In the case of HTML, markup
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merely indicates how the text should be displayed; other markup languages can express
the type and structure of the data.

Extensible Markup Language (XML) is a framework, a syntactic foundation, for
defining different markup languages for different kinds of data. XML has even been used
to define a markup language equivalent to HTML called Extensible HyperText Markup
Language (XHTML). XML defines a basic syntax for mixing markup with data text, but
the designer of a specific markup language has to name and define its markup. It is
common practice to refer to individual XML-based languages simply as XML, but we
will emphasize the distinction in this introductory material.

XML syntax looks much like HTML. For example, an employee record in a hy-
pothetical XML-based language might look like the following XML document, which
might be stored in a file named employee.xml. The first line indicates the version of
XML being used, and the remaining lines represent four fields that make up the em-
ployee record, the last of which (hiredate) contains three subfields. In other words,
XML syntax provides for a nested structure of tag/value pairs, which is equivalent to
a tree structure for the represented data (with employee as the root). This is simi-
lar to XDR, ASN.1, and NDR’s abilities to represent compound types, but in a for-
mat that can be both processed by programs and read by humans. More importantly,
programs such as parsers can be used across different XML-based languages, because
the definitions of those languages are expressed as data that can be input to the pro-
grams.

<?xml version="1.0"?>
<employee>

<name>John Doe</name>
<title>Head Bottle Washer</title>
<id>123456789</id>
<hiredate>

<day>5</day>
<month>June</month>
<year>1986</year>

</hiredate>
</employee>

Although the markup and the data in this document are highly suggestive to the
human reader, it is the definition of the employee record language that actually deter-
mines what tags are legal, what they mean, and what data types they imply. Without
some formal definition of the tags, a human reader (or a computer) can’t tell whether
1986 in the year field, for example, is a string, an integer, an unsigned integer, or a
floating point number.
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The definition of a specific XML-based language is given by a schema, which is a
database term for a specification of how to interpret a collection of data. There are a
number of schema languages for defining XML schemas. We will focus here on the lead-
ing standard, a schema language known as XML Schema. An individual schema defined
using XML Schema is known as an XML Schema Definition (XSD). The following is an
XSD for the employee.xml example; in other words, it defines the language to which
the example document conforms. It might be stored in a file named employee.xsd.

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="employee">
<complexType>

<sequence>
<element name="name" type="string"/>
<element name="title" type="string"/>
<element name="id" type="string"/>
<element name="hiredate">

<complexType>
<sequence>

<element name="day" type="integer"/>
<element name="month" type="string"/>
<element name="year" type="integer"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

This XSD looks superficially similar to our example document employee.xml, but
only because XML Schema is itself an XML-based language. There is an obvious re-
lationship between this XSD and the document employee.xml defined above. For
example,

<element name="title" type="string"/>

indicates that the value bracketed by the markup title is to be interpreted as a string.
The sequence and nesting of that line in the XSD indicate that a title field must be the
second item in an employee record.

Unlike some schema languages, XML Schema provides datatypes such as string,
integer, decimal, and boolean. It allows the datatypes to be combined in sequences or
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nested, as in employee.xsd, to create compound datatypes. So an XSD defines more
than a syntax; it defines its own abstract data model. A document that conforms to the
XSD represents a collection of data that conforms to the data model.

The significance of an XSD defining an abstract data model and not just a syntax
is that there can be other ways besides XML of representing data that conforms to the
model. And XML does, after all, have some shortcomings as an on-the-wire representa-
tion: It is not as compact as other data representations, and it is relatively slow to parse.
A number of alternative representations described as binary are in use. The leading one
is called Fast Infoset. Binary representations sacrifice human readability for greater com-
pactness and faster parsing.

XML Namespaces

XML has to solve a common problem, that of name clashes2. The problem arises because
schema languages such as XML Schema support modularity in the sense that a schema
can be reused as part of another schema. Suppose two XSDs both defined the markup
name idNumber, one XSD using it to identify police officers, and the other XSD to iden-
tify firearms. We might like to reuse those two XSDs in a third XSD for describing which
firearms are associated with which officers, but to do that we need some mechanism for
distinguishing officer ID numbers from firearm ID numbers.

XML’s solution to this problem is XML namespaces. A namespace is a collection
of names. Each XML namespace is identified by a uniform resource identifier (URI).
URIs will be described in some detail in Section 9.1.2; for now, all you need to know is
that they are a form of globally unique identifier. A simple markup name like idNumber
can be added to a namespace as long as it is unique within that namespace. Since the
namespace is globally unique and the simple name is unique within the namespace, the
combination of the two is a globally unique qualified name that cannot clash.

An XSD usually specifies a target namespace with a line like the following:

targetNamespace="http://www.example.com/employee"

http://www.example.com/employee is a URI, identifying a made-up namespace.
(For simplicity, our example XSD did not specify a target namespace.) All the new
markup defined in that XSD will belong to that namespace.

Turning now from XSDs to documents, a document assigns a short namespace
prefix to each namespace it needs to use. For example, the following line assigns emp as
the namespace prefix for the employee namespace.

xmlns:emp="http://www.example.com/employee"

2Naming is an important and popular problem area for computer scientists. We will talk a lot more about namespaces
when we look at DNS—the naming scheme for Internet hosts—in Section 9.1.3.
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Any markup from that namespace would be qualified by prefixing it with emp:, as is
title in the following line.

<emp:title>Head Bottle Washer</emp:title>

emp:title is a qualified name. There is also the option for a document to set one
namespace as a default that applies automatically to any markup that is not qualified.

7.2 Data Compression
Sometimes application programs need to send more data in a timely fashion than the
bandwidth of the network supports. For example, a video application might have a
10-Mbps video stream that it wants to transmit, but it has only a 1-Mbps network avail-
able to it. Even with the current generation of broadband Internet access technologies,
Internet bandwidth is frequently limited (especially in the “slow” direction on asymmet-
ric links like ADSL). Furthermore, the resource allocation model of the Internet at the
time of writing depends heavily on the fact that individual applications do not use much
more than their fair share of the bandwidth on a congested link. For all these reasons,
it is often important to first compress the data at the sender, then transmit it over the
network, and finally to decompress it at the receiver.

In many ways, compression is inseparable from data encoding. That is, in thinking
about how to encode a piece of data in a set of bits, we might just as well think about
how to encode the data in the smallest set of bits possible. For example, if you have a
block of data that is made up of the 26 symbols A through Z , and if all of these symbols
have an equal chance of occurring in the data block you are encoding, then encoding
each symbol in 5 bits is the best you can do (since 25 = 32 is the lowest power of 2 above
26). If, however, the symbol R occurs 50% of the time, then it would be a good idea to
use fewer bits to encode the R than any of the other symbols. In general, if you know
the relative probability that each symbol will occur in the data, then you can assign a
different number of bits to each possible symbol in a way that minimizes the number of
bits it takes to encode a given block of data. This is the essential idea of Huffman codes,
one of the important early developments in data compression.

There are two classes of compression algorithms. The first, called lossless compres-
sion, ensures that the data recovered from the compression/decompression process is ex-
actly the same as the original data. A lossless compression algorithm is used to compress
file data, such as executable code, text files, and numeric data, because programs that
process such file data cannot tolerate mistakes in the data. In contrast, lossy compression
does not promise that the data received is exactly the same as the data sent. This is
because a lossy algorithm removes information that it cannot later restore. Hopefully,
however, the lost information will not be missed by the receiver. Lossy algorithms are
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used to compress still images, video, and audio. This makes sense because such data of-
ten contains more information than the human eye or ear can perceive, and for that
matter, may already contain errors and imperfections for which the human brain is able
to compensate. Also, lossy algorithms typically achieve much better compression ratios
than do their lossless counterparts; they can be as much as an order of magnitude better.

It might seem that compressing your data before sending it would always be a good
idea, since the network would be able to deliver compressed data in less time than un-
compressed data. This is not necessarily the case, however. Compression/decompression
algorithms often involve time-consuming computations. The question you have to ask
is whether or not the time it takes to compress/decompress the data is worthwhile given
such factors as the host’s processor speed and the network bandwidth. Specifically, if Bc is
the average bandwidth at which data can be pushed through the compressor and decom-
pressor (in series), Bn is the network bandwidth (including network processing costs)
for uncompressed data, r is the average compression ratio, and if we assume that all the
data is compressed before any of it is transmitted, then the time taken to send x bytes of
uncompressed data is

x/Bn

whereas the time to compress it and send the compressed data is

x/Bc + x/(rBn)

Thus, compression is beneficial if

x/Bc + x/(rBn) < x/Bn

which is equivalent to

Bc > r/(r − 1) × Bn

For example, for a compression ratio of 2, Bc would have to be greater than 2 × Bn for
compression to make sense.

For many compression algorithms, we may not need to compress the whole data
set before beginning transmission (videoconferencing would be impossible if we did) but
rather we need to collect some amount of data (perhaps a few frames of video) first. The
amount of data needed to fill the pipe in this case would be used as the value of x in the
above equation.

Of course, when talking about lossy compression algorithms, processing resources
are not the only factor. Depending on the exact application, users are willing to make
very different trade-offs between bandwidth (or delay) and extent of information loss due
to compression. For example, a radiologist reading a mammogram is unlikely to tolerate



7.2 Data Compression 559

any significant loss of image quality and might well tolerate a delay of several hours in
retrieving an image over a network. By contrast, it has become quite clear that many
people will tolerate questionable audio quality in exchange for free global telephone calls
(not to mention the ability to talk on the phone while driving).

7.2.1 Lossless Compression Algorithms
We begin by introducing three lossless compression algorithms. We do not describe these
algorithms in much detail—we just give the essential idea—since it is the lossy algorithms
used to compress image and video data that are of the greatest utility in today’s network
environment. We do comment, though, on how well these lossless algorithms work on
digital imagery. Some of the ideas exploited by these lossless techniques show up again
in later sections when we consider the lossy algorithms that are used to compress images.

Run Length Encoding
Run length encoding (RLE) is a compression technique with a brute-force simplicity.
The idea is to replace consecutive occurrences of a given symbol with only one copy of
the symbol, plus a count of how many times that symbol occurs—hence the name “run
length.” For example, the string AAABBCDDDD would be encoded as 3A2B1C4D.

RLE can be used to compress digital imagery by comparing adjacent pixel values
and then encoding only the changes. For images that have large homogeneous regions,
this technique is quite effective. For example, it is not uncommon that RLE can achieve
compression ratios on the order of 8-to-1 for scanned text images. RLE works well on
such files because they often contain a large amount of white space that can be removed.
In fact, RLE is the key compression algorithm used to transmit faxes. However, for
images with even a small degree of local variation, it is not uncommon for compression
to actually increase the image byte size, since it takes 2 bytes to represent a single symbol
when that symbol is not repeated.

Differential Pulse Code Modulation
Another simple lossless compression algorithm is differential pulse code modulation
(DPCM). The idea here is to first output a reference symbol and then, for each sym-
bol in the data, to output the difference between that symbol and the reference symbol.
For example, using symbol A as the reference symbol, the string AAABBCDDDD would
be encoded as A0001123333 since A is the same as the reference symbol, B has a dif-
ference of 1 from the reference symbol, and so on. Note that this simple example does
not illustrate the real benefit of DPCM, which is that when the differences are small,
they can be encoded with fewer bits than the symbol itself. In this example, the range of
differences 0–3 can be represented with 2 bits each, rather than the 7 or 8 bits required
by the full character. As soon as the difference becomes too large, a new reference symbol
is selected.
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DPCM works better than RLE for most digital imagery, since it takes advantage
of the fact that adjacent pixels are usually similar. Due to this correlation, the dynamic
range of the differences between the adjacent pixel values can be significantly less than
the dynamic range of the original image, and this range can therefore be represented
using fewer bits. Using DPCM, we have measured compression ratios of 1.5-to-1 on
digital images.

A slightly different approach, called delta encoding, simply encodes a symbol as
the difference from the previous one. Thus, for example, AAABBCDDDD would be
represented as A001011000. Note that delta encoding is likely to work well for encoding
images where adjacent pixels are similar. It is also possible to perform RLE after delta
encoding, since we might find long strings of 0s if there are many similar symbols next
to each other.

Dictionary-Based Methods

The final lossless compression method we consider is the dictionary-based approach,
of which the Lempel-Ziv (LZ) compression algorithm is the best known. The Unix
compress command uses a variation of the LZ algorithm.

The idea of a dictionary-based compression algorithm is to build a dictionary (ta-
ble) of variable-length strings (think of them as common phrases) that you expect to
find in the data, and then to replace each of these strings when it appears in the data
with the corresponding index to the dictionary. For example, instead of working with
individual characters in text data, you could treat each word as a string and output the
index in the dictionary for that word. To further elaborate on this example, the word
“compression” has the index 4978 in one particular dictionary; it is the 4978th word in
/usr/share/dict/words. To compress a body of text, each time the string “compres-
sion” appears, it would be replaced by 4978. Since this particular dictionary has just over
25,000 words in it, it would take 15 bits to encode the index, meaning that the string
“compression” could be represented in 15 bits rather than the 77 bits required by 7-bit
ASCII. This is a compression ratio of 5-to-1!

Of course, this leaves the question of where the dictionary comes from. One op-
tion is to define a static dictionary, preferably one that is tailored for the data being
compressed. A more general solution, and the one used by LZ compression, is to adap-
tively define the dictionary based on the contents of the data being compressed. In this
case, however, the dictionary constructed during compression has to be sent along with
the data so that the decompression half of the algorithm can do its job. Exactly how
you build an adaptive dictionary has been a subject of extensive research; we discuss
important papers on the subject at the end of this chapter.

A variation of the LZ algorithm is used to compress digital images in the Graphical
Interchange Format (GIF). Before doing that, GIF first reduces 24-bit color images to
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8-bit color images. This is done by identifying the colors used in the picture, of which
there will typically be considerably fewer than 224, and then picking the 256 colors that
most closely approximate the colors used in the picture. These colors are stored in a
table, which can be indexed with an 8-bit number, and the value for each pixel is re-
placed by the appropriate index. Note that this is an example of lossy compression for
any picture with more than 256 colors. GIF then runs an LZ variant over the result,
treating common sequences of pixels as the strings that make up the dictionary. Us-
ing this approach, GIF is sometimes able to achieve compression ratios on the order of
10-to-1, but only when the image consists of a relatively small number of discrete colors.
Images of natural scenes, which often include a more continuous spectrum of colors,
cannot be compressed at this ratio using GIF. As another data point, we were able to get
a 2-to-1 compression ratio when we applied the LZ-based Unix compress command
to the source code for the protocols described in this book.

7.2.2 Image Compression (JPEG)
Given the increase in the use of digital imagery in recent years—this use was spawned by
the invention of graphical displays, not high-speed networks—the need for compression
algorithms designed for digital imagery data has grown more and more critical. In re-
sponse to this need, the ISO has defined a digital image format known as JPEG, named
after the Joint Photographic Experts Group that designed it. (The “Joint” in JPEG stands
for a joint ISO/ITU effort.) This section describes the compression algorithm at the
heart of JPEG. The next section then describes a related format—MPEG—that is used
for video data.

Before describing JPEG compression, one point that needs to be made is that
JPEG, GIF, and MPEG are more than just compression algorithms. They also define
the format for image or video data, much the same way that XDR, NDR, and ASN.1
define the format for numeric and string data. However, this section concentrates on the
compression aspects of these standards.

JPEG compression takes place in three phases, as illustrated in Figure 7.11. On
the compression side, the image is fed through these three phases one 8 × 8 block at a
time. The first phase applies the discrete cosine transform (DCT) to the block. If you
think of the image as a signal in the spatial domain, then DCT transforms this signal

Figure 7.11 Block diagram of JPEG compression.
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into an equivalent signal in the spatial frequency domain. This is a lossless operation but
a necessary precursor to the next, lossy step. After the DCT, the second phase applies a
quantization to the resulting signal and, in so doing, loses the least significant informa-
tion contained in that signal. The third phase encodes the final result, but in so doing,
adds an element of lossless compression to the lossy compression achieved by the first
two phases. Decompression follows these same three phases, but in reverse order.

The following discussion describes each phase in more detail. It is simplified by
considering only grayscale images; color images are discussed at the end of this sec-
tion. In the case of grayscale images, each pixel in the image is given by an 8-bit
value that indicates the brightness of the pixel, where 0 equals white and 255 equals
black.

DCT Phase

DCT is a transformation closely related to the fast Fourier transform (FFT). It takes
an 8 × 8 matrix of pixel values as input and outputs an 8 × 8 matrix of frequency
coefficients. You can think of the input matrix as a 64-point signal that is defined in two
spatial dimensions (x and y); DCT breaks this signal into 64 spatial frequencies. To get
an intuitive feel for spatial frequency, imagine yourself moving across a picture in, say,
the x direction. You would see the value of each pixel varying as some function of x. If
this value changes slowly with increasing x, then it has a low spatial frequency, and if it
changes rapidly, it has a high spatial frequency. So the low frequencies correspond to the
gross features of the picture, while the high frequencies correspond to fine detail. The
idea behind the DCT is to separate the gross features, which are essential to viewing the
image, from the fine detail, which is less essential and, in some cases, might be barely
perceived by the eye.

DCT, along with its inverse, which is performed during decompression, is defined
by the following formulas:

DCT (i, j) = 1√
2N

C(i)C(j)
N−1∑

x=0

N−1∑

y=0

pixel(x, y) cos
[(2x + 1)iπ

2N

]
cos

[(2y + 1)jπ
2N

]

pixel(x, y) = 1√
2N

N−1∑

i=0

N−1∑

j=0

C(i)C(j)DCT (i, j) cos
[(2x + 1)iπ

2N

]
cos

[(2y + 1)jπ
2N

]

C(x) =
{

1√
2

if x = 0

1 if x > 0

where pixel(x, y) is the grayscale value of the pixel at position (x, y) in the 8 × 8 block
being compressed; N = 8 in this case.
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The first frequency coefficient, at location (0,0) in the output matrix, is called the
DC coefficient. Intuitively, we can see that the DC coefficient is a measure of the average
value of the 64 input pixels. The other 63 elements of the output matrix are called the
AC coefficients. They add the higher-spatial-frequency information to this average value.
Thus, as you go from the first frequency coefficient toward the 64th frequency coeffi-
cient, you are moving from low-frequency information to high-frequency information,
from the broad strokes of the image to finer and finer detail. These higher-frequency
coefficients are increasingly unimportant to the perceived quality of the image. It is the
second phase of JPEG that decides which portion of which coefficients to throw away.

Quantization Phase

The second phase of JPEG is where the compression becomes lossy. DCT does not
itself lose information; it just transforms the image into a form that makes it easier to
know what information to remove. (Although not lossy, per se, there is of course some
loss of precision during the DCT phase because of the use of fixed-point arithmetic.)
Quantization is easy to understand—it’s simply a matter of dropping the insignificant
bits of the frequency coefficients.

To see how the quantization phase works, imagine that you want to compress some
whole numbers less than 100; for example, 45, 98, 23, 66, and 7. If you decided that
knowing these numbers truncated to the nearest multiple of 10 is sufficient for your pur-
poses, then you could divide each number by the quantum 10 using integer arithmetic,
yielding 4, 9, 2, 6, and 0. These numbers can each be encoded in 4 bits rather than the
7 bits needed to encode the original numbers.

Rather than using the same quantum for all 64 coefficients, JPEG uses a quantiza-
tion table that gives the quantum to use for each of the coefficients, as specified in the
formula given below. You can think of this table (Quantum) as a parameter that can
be set to control how much information is lost and, correspondingly, how much com-
pression is achieved. In practice, the JPEG standard specifies a set of quantization tables
that have proven effective in compressing digital images; an example quantization table
is given in Table 7.1. In tables like this one, the low coefficients have a quantum close to
1 (meaning that little low-frequency information is lost) and the high coefficients have
larger values (meaning that more high-frequency information is lost). Notice that as a
result of such quantization tables, many of the high-frequency coefficients end up be-
ing set to 0 after quantization, making them ripe for further compression in the third
phase.

The basic quantization equation is

QuantizedValue(i, j) = IntegerRound(DCT (i, j)/Quantum(i, j))
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Quantum =












3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31












Table 7.1 Example JPEG quantization table.

where

IntegerRound(x) =
{ �x + 0.5� if x ≥ 0

�x − 0.5� if x < 0

Decompression is then simply defined as

DCT (i, j) = QuantizedValue(i, j) × Quantum(i, j)

For example, if the DC coefficient (i.e., DCT(0,0)) for a particular block was equal
to 25, then the quantization of this value using Table 7.1 would result in

�25/3 + 0.5� = 8

During decompression, this coefficient would then be restored as

8 × 3 = 24

Encoding Phase

The final phase of JPEG encodes the quantized frequency coefficients in a compact form.
This results in additional compression, but this compression is lossless. Starting with the
DC coefficient in position (0,0), the coefficients are processed in the zigzag sequence
shown in Figure 7.12. Along this zigzag, a form of run length encoding is used—RLE is
applied to only the 0 coefficients, which is significant because many of the later coeffi-
cients are 0. The individual coefficient values are then encoded using a Huffman code.
(The JPEG standard allows the implementer to use an arithmetic coding instead of the
Huffman code.)
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Figure 7.12 Zigzag traversal of quantized frequency coefficients.

In addition, because the DC coefficient contains a large percentage of the informa-
tion about the 8 × 8 block from the source image, and images typically change slowly
from block to block, each DC coefficient is encoded as the difference from the previous
DC coefficient. This is the delta encoding approach described in Section 7.2.1.

Color Images
The preceding discussion assumed that each pixel was given by a single grayscale value.
In the case of a color image, there are many different representations for each pixel to
choose from. One representation, called RGB, represents each pixel with three color
components: red, green, and blue. RGB is the representation of color typically supported
by graphical input and output devices. Another representation, called YUV, also has three
components: one luminance (Y) and two chrominance (U and V). Just like RGB, YUV
is a three-dimensional coordinate system. However, compared to RGB, its coordinates
are rotated to better match the human visual system. This is advantageous because the
human visual system is not uniformly sensitive to colors. For example, we can distinguish
the luminance (brightness) of a pixel much better than its hue (color).

Exactly why the three components in each of the two representations can be com-
bined to produce acceptable color is an interesting question. The simple answer is that
two-coordinate color systems have been defined, but they have proven inadequate for
faithfully reproducing colors as perceived by humans. What is important to our discus-
sion is that each pixel in a color image is given by three separate values. To compress such
an image, each of these three components is processed independently in exactly the same
way as the single grayscale value was processed. In other words, you can think of a color
image as three separate images, where these separate images are overlaid on top of each
other when displayed. Note that, in general, JPEG is not limited to three-component
images; it is possible to compress a multispectral image using JPEG.



566 7 End-to-End Data

JPEG includes a number of variations that control how much compression you
achieve versus the fidelity of the image. This can be done, for example, by using different
quantization tables. These variations, plus the fact that different images have different
characteristics, make it impossible to say with any precision the compression ratios that
can be achieved with JPEG. The widely accepted generalization, however, is that JPEG
is able to compress 24-bit color images by a ratio of roughly 30-to-1: The image can
first be compressed by a factor of 3 by reducing the 24 bits of color to 8 bits of color (as
described for GIF) and then by another factor of 10 by using the algorithm described in
this section.

7.2.3 Video Compression (MPEG)
We now turn our attention to the MPEG format, named after the Moving Picture Ex-
perts Group that defined it. To a first approximation, a moving picture (i.e., video) is
simply a succession of still images—also called frames or pictures—displayed at some
video rate. Each of these frames can be compressed using the same DCT-based tech-
nique used in JPEG. Stopping at this point would be a mistake, however, because it
fails to remove the interframe redundancy present in a video sequence. For example, two
successive frames of video will contain almost identical information if there is not much
motion in the scene, so it would be unnecessary to send the same information twice. Even
when there is motion, there may be plenty of redundancy since a moving object may not
change from one frame to the next; in some cases, only its position changes. MPEG
takes this interframe redundancy into consideration. MPEG also defines a mechanism
for encoding an audio signal with the video, but we consider only the video aspect of
MPEG in this section.

Frame Types

MPEG takes a sequence of video frames as input and compresses them into three types
of frames, called I frames (intrapicture), P frames (predicted picture), and B frames (bidi-
rectional predicted picture). Each frame of input is compressed into one of these three
frame types. I frames can be thought of as reference frames; they are self-contained, de-
pending on neither earlier frames nor later frames. To a first approximation, an I frame
is simply the JPEG-compressed version of the corresponding frame in the video source.
P and B frames are not self-contained; they specify relative differences from some ref-
erence frame. More specifically, a P frame specifies the differences from the previous
I frame, while a B frame gives an interpolation between the previous and subsequent I
or P frames.

Figure 7.13 illustrates a sequence of seven video frames that, after being compressed
by MPEG, result in a sequence of I, P, and B frames. The two I frames stand alone; each
can be decompressed at the receiver independently of any other frames. The P frame
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Figure 7.13 Sequence of I, P, and B frames generated by MPEG.

depends on the preceding I frame; it can be decompressed at the receiver only if the
preceding I frame also arrives. Each of the B frames depends on both the preceding I or
P frame and the subsequent I or P frame. Both of these reference frames must arrive at
the receiver before MPEG can decompress the B frame to reproduce the original video
frame.

Note that because each B frame depends on a later frame in the sequence, the
compressed frames are not transmitted in sequential order. Instead, the sequence I B B P
B B I shown in Figure 7.13 is transmitted as I P B B I B B. Also, MPEG does not define
the ratio of I frames to P and B frames; this ratio may vary depending on the required
compression and picture quality. For example, it is permissible to transmit only I frames.
This would be similar to using JPEG to compress the video.

In contrast to the preceding discussion of JPEG, the following focuses on the decod-
ing of an MPEG stream. It is a little easier to describe, and it is the operation that is more
often implemented in networking systems today, since MPEG coding is so expensive that
it is normally done offline (i.e., not in real time). For example, in a video-on-demand
system, the video would be encoded and stored on disk ahead of time. When a viewer
wanted to watch the video, the MPEG stream would then be transmitted to the viewer’s
machine, which would decode and display the stream in real time.

Let’s look more closely at the three frame types. As mentioned above, I frames are
approximately equal to the JPEG-compressed version of the source frame. The main
difference is that MPEG works in units of 16 × 16 macroblocks. For a color video repre-
sented in YUV, the U and V components in each macroblock are downsampled into an
8 × 8 block. That is, each 2 × 2 subblock in the macroblock is given by one U value and
one V value—the average of the four pixel values. The subblock still has four Y values.
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Figure 7.14 Each frame as a collection of macroblocks.

This can be done because the U and V components can be transmitted less accurately
without visibly disturbing the image, since humans are less sensitive to color than they
are to brightness. The relationship between a frame and the corresponding macroblocks
is given in Figure 7.14.

The P and B frames are also processed in units of macroblocks. Intuitively, we
can see that the information they carry for each macroblock captures the motion in the
video; that is, it shows in what direction and how far the macroblock moved relative to
the reference frame(s). The following describes how a B frame is used to reconstruct a
frame during decompression; P frames are handled in a similar manner, except that they
depend on only one reference frame instead of two.

Before getting to the details of how a B frame is decompressed, we first note that
each macroblock in a B frame is not necessarily defined relative to both an earlier and a
later frame, as suggested above, but may instead simply be specified relative to just one
or the other. In fact, a given macroblock in a B frame can use the same intracoding as is
used in an I frame. This flexibility exists because if the motion picture is changing too
rapidly, then it sometimes makes sense to give the intrapicture encoding rather than a
forward- or backward-predicted encoding. Thus, each macroblock in a B frame includes
a type field that indicates which encoding is used for that macroblock. In the following
discussion, however, we consider only the general case in which the macroblock uses
bidirectional predictive encoding.

In such a case, each macroblock in a B frame is represented with a 4-tuple: (1) a
coordinate for the macroblock in the frame, (2) a motion vector relative to the previous
reference frame, (3) a motion vector relative to the subsequent reference frame, and (4) a
delta (δ) for each pixel in the macroblock (i.e., how much each pixel has changed relative
to the two reference pixels). For each pixel in the macroblock, the first task is to find the
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corresponding reference pixel in the past and future reference frames. This is done using
the two motion vectors associated with the macroblock. Then, the delta for the pixel is
added to the average of these two reference pixels. Stated more precisely, if we let Fp and
Ff denote the past and future reference frames, respectively, and the past/future motion
vectors are given by (xp, yp) and (xf , yf ), then the pixel at coordinate (x, y) in the current
frame (denoted Fc) is computed as

Fc(x, y) = (Fp(x + xp, y + yp) + Ff (x + xf , y + yf ))/2 + δ(x, y)

where δ is the delta for the pixel as specified in the B frame. These deltas are encoded
in the same way as pixels in I frames. That is, they are run through DCT and then
quantized. Since the deltas are typically small, most of the DCT coefficients are 0 after
quantization; hence they can be effectively compressed.

It should be fairly clear from the preceding discussion how encoding would be
performed, with one exception. When generating a B or P frame during compression,
MPEG must decide where to place the macroblocks. Recall that each macroblock in a
P frame, for example, is defined relative to a macroblock in an I frame, but that the
macroblock in the P frame need not be in the same part of the frame as the corre-
sponding macroblock in the I frame—the difference in position is given by the mo-
tion vector. You would like to pick a motion vector that makes the macroblock in the
P frame as similar as possible to the corresponding macroblock in the I frame, so that
the deltas for that macroblock can be as small as possible. This means that you need
to figure out where objects in the picture moved from one frame to the next. This is
the problem of motion estimation, and several techniques (heuristics) for solving this
problem are known. (We discuss papers that consider this problem at the end of this
chapter.) The difficulty of this problem is one of the reasons that MPEG encoding
takes longer than decoding on equivalent hardware. MPEG does not specify any par-
ticular technique; it only defines the format for encoding this information in B and
P frames and the algorithm for reconstructing the pixel during decompression, as given
above.

Effectiveness and Performance

MPEG typically achieves a compression ratio of 90-to-1, although ratios as high as 150-
to-1 are not unheard of. In terms of the individual frame types, we can expect a com-
pression ratio of approximately 30-to-1 for the I frames (this is consistent with the ratios
achieved using JPEG when 24-bit color is first reduced to 8-bit color), while P and
B frame compression ratios are typically three to five times smaller than the rates for the
I frame. Without first reducing the 24 bits of color to 8 bits, the achievable compression
with MPEG is typically between 30-to-1 and 50-to-1.
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MPEG involves an expensive computation. On the compression side, it is typically
done offline, which is not a problem for preparing movies for a video-on-demand service.
Video can be compressed in real time using hardware today, but software implementa-
tions are quickly closing the gap. On the decompression side, low-cost MPEG video
boards are available, but they do little more than YUV color lookup, which fortunately
is the most expensive step. Most of the actual MPEG decoding is done in software. In
recent years processors have become fast enough to keep pace with 30-frames-per-second
video rates when decoding MPEG streams purely in software—modern processors can
even decode MPEG streams of high-definition video (HDTV).

Other Video Encoding Standards

We conclude by noting that MPEG is not the only standard available for encoding video.
For example, the ITU-T has also defined the “H series” for encoding real-time mul-
timedia data. Generally, the H series includes standards for video, audio, control, and
multiplexing (e.g., mixing audio, video, and data onto a single bitstream). Within the
series, H.261 and H.263 are the first- and second-generation video encoding standards.
Unlike MPEG, which is targeted at bit rates on the order of 1.5 Mbps, H.261 and
H.263 are targeted at ISDN speeds. That is, they support video over links with band-
width available in 64-Kbps increments. In principle, both H.261 and H.263 look a lot
like MPEG: They use DCT, quantization, and interframe compression. The differences
between H.261/H.263 and MPEG are in the details.

There are also new versions of MPEG coming down the pike, most noticeably
MPEG-4. The best way to think of MPEG-4 is that it generalizes MPEG to include
both natural and synthetic (computer-generated) video. It does this by treating each
scene (frame) as a collection of video objects, rather than working purely with rectangular
macroblocks. MPEG-4 also has the goal of supporting lower bit rates (e.g., suitable for
wireless handheld devices), unlike MPEG-2 (see below), which is targeting with high-end
video (e.g., suitable for HDTV). At the current time, however, the most important aspect
of MPEG-4 is that it is backward compatible with MPEG-2, meaning that most MPEG-
4 videos available today still exploit the motion estimation and DCB-based compression
just described.

Finally, not too far afield from video compression are standards for encoding an-
imations, such as the type that pop up every time you click on a Web page. The most
popular example seems to be Macromedia’s FLASH format. You can think of FLASH
as defining a protocol for specifying a set of polygons and lines (the building blocks of
computer-generated video), along with a sequence of vectors that dictate how these ob-
jects move through the scene over time. In this sense, FLASH isn’t really a compression
algorithm so much as it is an encoding standard.
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7.2.4 Transmitting MPEG over a Network
As suggested earlier in this chapter, MPEG not only defines how video is compressed,
but it also specifies the format of an MPEG-compressed video. Similarly, JPEG and GIF
define a format for still images. Focusing on MPEG, the first thing to keep in mind
is that it defines the format of a video stream; it does not specify how this stream is
broken into network packets. Thus, MPEG can be used for videos stored on disk, as well
as videos transmitted over a stream-oriented network connection, like that provided by
TCP. More on how you might packetize an MPEG stream in a moment.

The MPEG format is one of the most complicated of any protocols discussed in
this book. This complication comes from a desire to give the encoding algorithm every
possible degree of freedom in how it encodes a given video stream. It also comes from
the evolution of the standard over time (i.e., MPEG-1 and MPEG-2). What we describe
below is called the main profile of an MPEG-2 video stream. You can think of an MPEG
profile as being analogous to a “version,” except the profile is not explicitly specified in
an MPEG header; the receiver has to deduce the profile from the combination of header
fields it sees.

Figure 7.15 Format of an MPEG-compressed video stream.
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A main profile MPEG-2 stream has
a nested structure, as illustrated in Fig-
ure 7.15. (Keep in mind that this fig-
ure hides a lot of messy details.) At the
outermost level, the video contains a se-
quence of groups of pictures (GOP) sep-
arated by a SeqHdr. The sequence is
terminated by a SeqEndCode (0xb7).
The SeqHdr that precedes every GOP
specifies—among other things—the size
of each picture (frame) in the GOP (mea-
sured in both pixels and macroblocks), the
interpicture period (measured in µs), and
two quantization matrices for the mac-
roblocks within this GOP: one for intra-
coded macroblocks (I blocks) and one for
intercoded macroblocks (B and P blocks).
Since this information is given for each
GOP—rather than once for the entire
video stream, as you might expect—it is
possible to change the quantization ta-
ble and frame rate at GOP boundaries
throughout the video. This makes it possi-
ble to adapt the video stream over time, as
we discuss below.

Each GOP is given by a GOPHdr,
followed by the set of pictures that make
up the GOP. The GOPHdr specifies the
number of pictures in the GOP, as well as
synchronization information for the GOP
(i.e., when the GOP should play, relative
to the beginning of the video). Each pic-
ture, in turn, is given by a PictureHdr
and a set of slices that make up the picture.
(A slice is a region of the picture, for ex-
ample, one horizontal line.) The Picture-
Hdr identifies the type of the picture (I,
B, or P), and also defines a picture-specific
quantization table. The SliceHdr gives

Adaptive Video Coding

We have already noted that video cod-
ing using MPEG allows a trade-off be-
tween the bandwidth consumed and
the quality of the image. Conversely,
it should be apparent that the output
bandwidth of a video compression al-
gorithm operating at a certain quality
level will not, in general, be constant,
but will vary over time depending on
the amount of detail and movement
in the video stream. These facts raise
some interesting questions about how
to design a system to transport com-
pressed video over a packet network.

Suppose we have a video codec
that outputs a compressed video stream
at an average rate of R bps but occa-
sionally bursts up to 3R bps. We could
potentially transmit the video stream
over a fixed bandwidth pipe (e.g., a
leased line or CBR circuit) of capac-
ity R, provided we passed the video
stream through a smoothing buffer
that smoothes out the instantaneous
peaks in transmission rate. Now, it
could happen at some point that the
smoothing buffer would fill up be-
yond an acceptable level, perhaps due
to a long action sequence in a movie
causing a long period of high out-
put from the codec. At this point, we
could increase the amount of com-
pression for a while, thus reducing the
data rate (and picture quality) and al-
lowing the smoothing buffer to drain.
When it gets close to empty, we could
increase the coding quality again.
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We could do pretty much the
same thing over a packet-switched
network, but without a smoothing
buffer. Let’s assume that we have some
way to measure the amount of free ca-
pacity and level of congestion along
a path, for example, by using an
equation-based congestion control al-
gorithm like the ones described in
Section 6.5.4. As the available band-
width fluctuates, we can feed that in-
formation back to the codec so that it
adjusts its coding parameters to back
off during congestion and to send
more aggressively (with a higher pic-
ture quality) when the network is idle.
This is analogous to the behavior of
TCP, except in the video case we are
actually modifying the total amount
of data sent rather than how long we
take to send a fixed amount of data,
since we don’t want to introduce de-
lay into a video application.

An interesting problem arises if
we are multicasting a video stream to
many receivers. How do we choose
the correct rate for each receiver, since
they may be experiencing wildly dif-
ferent levels of congestion? A cun-
ning solution to this problem is to
split the transmitted video into “lay-
ers.” The first layer would have the
basic level of detail needed to see some
sort of useful picture, while each sub-
sequent layer would add more detail,
consisting of higher-frequency infor-
mation. Each layer can then be sent
to a different multicast group address,

the vertical position of the slice, plus an-
other opportunity to change the quantiza-
tion table—this time by a constant scaling
factor rather than by giving a whole new
table. Next, the SliceHdr is followed by
a sequence of macroblocks. Finally, each
macroblock includes a header that speci-
fies the block address within the picture,
along with data for the six blocks within
the macroblock: one for the U compo-
nent, one for the V component, and four
for the Y component. (Recall that the
Y component is 16 × 16, while the U and
V components are 8 × 8.)

It should be clear that one of the
powers of the MPEG format is that
it gives the encoder an opportunity to
change the encoding over time. It can
change the frame rate, the resolution, the
mix of frame types that define a GOP, the
quantization table, and the encoding used
for individual macroblocks. As a conse-
quence, it is possible to adapt the rate at
which a video is transmitted over a net-
work by trading picture quality for net-
work bandwidth. Exactly how a network
protocol might exploit this adaptability is
currently a subject of intense research (see
sidebar).

Another interesting aspect of send-
ing an MPEG stream over the network
is exactly how the stream is broken into
packets. If sent over a TCP connection,
packetization is not an issue; TCP decides
when it has enough bytes to send the next
IP datagram. When using video interac-
tively, however, it is rare to transmit it over
TCP, since TCP has several features that
are ill-suited to highly latency-sensitive
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applications (such as abrupt rate changes
after a packet loss and retransmission
of lost packets). If we are transmitting
video using UDP, say, then it makes
sense to break the stream at carefully se-
lected points, for example, at macroblock
boundaries. This is because we would like
to confine the effects of a lost packet to
a single macroblock, rather than damag-
ing several macroblocks with a single loss.
This is an example of Application Level
Framing, which is discussed more fully in
Section 9.3 where we consider video ap-
plications.

Packetizing the stream is only the
first problem in sending MPEG-compres-
sed video over a network. The next com-
plication is dealing with packet loss. On
the one hand, if a B frame is dropped by

and each receiver can decide how
many layers to join. If receiver A
is experiencing heavy congestion, he
might join only the multicast group
carrying the base layer, while re-
ceiver B could join all the layers. Re-
ceiver A might periodically try to join
the next layer of detail to see if more
bandwidth has become available. This
approach is known as receiver-driven
layered multicast (RLM). An interest-
ing research problem is how to create
the right set of incentives to cause a
receiver to join the appropriate num-
ber of groups rather than just joining
all of them, since joining too many
groups would cause unnecessary net-
work congestion.

the network, then it is possible to simply replay the previous frame without seriously
compromising the video; 1 frame out of 30 is no big deal. On the other hand, a lost
I frame has serious consequences—none of the subsequent B and P frames can be
processed without it. Thus, losing an I frame would result in losing multiple frames
of the video. While you could retransmit the missing I frame, the resulting delay would
probably not be acceptable in a real-time videoconference. One solution to this prob-
lem would be to use the Differentiated Services techniques described in Section 6.5.3 to
mark the packets containing I frames with a lower drop probability than other packets.

One final observation is that how you choose to encode video depends on more
than just the available network bandwidth. It also depends on the application’s latency
constraints. Once again, an interactive application like videoconferencing needs small la-
tencies. The critical factor is the combination of I, P, and B frames in the GOP. Consider
the following GOP:

I B B B B P B B B B I

The problem this GOP causes a videoconferencing application is that the sender has to
delay the transmission of the four B frames until the P or I that follows them is available.
This is because each B frame depends on the subsequent P or I frame. If the video
is playing at 15 frames per second (i.e., one frame every 67 ms), this means the first
B frame is delayed 4 × 67 ms, which is more than a quarter of a second. This delay is in
addition to any propagation delay imposed by the network. A quarter of a second is far
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greater than the 100-ms threshold that humans are able to perceive. It is for this reason
that many videoconference applications encode video using JPEG, which is often called
motion-JPEG. (Motion-JPEG also addresses the problem of dropping a reference frame
since all frames are able to stand alone.) Notice, however, that an interframe encoding
that depends upon only prior frames rather than later frames is not a problem. Thus, a
GOP of

I P P P P I

would work just fine for interactive videoconferencing.

7.2.5 Audio Compression (MP3)
MPEG not only defines how video is compressed, but it also defines a standard for
compressing audio. This standard can be used to compress the audio portion of a movie
(in which case the MPEG standard defines how the compressed audio is interleaved with
the compressed video in a single MPEG stream) or it can be used to compress stand-alone
audio (for example, an audio CD).

To understand audio compression, we need to begin with the data. CD-quality
audio, which is the de facto digital representation for high-quality audio, is sampled at
a rate of 44.1 KHz (i.e., a sample is collected approximately once every 23 µs). Each
sample is 16 bits, which means that a stereo (2-channel) audio stream results in a bit
rate of

2 × 44.1 × 1,000 × 16 = 1.41 Mbps

By comparison, telephone-quality voice is sampled at a rate of 8 KHz, with 8-bit samples,
resulting in a bit rate of 64 Kbps, which is not coincidentally the speed of an ISDN link.

Clearly, some amount of compression is going to be required to transmit CD-
quality audio over, say, the 128-Kbps capacity of an ISDN data/voice line pair. To make
matters worse, synchronization and error correction overhead require that 49 bits be used
to encode each 16-bit sample, resulting in an actual bit rate of

49/16 × 1.41 Mbps = 4.32 Mbps

MPEG addresses this need by defining three levels of compression, as enumerated in Ta-
ble 7.2. Of these, Layer III, which is more widely known as MP3, is the most commonly
used.

Coding Bit Rates Compression Factor

Layer I 384 Kbps 4

Layer II 192 Kbps 8

Layer III 128 Kbps 12

Table 7.2 MP3 compression rates.
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To achieve these compression ratios, MP3 uses techniques that are similar to those
used by MPEG to compress video. First, it splits the audio stream into some number of
frequency subbands, loosely analogous to the way MPEG processes the Y, U, and V com-
ponents of a video stream separately. Second, each subband is broken into a sequence of
blocks, which are similar to MPEG’s macroblocks except they can vary in length from
64 to 1024 samples. (The encoding algorithm can vary the block size depending on cer-
tain distortion effects that are beyond our discussion.) Finally, each block is transformed
using a modified DCT algorithm, quantized, and Huffman encoded, just as for MPEG
video.

The trick to MP3 is how many subbands it elects to use, and how many bits it
allocates to each subband, keeping in mind that it is trying to produce the highest-quality
audio possible for the target bit rate. Exactly how this allocation is made is governed
by psychoacoustic models that are beyond the scope of this book, but to illustrate the
idea, consider that it makes sense to allocate more bits to low-frequency subbands when
compressing a male voice and more bits to high-frequency subbands when compressing
a female voice. Operationally, MP3 dynamically changes the quantization tables used for
each subband to achieve the desired effect.

Once compressed, the subbands are packaged into fixed-size frames, and a header is
attached. This header includes synchronization information, as well as the bit allocation
information needed by the decoder to determine how many bits are used to encode
each subband. As mentioned above, these audio frames can then be interleaved with
video frames to form a complete MPEG stream. One interesting side note is that while
it might work to drop B frames in the network should congestion occur, experience
teaches us that it is not a good idea to drop audio frames since users are better able to
tolerate bad video than bad audio.

7.3 Summary
This chapter has described how application data is encoded in network packets. Unlike
the protocols described earlier in this book, which you can think of as processing messages,
these transformations process data.

The first issue is presentation formatting, where the problem is formatting the
different types of data that application programs compute on: integers, floating-point
numbers, character strings, arrays, and structures. This involves both translating between
machine and network byte order and linearizing compound data structures. We outlined
the design space for presentation formatting and discussed four specific mechanisms that
fall on different points in this design space: XDR, ASN.1, NDR, and the increasingly
important XML.
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The second issue is compression, which is concerned with reducing the bandwidth
required to transmit different types of data. Compression algorithms can be either lossless
or lossy, with lossy algorithms being most appropriate for image and video data. JPEG,
MPEG, and MP3 are examples of lossy compression protocols for still images, video,
and audio data, respectively.

We’ve been discussing MPEG
as though it were designed to com-
press video data so it can be transmit-
ted over packet-switched networks. Of
course this is not the case. MPEG is a
general video format that is just as ap-
plicable to a movie stored on DVD or

O P E N I S S U E

Computer Networks Meet
Consumer Electronics

a digital HDTV signal transmitted by a television broadcaster. What this all points to is
a convergence of computers, networks, and consumer electronics.

In the not-too-distant future, we can expect to find a media gateway (MG) in the
home. It might sit on top of the television, replacing today’s set-top cable box. The MG
will be connected to an Internet service provider (ISP) possibly over the CATV cable
coming into the home. The MG will also support a number of ports (some of which
might be wireless links) that allow you to plug in different consumer electronic devices,
such as a digital camcorder, a DVD player, a video game, music player, and so on. It will
also probably connect to some sort of home network, perhaps using one of the wireless
technologies described in Chapter 2.

What will the MG be asked to do? For one thing, it will route multimedia streams
between different devices, much like today’s IP router forwards data packets between
ports. For example, it might be possible to forward a movie of the kids captured with the
digital camcorder out the ISP link and across the country to anxiously awaiting grand-
parents. A second thing it might have to do is translate between the TCP/IP spoken on
the Internet and whatever format is supported on the devices. Of course, it’s possible that
camcorders will one day be full-fledged Internet nodes (i.e., have their own IP addresses),
but media gateways will push the need to connect everything to the Internet indefinitely
into the future.

The prospect of widespread availability of “Internet appliances” raises several inter-
esting questions. One is the issue of address usage. IP version 6 was created with the goal
of expanding the IP address space so much that assigning IP addresses to any conceivable
object (toasters, water meters, etc.) would not cause address exhaustion. However, ISPs
today are reluctant to deploy IPv6, and instead are handing out IPv4 addresses to their
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customers extremely cautiously. This has the potential to cause significant problems in
the future.

Another issue is the ease of configuration of IP devices. While many of today’s In-
ternet users are comfortable setting the IP address, mask, and default gateway on their
PC, it’s unlikely that the average purchaser of a camcorder wants to learn how to config-
ure anything more complex than the “record” button. Plug-and-play configuration of IP
devices remains an important goal.

F U R T H E R R E A D I N G
Our recommended reading list for this chapter includes two papers that give an overview
of the JPEG and MPEG standards, respectively. Their main value is in explaining the var-
ious factors that shaped the standards. We also recommend the paper on receiver-driven
layered multicast as an excellent example of a systems approach to design, embracing the
issues of multicast, congestion control, and video coding.

■ Wallace, G. K. “The JPEG Still Picture Compression Standard.” Communica-
tions of the ACM 34(1):30–44, April 1991.

■ Le Gall, D. “MPEG: A Video Compression Standard for Multimedia Applica-
tions.” Communications of the ACM 34(1):46–58, April 1991.

■ McCanne, S., V. Jacobson, and M. Vetterli. “Receiver-Driven Layered Multi-
cast.” Proceedings of the SIGCOMM ’96 Symposium, pp. 117–130, September
1996.

Unfortunately, there is no single paper that gives a comprehensive treatment of pre-
sentation formatting. Aside from the XDR, ASN.1/BER, and NDR specifications (see
Eisler [Eis06], the CCITT recommendations [CCITT92a], [CCITT92b], and the Open
Software Foundation [OSF94]), three other papers cover topics related to presentation
formatting: those by O’Malley et al. [OPM94], Lin [Lin93], and Chen et al. [CLNZ89].
All three discuss performance-related issues.

On the topic of compression, a good place to start is with Huffman encoding,
which was originally defined in [Huf52]. The original LZ algorithm is presented in Ziv
and Lempel [ZL77], and an improved version of that algorithm by the same authors
can be found in [ZL78]. Both of these papers are of a theoretical nature. The work
that brought the LZ approach into widespread practice can be found in Welch [Wel84].
For a more complete overview of the topic of compression, Nelson’s article [Nel92] is
recommended. You can also learn about compression in any of several recent books
on multimedia. We recommend Witten et al. [WMB99], which has an extremely high
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science-to-hype ratio, and Buford [Buf94], which is a collection of contributed chapters
that span the range of multimedia topics. For a comprehensive description of the MPEG
standard, see Mitchell et al. [MPFL96]. For a description of MP3, see Noll [Nol97].

Finally, we recommend the following live references:

■ http://www.xml.com/axml/testaxml.htm: A helpfully annotated version
of the XML specification.

■ http://bmrc.berkeley.edu/projects/mpeg/index.html: A collection of
MPEG-related programs, some of which are used in the following exercises.

E X E R C I S E S
1 Consider the following C code:

#define MAXSTR 100

struct date {
char month[MAXSTR];
int day;
int year;

};

struct employee {
char name[MAXSTR];
int ssn;
struct date *hireday;
int salary_history[5];
int num_raises;

};

static struct date date0 = {"MAY", 5, 1996};
static struct date date1 = {"JANUARY", 7, 2002};

static struct employee employee0 =
{"RICHARD", 4376, &date0,

{14000, 35000, 47000, 0, 0}, 2};
static struct employee employee1 =

{"MARY", 4377, &date1,
{90000, 150000, 0, 0, 0}, 1};
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where num_raises + 1 corresponds to the number of valid entries in array
salary_history. Show the on-the-wire representation of employee0 that is gen-
erated by XDR.

✓ 2 Show the on-the-wire representation of employee1 from the previous problem
that is generated by XDR.

3 For the data structures given in the previous problem, give the XDR routine
that encodes/decodes these structures. If you have XDR available to you, run
this routine and measure how long it takes to encode and decode an example
instance of structure employee.

4 Using library functions like htonl and Unix’s bcopy or Windows’ Copy-
Memory, implement a routine that generates the same on-the-wire represen-
tation of the structures given in Exercise 1 as XDR does. If possible, compare
the performance of your “by-hand” encoder/decoder with the corresponding
XDR routines.

5 Use XDR and htonl to encode a 1,000-element array of integers. Measure and
compare the performance of each. How do these compare to a simple loop that
reads and writes a 1,000-element array of integers? Perform the experiment
on a computer for which the native byte order is the same as the network byte
order, as well as on a computer for which the native byte order and the network
byte order are different.

6 Write your own implementation of htonl. Using both your own htonl and (if
little-endian hardware is available) the standard library version, run appropri-
ate experiments to determine how much longer it takes to byte-swap integers
versus merely copying them.

7 Give the ASN.1 encoding for the following three integers. Note that ASN.1
integers, like those in XDR, are 32 bits in length.

(a) 101.

(b) 10,120.

(c) 16,909,060.

✓ 8 Give the ASN.1 encoding for the following three integers. Note that ASN.1
integers, like those in XDR, are 32 bits in length.

(a) 15.
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(b) 29,496,729.

(c) 58,993,458.

9 Give the big-endian and little-endian representation for the integers from
Exercise 7.

✓ 10 Give the big-endian and little-endian representation for the integers from
Exercise 8.

11 XDR is used to encode/decode the header for the SunRPC protocol illustrated
by Figure 5.16. The XDR version is determined by the RPCVersion field.
What potential difficulty does this present? Would it be possible for a new
version of XDR to switch to little-endian integer format?

12 The presentation-formatting process is sometimes regarded as an autonomous
protocol layer, separate from the application. If this is so, why might including
data compression in the presentation layer be a bad idea?

13 Suppose you have a machine with a 36-bit word size. Strings are represented as
five packed 7-bit characters per word. What presentation issues on this machine
have to be addressed for it to exchange integer and string data with the rest of
the world?

14 Using the programming language of your choice that supports user-defined
automatic type conversions, define a type netint and supply conversions that
enable assignments and equality comparisons between ints and netints. Can
a generalization of this approach solve the problem of network argument mar-
shalling?

15 Different architectures have different conventions on bit order as well as byte
order—whether the least significant bit of a byte, for example, is bit 0 or bit 7.
[Pos81] defines (in its Appendix B) the standard network bit order. Why is bit
order then not relevant to presentation formatting?

★ 16 Let p ≤ 1 be the fraction of machines in a network that are big-endian; the
remaining 1 − p fraction are little-endian. Suppose we choose two machines
at random and send an int from one to the other. Give the average number
of byte-order conversions needed for both big-endian network byte order and
receiver-makes-right, for p = 0.1, p = 0.5, and p = 0.9. (Hint: The probability
that both endpoints are big-endian is p2; the probability that the two endpoints
use different byte orders is 2p(1 − p).)
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17 Describe a representation for XML documents that would be more compact
and more efficient to process than XML text.

18 Experiment with a compression utility (e.g., compress, gzip, or pkzip).
What compression ratios are you able to achieve? See if you can generate data
files for which you can achieve 5:1 or 10:1 compression ratios.

★ 19 Suppose a file contains the letters a, b, c, and d . Nominally we require 2 bits
per letter to store such a file.

(a) Assume the letter a occurs 50% of the time, b occurs 30% of the time, and
c and d each occur 10% of the time. Give an encoding of each letter as a
bit string that provides optimal compression. (Hint: Use a single bit for a.)

(b) What is the percentage of compression you achieve above? (This is the
average of the compression percentages achieved for each letter, weighted
by the letter’s frequency.)

(c) Repeat this, assuming a and b each occur 40% of the time, c occurs 15%
of the time, and d occurs 5% of the time.

★ 20 Suppose we have a compression function c, which takes a bit string s to a
compressed string c(s).

(a) Show that for any integer N there must be a string s of length N for which
length(c(s)) ≥ N ; that is, no effective compression is done.

(b) Compress some already compressed files (try compressing with the same
utility several times in sequence). What happens to the file size?

(c) Given a compression function c as in (a), give a function c′ such that for
all bit strings s, length(c′(s)) ≤ min(length(c(s)), length(s)) + 1; that is, in
the worst case, compression with c′ expands the size by only 1 bit.

21 Give an algorithm for run length encoding that requires only a single byte to
represent nonrepeated symbols.

22 Write a program to construct a dictionary of all “words,” defined to be runs of
consecutive nonwhitespace, in a given text file. We might then compress the
file (ignoring the loss of whitespace information) by representing each word
as an index in the dictionary. Retrieve the file rfc791.txt containing [Pos81],
and run your program on it. Give the size of the compressed file assuming first
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that each word is encoded with 12 bits (this should be sufficient), and then
that the 128 most common words are encoded with 8 bits and the rest with
13 bits. Assume that the dictionary itself can be stored by using, for each word,
length(word) + 1 bytes.

★ 23 The one-dimensional discrete cosine transform is similar to the two-dimensio-
nal transform, except that we drop the second variable (j or y) and the second
cosine factor. We also drop, from the inverse DCT only, the leading 1/

√
2N

coefficient. Implement this and its inverse for N = 8 (a spreadsheet will do,
although a language supporting matrices might be better) and answer the fol-
lowing:

(a) If the input data is 〈1,2,3,5,5,3,2,1〉, which DCT coefficients are
near 0?

(b) If the data is 〈1,2,3,4,5,6,7,8〉, how many DCT coefficients must we
keep so that after the inverse DCT the values are all within 1% of their orig-
inal values? 10%? Assume dropped DCT coefficients are replaced with 0s.

(c) Let si , for 1 ≤ i ≤ 8, be the input sequence consisting of a 1 in position i
and 0 in position j, j 	= i. Suppose we apply the DCT to si , zero the last
three coefficients, and then apply the inverse DCT. Which i, 1 ≤ i ≤ 8,
results in the smallest error in the ith place in the result? The largest error?

24 Compare the size of an all-white image in JPEG format with a “typical” pho-
tographic image of the same dimensions. At what stage or stages of the JPEG
compression process does the white image become smaller than the photo-
graphic image?

For the next three exercises, the utilities cjpeg and djpeg may be useful
and can be obtained from ftp.uu.net/graphics/jpeg. Other JPEG conver-
sion utilities can also be used. For manual creation and examination of graph-
ics files, the pgm portable grayscale format is recommended; see the Unix
pgm(5)/ppm(5) man pages.

25 Create a grayscale image consisting of an 8×8 grid with a vertical black line in
the first column. Compress into JPEG format and decompress. How far off are
the resultant bytes at the default quality setting? How would you describe the
inaccuracies introduced, visually? What quality setting is sufficient to recover
the file exactly?

26 Create an 8 × 8 grayscale image consisting of a 64-character ASCII text string.
Use lowercase letters only, with no whitespace or punctuation. Compress into
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JPEG format and decompress. How recognizable is the result as text? Why
might adding whitespace make things worse? With the quality setting at 100,
would this be a plausible way of compressing text?

27 Write a program that implements forward and backward DCT, using floating-
point arithmetic. Run the program on a sample grayscale image. Since DCT is
lossless, the image output by the program should match the input. Now modify
your program so that it zeroes some of the higher-frequency components and
see how the output image is affected. How is this different from what JPEG
does?

28 Express DCT(0,0) in terms of the average of the pixel(x, y)s.

29 Think about what functions might reasonably be expected from a video stan-
dard: fast-forward, editing capabilities, random access, and so on. (See the pa-
per by Le Gall, “MPEG: A Video Compression Standard For Multimedia Ap-
plications,” given in this chapter’s recommended reading list, for further ideas.)
Explain MPEG’s design in terms of these features.

30 Suppose you want to implement fast-forward and reverse for MPEG streams.
What problems do you run into if you limit your mechanism to displaying
I frames only? If you don’t, then to display a given frame in the fast-forward
sequence, what is the largest number of frames in the original sequence you
may have to decode?

31 Use mpeg_play to play an MPEG-encoded video. Experiment with options,
particularly -nob and -nop, which are used to omit the B and P frames,
respectively, from the stream. What are the visible effects of omitting these
frames?

32 The mpeg_stat program can be used to display statistics for video streams.
Use it to determine, for several streams:

(a) Number and sequence of I, B, and P frames.

(b) Average compression rate for the entire video.

(c) Average compression rate for each type of frame.

33 Suppose we have a video of two white points moving toward each other at
a uniform rate against a black background. We encode it via MPEG. In one
I frame the two points are 100 pixels apart; in the next I frame they have
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merged. The final point of merger happens to lie at the center of a 16 × 16
macroblock.

(a) Describe how you might optimally encode the Y component of the inter-
vening B (or P) frames.

(b) Now suppose the points are in color, and that the color changes slowly as
the points move. Describe what the encoding of the U and V values might
look like.



Network Security

It is true greatness to have in one the frailty of a man and the security of a god.

—Seneca

omputer networks are typically a shared resource used by many applicationsCrepresenting different interests. The Internet is particularly widely shared, be-
ing used by competing businesses, mutually antagonistic governments, and op-

portunistic criminals. Unless security measures are taken, a network conversation or a
distributed application may be compromised by an adversary.

P R O B L E M

Security Attacks

Consider some threats to secure
use of, for example, the World Wide
Web. Suppose you are a customer us-
ing a credit card to order an item
from a website. An obvious threat is
that an adversary would eavesdrop on
your network communication, read-

ing your messages to obtain your credit card information. How might that eavesdropping
be accomplished? It is trivial on a broadcast network such as an Ethernet, where any node
can be configured to receive all the message traffic on that network. Wireless commu-
nication can be monitored without any physical connection. More elaborate approaches
include wiretapping and planting spy software on any of the chain of nodes involved.
Only in the most extreme cases, such as national security, are serious measures taken
to prevent such monitoring, and the Internet is not one of those cases. It is possible and
practical, however, to encrypt messages so as to prevent an adversary from understanding
the message contents. A protocol that does so is said to provide confidentiality. Taking
the concept a step farther, concealing the quantity or destination of communication is
called traffic confidentiality—because merely knowing how much communication is go-
ing where can be useful to an adversary in some situations.

Even with confidentiality there still remain threats for the website customer. An
adversary who can’t read the contents of your encrypted message might still be able to

586
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change a few bits in it, resulting in a valid order for, say, a com-
pletely different item or perhaps 1,000 units of the item. There are
techniques to detect, if not prevent, such tampering. A protocol
that detects such message tampering provides data integrity. The
adversary could alternatively transmit an extra copy of your mes-
sage in a replay attack. To the website, it would appear as though
you had simply ordered another of the same item you ordered
the first time. A protocol that detects replays provides originality.
Originality would not, however, preclude the adversary intercept-
ing your order, waiting a while, then transmitting it—in effect,
delaying your order. The adversary could thereby arrange for the
item to arrive on your doorstep while you are away on vacation,
when it can be easily snatched. A protocol that detects such delay-
ing tactics is said to provide timeliness. Data integrity, originality,
and timeliness are considered aspects of the more general property
of integrity.

Another threat to the customer is unknowingly being di-
rected to a false website. This can result from a DNS attack, in
which false information is entered in a domain name server or
the name service cache of the customer’s computer. This leads to
translating a correct URL into an incorrect IP address—the ad-
dress of a false website. A protocol that ensures that you really
are talking to whom you think you’re talking is said to provide
authentication. Authentication entails integrity since it is mean-
ingless to say that a message came from a certain participant if it
is no longer the same message.

The owner of the website can be attacked as well. Some
websites have been defaced; the files that make up the website
content have been remotely accessed and modified without au-
thorization. That is an issue of access control : enforcing the rules
regarding who is allowed to do what. Websites have also been
subject to denial of service (DoS) attacks, during which would-be
customers are unable to access the website because it is being over-
whelmed by bogus requests. Ensuring a degree of access is called
availability.

Finally, the customer and website face threats from each
other. Each could unilaterally deny that a transaction occurred,
or invent a nonexistent transaction. Nonrepudiation means that a
bogus denial (repudiation) of a transaction can be disproved, and
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nonforgeability means that claims of a bogus (forged) transaction
can be disproved.

Although these examples have been based on Web transactions, there are compara-
ble security threats in almost every network context. Although the Internet was designed
with the redundancy to survive physical attacks such as bombing, it was not originally
designed to provide the kind of security we have been discussing. Internet security mech-
anisms have essentially been patches. If a comprehensive redesign of the Internet were to
take place, integrating security would likely be the foremost driving factor. That possi-
bility makes this chapter all the more pertinent.

The main tools for securing networked systems are cryptography and firewalls. The
bulk of this chapter concerns cryptography-based security.
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8.1 Cryptographic Tools
We introduce the concepts of cryptography-based security step by step. The first step is
the cryptographic algorithms—ciphers and cryptographic hashes—that are introduced
in this section. They are not a solution in themselves, but rather building blocks from
which a solution can be built. The next step (Section 8.2) addresses the problem of dis-
tributing the keys, the secret parameters that are input to cryptographic algorithms. In
the next step (Section 8.3), we describe how to incorporate the cryptographic building
blocks into protocols that provide secure communication between participants who pos-
sess the correct keys. Finally, Section 8.4 examines several complete security protocols
and systems in current use.

8.1.1 Principles of Ciphers
Encryption transforms a message in such a way that it becomes unintelligible to any party
that does not have the secret of how to reverse the transformation. The sender applies
an encryption function to the original plaintext message, resulting in a ciphertext message
that is sent over the network, as in Figure 8.1. The receiver applies a secret decryption
function—the inverse of the encryption function—to recover the original plaintext. The
ciphertext transmitted across the network is unintelligible to any eavesdropper, assum-
ing she doesn’t know the decryption function. The transformation represented by an
encryption function and its corresponding decryption function is called a cipher.

Cryptographers have been led to the principle, first stated in 1883, that encryption
and decryption functions should be parameterized by a key, and furthermore that the

Figure 8.1 Symmetric-key encryption and decryption.
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functions should be considered public knowledge—only the key need be secret. Thus,
the ciphertext produced for a given plaintext message depends on both the encryption
function and the key. One reason for this principle is that if you depend on the cipher
being kept secret, then you have to retire the cipher (not just the keys) when you be-
lieve it is no longer secret. This means potentially frequent changes of cipher, which is
problematic since it takes a lot of work to develop a new cipher. Also, one of the best
ways to know that a cipher is secure is to use it for a long time—if no one breaks it, it’s
probably secure. (Fortunately, there are plenty of people who will try to break ciphers
and who will let it be widely known when they have succeeded, so no news is generally
good news.) Thus, there is considerable cost and risk in deploying a new cipher. Finally,
parameterizing a cipher with keys provides us with what is in effect a very large family
of ciphers; by switching keys we essentially switch ciphers, thereby limiting the amount
of data that a cryptanalyst (code-breaker) can use to try to break our key/cipher, and the
amount she can read if she succeeds.

The basic requirement for an encryption algorithm is that it turns plaintext into
ciphertext in such a way that only the intended recipient—the holder of the decryption
key—can recover the plaintext. What this means is that encrypted messages cannot be
read by people who do not hold the key.

It is important to realize that when a potential attacker receives a piece of ciphertext,
he may have more information at his disposal than just the ciphertext itself. For example,
he may know that the plaintext was written in English, which means that the letter e
occurs more often in the plaintext that any other letter; the frequency of many other
letters and common letter combinations can also be predicted. This information can
greatly simplify the task of finding the key. Similarly, he may know something about the
likely contents of the message; for example, the word “login” is likely to occur at the start
of a remote login session. This may enable a known plaintext attack, which has a much
higher chance of success than a ciphertext only attack. Even better is a chosen plaintext
attack, which may be enabled by feeding some information to the sender that you know
the sender is likely to transmit—such things have happened in wartime, for example.

The best cryptographic algorithms, therefore, can prevent the attacker from deduc-
ing the key even when the individual knows both the plaintext and the ciphertext. This
leaves the attacker with no choice but to try all the possible keys—exhaustive, “brute-
force” search. If keys have n bits, then there are 2n possible values for a key (each of the
n bits could be either a zero or a one). An attacker could be so lucky as to try the correct
value immediately, or so unlucky as to try every incorrect value before finally trying the
correct value of the key, therefore, she would have tried all 2n possible values; the average
number of guesses to discover the correct value is halfway between those extremes, 2n/2.
This can be made computationally impractical by choosing a sufficiently large key space
and by making the operation of checking a key reasonably costly. What makes this diffi-
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cult is that computing speeds keep increasing, making formerly infeasible computations
feasible. Furthermore, although we are concentrating on the security of data as it moves
through the network—that is, the data is sometimes vulnerable for only a short period
of time—in general, security people have to consider the vulnerability of data that needs
to be stored in archives for tens of years. This argues for a generously large key size. On
the other hand, larger keys make encryption and decryption slower.

Most ciphers are block ciphers: they are defined to take as input a plaintext block of
a certain fixed size, typically 64 to 128 bits. Using a block cipher to encrypt each block
independently—known as electronic codebook (ECB) mode encryption—has the weakness
that a given plaintext block value will always result in the same ciphertext block. Hence
recurring block values in the plaintext are recognizable as such in the ciphertext, making
it much easier for a cryptanalyst to break the cipher.

To prevent this, block ciphers are always augmented to make the ciphertext for a
block vary depending on context. Ways in which a block cipher may be augmented are
called modes of operation. A common mode of operation is cipher block chaining (CBC),
in which each plaintext block is XORed with the previous block’s ciphertext before being
encrypted. The result is that each block’s ciphertext depends in part on the preceding
blocks (i.e., on its context). Since the first plaintext block has no preceding block, it
is XORed with a random number. That random number, called an initialization vector
(IV), is included with the series of ciphertext blocks so that the first ciphertext block
can be decrypted. This mode is illustrated in Figure 8.2. Another mode of operation is
counter mode, in which successive values of a counter (e.g., 1,2,3, . . .) are incorporated
into the encryption of successive blocks of plaintext.

8.1.2 Symmetric-Key Ciphers
In a symmetric-key cipher, both participants1 in a communication share the same key.
In other words, if a message is encrypted using a particular key, the same key is required
for decrypting the message. If the cipher illustrated in Figure 8.1 were a symmetric-
key cipher, then the encryption and decryption keys would be identical. Symmetric-key
ciphers are also known as secret-key ciphers since the shared key must be known only to
the participants.

The U.S. National Institute of Standards and Technology (NIST) has issued stan-
dards for a series of symmetric-key ciphers. Data Encryption Standard (DES) was the first,
and it has stood the test of time in that no cryptanalytic attack better than brute-force
search has been discovered. Brute-force search, however, has gotten faster. DES’s keys
(56 independent bits) are now too small given current processor speeds. Consequently,

1We use the term participant for the parties involved in a secure communication since that is the term we have been using
throughout the book to identify the two endpoints of a channel. In the security world, they are typically called principals.
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Figure 8.2 Cipher block chaining (CBC).

NIST updated the DES standard in 1999 to indicate that DES should only be used for
legacy systems. Nonetheless, DES is still widespread.

NIST also standardized the cipher Triple DES (3DES), which leverages the
cryptanalysis-resistance of DES while in effect increasing the key size. A 3DES key has
168 (= 3 ∗ 56) independent bits, and is used as three DES keys; let’s call them DES-
key1, DES-key2, and DES-key3. 3DES-encryption of a block is performed by first DES-
encrypting the block using DES-key1, then DES-decrypting the result using DES-key2,
and finally DES-encrypting that result using DES-key3. Decryption involves decrypting
using DES-key3, then encrypting using DES-key2, then decrypting using DES-key1.

The reason 3DES encryption uses DES decryption with DES-key2 is to interoper-
ate with legacy DES systems. If a legacy DES system uses a certain key, then 3DES can
compute the same encryption function by using that key for each of DES-key1, DES-
key2, and DES-key3: In the first two steps we encrypt and then decrypt with the same
key, producing the original plaintext, which we then encrypt again.

Although 3DES solves DES’s key-length problem, it inherits some other short-
comings. Software implementations of DES/3DES are slow because it was originally de-
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signed, by IBM, for implementation in hardware. Also, DES/3DES uses a 64-bit block
size; a larger block size is more efficient and more secure.

3DES is being superseded by the Advanced Encryption Standard (AES) issued by
NIST in 2001. The cipher selected to become that standard (with a few minor modi-
fications) was originally named Rijndael (pronounced roughly like “Rhine dahl”) based
on the names of its inventors, Daemen and Rijmen. AES supports key lengths of 128,
192, or 256 bits, and the block length is 128 bits. AES permits fast implementations in
both software and hardware. It doesn’t require much memory, which makes it suitable
for small mobile devices. AES has some mathematically proven security properties and,
as of 2005, there are not known to have been any successful attacks against it.

8.1.3 Public-Key Ciphers
An alternative to symmetric-key ciphers is asymmetric, or public-key, ciphers. Instead of
a single key shared by two participants, a public-key cipher uses a pair of related keys,
one for encryption and a different one for decryption. The pair of keys is “owned” by just
one participant. The owner keeps the decryption key secret so that only the owner can
decrypt messages; that key is called the private key. The owner makes the encryption key
public, so that anyone can encrypt messages for the owner; that key is called the public
key. Obviously, for such a scheme to work it must not be possible to deduce the private
key from the public key. Consequently, any participant can get the public key and send
an encrypted message to the owner of the keys, and only the owner has the private key
necessary to decrypt it. This scenario is depicted in Figure 8.3.

Because it is somewhat unintuitive, we emphasize that the public encryption key
is useless for decrypting a message—you couldn’t even decrypt a message that you your-
self had just encrypted unless you had the private, decryption key. If we think of keys
as defining a communication channel between participants, then another difference be-
tween public-key and symmetric-key ciphers is the topology of the channels. A key for
a symmetric-key cipher provides a channel that is two-way between two participants—
each participant holds the same (symmetric) key that either one can use to encrypt or
decrypt messages in either direction. A public/private key pair, in contrast, provides a
channel that is one-way, and many-to-one from everyone who has the public key to the
(unique) owner of the private key, as illustrated in Figure 8.3.

An important additional property of public-key ciphers is that the private decryp-
tion key can be used with the encryption algorithm to encrypt messages so that they
can only be decrypted using the public encryption key. This property clearly wouldn’t be
useful for confidentiality since anyone with the public key could decrypt such a message.
(Indeed, for two-way confidentiality between two participants, each participant needs its
own pair of keys, and each encrypts messages using the other’s public key.) This property
is, however, useful for authentication since it tells the receiver of such a message that it
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Figure 8.3 Public-key encryption.

could only have been created by the owner of the keys (subject to certain assumptions
that we will get into later). This is illustrated in Figure 8.4. It should be clear from the
figure that anyone with the public key can decrypt the encrypted message, and assuming
that the result of the decryption matches the expected result, it can be concluded that the
private key must have been used to perform the encryption. Exactly how this operation
is used to provide authentication is the topic of Section 8.3. As we will see, public-key
ciphers are used primarily for authentication and to confidentially distribute symmetric
keys, leaving the rest of confidentiality to symmetric-key ciphers.

A bit of interesting history: The concept of public-key ciphers was first pub-
lished in 1976 by Diffie and Hellman. Subsequently, however, documents have come
to light proving that Britain’s Communications-Electronics Security Group had discov-
ered public-key ciphers by 1970, and the U.S. National Security Agency (NSA) claims
to have discovered them in the mid-1960s.

The best-known public-key cipher is RSA, named after its inventors: Rivest,
Shamir, and Adleman. RSA relies on the high computational cost of factoring large
numbers. The problem of finding an efficient way to factor numbers is one that mathe-
maticians have worked on unsuccessfully since long before RSA appeared in 1978, and
RSA’s subsequent resistance to cryptanalysis has further bolstered confidence in its secu-
rity. Unfortunately, RSA needs relatively large keys, at least 1,024 bits, to be secure. This
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Figure 8.4 Authentication using public keys.

is larger than keys for symmetric-key ciphers because it is faster to break an RSA private
key by factoring the large number on which the pair of keys is based than by exhaustively
searching the key space.

Another public-key cipher is ElGamal. Like RSA, it relies on a mathematical prob-
lem, the discrete logarithm problem, for which no efficient solution has been found, and
requires keys of at least 1,024 bits. There is a variation of the discrete logarithm problem,
arising when the input is an elliptic curve, that is thought to be even more difficult to
compute; cryptographic schemes based on this problem are referred to as elliptic curve
cryptography.

Public-key ciphers are, unfortunately, several orders of magnitude slower than
symmetric-key ciphers. Consequently, symmetric-key ciphers are used for the vast ma-
jority of encryption, while public-key ciphers are reserved for use in authentication (Sec-
tion 8.1.4) and session key establishment (Section 8.2).

8.1.4 Authenticators
Encryption alone does not provide data integrity. For example, just randomly modifying
a ciphertext message could result in a value that decrypts into valid-appearing plaintext,
in which case the tampering would be undetectable by the receiver. Nor does encryp-
tion alone provide authentication. It is meaningless to say that a message came from a
certain participant if the contents of the message have been modified. To some extent
one may focus on either of authentication or data integrity temporarily, but they are
fundamentally inseparable.

An authenticator is a value, to be included in a transmitted message, that can be
used to verify simultaneously the authenticity and the data integrity of a message. We
defer discussion of the use of authenticators in protocols to Section 8.3. Here we focus
on the algorithms that produce authenticators.



596 8 Network Security

To support data integrity, an authenticator includes redundant information about
the message contents; it is like a checksum or cyclic redundancy check (CRC, Sec-
tion 2.4.3). To support authentication, an authenticator includes some proof that who-
ever created the authenticator knows a secret that is known only to the alleged sender
of the message; for example, the secret could be a key, and the proof could be some
value encrypted using the key. There is a mutual dependency between the form of the
redundant information and the form of the proof of secret knowledge. We discuss several
workable combinations.

We initially assume that the original message need not be confidential—that a
transmitted message will consist of the plaintext of the original message plus an authen-
ticator. Later we will consider the case where confidentiality is desired.

One kind of authenticator combines encryption and a cryptographic hash function.
A cryptographic hash function (also known as a cryptographic checksum) is a function
that outputs sufficient redundant information about a message to expose any tampering.
Just as a checksum or CRC exposes bit error introduced by noisy links, a cryptographic
checksum is designed to expose deliberate corruption of messages by an adversary. The
value it outputs is called a message digest and, like an ordinary checksum, is appended
to the message. All the message digests produced by a given hash have the same number
of bits regardless of the length of the original message. Since the space of possible input
messages is larger than the space of possible message digests, there will be different input
messages that produce the same message digest, like collisions in a hash table. Crypto-
graphic hash algorithms are treated as public knowledge, as with cipher algorithms.

An authenticator can be created by encrypting the message digest. The receiver
computes a digest of the plaintext part of the message, and compares that to the de-
crypted message digest. If they are equal, then the receiver would conclude that the mes-
sage is indeed from its alleged sender (since it would have to have been encrypted with
the right key) and has not been tampered with. No adversary could get away with send-
ing a bogus message with a matching bogus digest because she would not have the key
to encrypt the bogus digest correctly. An adversary could, however, obtain the plaintext
original message and its encrypted digest by eavesdropping. The adversary could then
(since the hash function is public knowledge) compute the digest of the original mes-
sage, and generate alternative messages looking for one with the same message digest. If
she finds one, she could undetectably send the new message with the old authenticator.
Therefore, security requires that the hash function have the one-way property: It must
be computationally infeasible for an adversary to find any plaintext message that has the
same digest as the original.

For a hash function to meet this requirement, its outputs must be fairly randomly
distributed. For example, if digests are 128 bits long and randomly distributed, then you
would need to try 2127 messages, on average, before finding a second message whose
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digest matches that of a given message. If the outputs are not randomly distributed—
that is, if some outputs are much more likely than others—then for some messages you
could find another message with the same digest much more easily than this, which
would reduce the security of the algorithm. If you were instead just trying to find any
collision—any two messages that produce the same digest—then you would need to
compute the digests of only 264 messages, on average. This surprising fact is the basis of
the birthday attack—see the exercises for more details.

The most common cryptographic hash algorithms are Message Digest 5 (MD5)
and Secure Hash Algorithm 1 (SHA-1). MD5 outputs a 128-bit digest, and SHA-1 out-
puts a 160-bit digest. Researchers have recently discovered techniques for finding MD5
collisions much more efficiently than brute force, and well within computational feasi-
bility. This led to recommendations to shift from MD5 to SHA-1. Even more recently
researchers have discovered techniques that find SHA-1 collisions somewhat more ef-
ficiently than brute force, but are not yet computationally feasible. Although collision
attacks (attacks based on finding any collision) are not as great a risk as preimage attacks
(attacks based on finding a second message that collides with a given first message), these
are nonetheless serious weaknesses. NIST has proposed to phase out SHA-1 by 2010, in
favor of four variants of SHA that are collectively known as SHA-2.

In this approach (encrypted message digest) to generating an authenticator, the
digest encryption could use either a symmetric-key cipher or a public-key cipher. If a
public-key cipher is used, the digest would be encrypted using the sender’s private key
(the one we normally think of as being used for decryption), and the receiver—or anyone
else—could decrypt the digest using the sender’s public key.

A digest encrypted with a public-key algorithm but using the private key is called a
digital signature because it provides nonrepudiation like a written signature. The receiver
of a message with a digital signature can prove to any third party that the sender really
sent that message, because the third party can use the sender’s public key to check for
herself. (Symmetric-key encryption of a digest does not have this property because only
the two participants know the key; furthermore, since both participants know the key,
the alleged receiver could have created the message herself.) Any public-key cipher can be
used for digital signatures. Digital Signature Standard (DSS) is a digital signature format
that has been standardized by NIST. DSS signatures may use any one of three public-
key ciphers, one based on RSA, another on ElGamal, and a third called Elliptic Curve
Digital Signature Algorithm.

Another kind of authenticator is similar, but instead of encrypting a hash, it uses a
hashlike function that takes a secret value (known to only the sender and the receiver) as
a parameter, as illustrated in Figure 8.5. Such a function outputs an authenticator called
a message authentication code (MAC). The sender appends the MAC to her plaintext
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Figure 8.5 Computing a MAC (a) versus computing an HMAC (b).

message. The receiver recomputes the MAC using the plaintext and the secret value, and
compares that recomputed MAC to the received MAC.

A common variation on MACs is to apply a cryptographic hash (such as MD5 or
SHA-1) to the concatenation of the plaintext message and the secret value, as illustrated
in Figure 8.5. The resulting digest is called a hashed message authentication code (HMAC)
since it is essentially a MAC. The HMAC, but not the secret value, is appended to the
plaintext message. Only a receiver who knows the secret value can compute the correct
HMAC to compare with the received HMAC. If it weren’t for the one-way property of
the hash, an adversary might be able to find the input that generated the HMAC and
compare it to the plaintext message to determine the secret value.

Up to this point, we have been assuming that the message wasn’t confidential, so
the original message could be transmitted as plaintext. To add confidentiality to a mes-
sage with an authenticator, it suffices to encrypt the concatenation of the entire message
including its authenticator—the MAC, HMAC, or encrypted digest. Remember that, in
practice, confidentiality is implemented using symmetric-key ciphers because they are so
much faster than public-key ciphers. Furthermore, it costs little to include the authenti-
cator in the encryption, and it increases security. A common simplification is to encrypt
the message with its (raw) digest, such that the digest is only encrypted once; in this case,
the entire ciphertext message is considered to be an authenticator.

Although authenticators may seem to solve the authentication problem, we will see
in Section 8.3 that they are only the foundation of a solution. First, however, we address
the issue of how participants obtain keys in the first place.
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8.2 Key Predistribution
To use ciphers and authenticators, the communicating participants need to know what
keys to use. In the case of a symmetric-key cipher, how does a pair of participants obtain
the key they share? In the case of a public-key cipher, how do participants know what
public key belongs to a certain participant? The answer differs depending on whether
the keys are short-lived session keys or longer-lived predistributed keys.

A session key is a key used to secure a single, relatively short episode of communica-
tion: a session. Each distinct session between a pair of participants uses a new session key,
which is always a symmetric-key key for speed. The participants determine what session
key to use by means of a protocol—a session-key establishment protocol. A session-key
establishment protocol needs its own security (so that, for example, an adversary cannot
learn the new session key); that security is based on the longer-lived predistributed keys.

There are several motivations for this division of labor between session keys and
predistributed keys:

■ Limiting the amount of time a key is used results in less time for computa-
tionally intensive attacks, less ciphertext for cryptanalysis, and less information
exposed should the key be broken;

■ Predistribution of symmetric keys is problematic;

■ Public-key ciphers are generally superior for authentication and session-key es-
tablishment but too slow to use encrypting entire messages for confidentiality.

This section explains how predistributed keys are distributed, and Section 8.3 will
explain how session keys are then established. We henceforth use “Alice” and “Bob”
to designate participants, as is common in the cryptography literature. Bear in mind
that although we tend to refer to participants in anthropomorphic terms, we are more
frequently concerned with the communication between software or hardware entities
such as clients and servers that often have no direct relationship with any particular
person.

8.2.1 Predistribution of Public Keys
The algorithms to generate a matched pair of public and private keys are publicly known,
and software that does it is widely available. So if Alice wanted to use a public-key cipher,
she could generate her own pair of public and private keys, keep the private key hidden,
and publicize the public key. But how can she publicize her public key—assert that it
belongs to her—in such a way that other participants can be sure it really belongs to her?
Not via email or Web, because an adversary could forge an equally plausible claim that
key x belongs to Alice when x really belongs to the adversary.
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A complete scheme for certifying bindings between public keys and identities—
what key belongs to who—is called a public key infrastructure (PKI). A PKI starts with
the ability to verify identities and bind them to keys out-of-band. By “out-of-band,”
we mean something outside the network and the computers that comprise it, such as
in the following scenarios. If Alice and Bob are individuals who know each other, then
they could get together in the same room and Alice could give her public key to Bob
directly, perhaps on a business card. If Bob is an organization, Alice the individual could
present conventional identification, perhaps involving a photograph or fingerprints. If
Alice and Bob are computers owned by the same company, then a system administrator
could configure Bob with Alice’s public key.

Establishing keys out-of-band doesn’t scale well, but it suffices to bootstrap a PKI.
Bob’s knowledge that Alice’s key is x can be widely, scalably disseminated using a com-
bination of digital signatures and a concept of trust. For example, suppose that you have
received Bob’s public key out-of-band, and that you know enough about Bob to trust
him on matters of keys and identities. Then Bob could send you a message asserting that
Alice’s key is x and—since you already know Bob’s public key—you could authenticate
the message as having come from Bob. (Remember that to digitally sign the statement,
Bob would append a cryptographic hash of it that has been encrypted using his private
key.) Since you trust Bob to tell the truth, you would now know that Alice’s key is x,
even though you had never met her or exchanged a single message with her. Using digi-
tal signatures, Bob wouldn’t even have to send you a message; he could simply create and
publish a digitally signed statement that Alice’s key is x. Such a digitally signed statement
of a public-key binding is called a public-key certificate, or simply a certificate. Bob could
send Alice a copy of the certificate, or post it on a website. If and when someone needs
to verify Alice’s public key, they could do so by getting a copy of the certificate, perhaps
directly from Alice—as long as they trust Bob and know his public key. You can see that
by starting from a very small number of keys (in this case, just Bob’s) you could build up
a large set of trusted keys over time. More on this topic below.

One of the major standards for certificates is known as X.509. This standard leaves
a lot of details open, but specifies a basic structure. A certificate clearly must include

■ The identity of the entity being certified;

■ The public key of the entity being certified;

■ The identity of the signer;

■ The digital signature;

■ A digital signature algorithm identifier (which cryptographic hash and which
cipher).
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An optional component is an expiration time for the certificate. We will see a particular
use of this feature below.

Since a certificate creates a binding between an identity and a public key, we should
look more closely at what we mean by “identity.” For example, a certificate that says,
“This public key belongs to John Smith” may not be terribly useful if you can’t tell
which of the thousands of John Smiths is being identified. Thus, certificates must use
a well-defined namespace for the identities being certified. For example, certificates are
often issued for email addresses and DNS domains.

There are different ways a PKI could formalize the notion of trust. We discuss the
two main approaches.

Certification Authorities

In this model of trust, trust is binary; you either trust someone completely, or not at all.
Together with certificates, this allows the building of chains of trust. If X certifies that
a certain public key belongs to Y , and then Y goes on to certify that another public
key belongs to Z , then there exists a chain of certificates from X to Z , even though X
and Z may have never met. If you know X ’s key—and you trust X and Y —then you
can believe the certificate that gives Z ’s key. In other words, all you need is a chain of
certificates, all signed by entities you trust, as long as it leads back to an entity whose key
you already know.

A certification authority or certificate authority (CA) is an entity claimed (by some-
one) to be trustworthy for verifying identities and issuing public-key certificates. There
are commercial CAs, governmental CAs, and even free CAs. To use a CA, you must
know its own key. You can learn that CA’s key, however, if you can obtain a chain of
CA-signed certificates that starts with a CA whose key you already know. Then you can
believe any certificate signed by that new CA.

A common way to build such chains is to arrange them in a tree-structured hier-
archy, as shown in Figure 8.6. If everyone has the public key of the root CA, then any
participant can provide a chain of certificates to another participant and know that it
will be sufficient to build a chain of trust for that participant.

Alternatively, there could be multiple CAs whose public keys are considered well-
known (i.e., obtained out-of-band). As a bookkeeping device, such a CA can generate its
own certificate, signing it with the very key defined in the certificate. Such certificates are
known as self-certifying certificates. Web browsers such as Firefox and Microsoft’s Internet
Explorer come preequipped with self-certifying certificates for a set of CAs; in effect, the
browser’s producer has decided these keys can be trusted. These certificates are accepted
by SSL/TLS, the protocol most often used to secure Web transactions (Section 8.4.3).

There are still significant issues with building chains of trust. First of all, even if you
are certain that you have the public key of the root CA, you need to be sure that every
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Figure 8.6 Tree-structured certification authority hierarchy.

CA from the root on down is doing its job properly. If just one CA is willing to issue
certificates to entities without verifying their identities, then what looks like a valid chain
of certificates becomes meaningless. X.509 certificates provide the option of restricting
the set of entities that the subject of a certificate is, in turn, trusted to certify.

Web of Trust

An alternative model of trust is the web of trust exemplified by Pretty Good Privacy
(PGP), which is further discussed in Section 8.4.3. PGP is a security system for email, so
email addresses are the identities to which keys are bound and by which certificates are
signed. In keeping with PGP’s roots as protection against government intrusion, there
are no CAs. Instead, every individual decides whom they trust and how much they trust
them—in this model, trust is a matter of degree. In addition, a public-key certificate
can include a confidence level indicating how confident the signer is of the key binding
claimed in the certificate. So a given user may have to have several certificates attesting
to the same key binding before before he is willing to trust it.

For example, suppose you have a certificate for Bob provided by Alice; you can
assign a moderate level of trust to that certificate. However, if you have additional cer-
tificates for Bob that were provided by C and D, each of whom are also moderately
trustworthy, that might considerably increase your level of confidence that the public
key you have for Bob is valid. In short, PGP recognizes that the problem of establish-
ing trust is quite a personal matter and gives users the raw material to make their own
decisions, rather than assuming that they are all willing to trust in a single hierarchal
structure of CAs. To quote Phil Zimmerman, the developer of PGP, “PGP is for people
who prefer to pack their own parachutes.”
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PGP has become quite popular in the networking community, and PGP key-
signing parties are a regular feature of IETF meetings. At these gatherings, an individual
can

■ Collect public keys from others whose identity he knows;

■ Provide his public key to others;

■ Get his public key signed by others, thus collecting certificates that will be per-
suasive to an increasingly large set of people;

■ Sign the public key of other individuals, thus helping them build up their set of
certificates that they can use to distribute their public keys;

■ Collect certificates from other individuals whom he trusts enough to sign keys.

Thus, over time a user will collect a set of certificates with varying degrees of trust.

Certificate Revocation

One issue that arises with certificates is how to revoke, or undo, a certificate. Why is this
important? Suppose that you suspect that someone has discovered your private key. There
may be any number of certificates in the universe that assert that you are the owner of
the public key corresponding to that private key. The person who discovered your private
key thus has everything he needs to impersonate you: valid certificates and your private
key. To solve this problem, it would be nice to be able to revoke the certificates that bind
your old, compromised key to your identity, so that the impersonator will no longer be
able to persuade other people that he is you.

The basic solution to the problem is simple enough. Each CA can issue a certificate
revocation list (CRL), which is a digitally signed list of certificates that have been revoked.
The CRL is periodically updated and made publicly available. Because it is digitally
signed, it can just be posted on a website. Now, when Alice receives a certificate for
Bob that she wants to verify, she will first consult the latest CRL issued by the CA. As
long as the certificate has not been revoked, it is valid. Note that if all certificates have
unlimited life spans, the CRL would always be getting longer, since you could never
take a certificate off the CRL for fear that some copy of the revoked certificate might be
used. However, by attaching an expiration date to a certificate when it is issued, we can
limit the length of time that a revoked certificate needs to stay on a CRL. As soon as its
original expiration date is passed, it can be removed from the CRL.

To overcome certain deficiencies of CRLs, Online Certificate Status Protocol (OCSP)
was created. OCSP is used to communicate with, and between, OCSP servers called
OCSP responders to check a certificate’s validity.
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8.2.2 Predistribution of Symmetric Keys
If Alice wants to use a secret-key cipher to communicate with Bob, she can’t just pick a
key and send it to him because, without already having a key, they can’t encrypt this key
to keep it confidential and they can’t authenticate each other. As with public keys, some
predistribution scheme is needed. Predistribution is harder for symmetric keys than for
public keys for two obvious reasons:

■ While only one public key per entity is sufficient for authentication and confi-
dentiality, there must be a symmetric key for each pair of entities who wish to
communicate. If there are N entities, that means N (N − 1)/2 keys.

■ Unlike public keys, secret keys must be kept secret.

In summary, there are a lot more keys to distribute, and you can’t use certificates that
everyone can read.

The most common solution is to use a key distribution center (KDC). A KDC is a
trusted entity that shares a secret key with each other entity. This brings the number of
keys down to a more manageable N − 1, few enough to establish out-of-band for some
applications. When Alice wishes to communicate with Bob, that communication does
not travel via the KDC. Rather, the KDC participates in a protocol that authenticates
Alice and Bob—using the keys that the KDC already shares with each of them—and
generates a new session key for them to use. Then Alice and Bob communicate directly
using their session key. Kerberos (Section 8.3.3) is a widely used system based on this
approach.

8.3 Authentication Protocols
We described how to encrypt messages and build authenticators in Section 8.1, and how
to predistribute the necessary keys in Section 8.2. It might seem as if all we have to do
to make a protocol secure is append an authenticator to every message and, if we want
confidentiality, encrypt the message.

There are two main reasons why it’s not that simple. First, there is the problem
of a replay attack: an adversary retransmitting a copy of a message that was previously
sent. If the message was an order you had placed to a website, for example, then the
replayed message would appear to the website as though you had ordered more of the
same. Even though it wasn’t the original incarnation of the message, its authenticator
would still be valid; after all, the message was created by you, and it wasn’t modified.
In a variation of this attack called a suppress-replay attack, an adversary might merely
delay your message (by intercepting and later replaying it), so that it is received at a time
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when it is no longer appropriate. For example, an adversary could delay your order to
buy stock from an auspicious time to a time when you would not have wanted to buy.
Although this message would in a sense be the original, it wouldn’t be timely. Originality
and timeliness may be considered aspects of integrity. Ensuring them will in most cases
require a nontrivial, back-and-forth protocol.

The other problem we have not yet solved is how to establish a session key. A session
key is a symmetric-key cipher key generated on the fly and used for just one session as
described in Section 8.2. This too involves a nontrivial protocol.

What these two issues have in common is authentication. If a message is not orig-
inal and timely, then from a practical standpoint we want to consider it as not being
authentic, not being from whom it claims to be. And when is it more critical to be sure
whom a message is from than when you are arranging to share a new session key? Usually,
authentication protocols establish a session key at the same time, so that at the end of the
protocol Alice and Bob have authenticated each other and they have a new symmetric
key to use. Without a new session key, the protocol would just authenticate Alice and
Bob at one point in time; a session key allows them to efficiently authenticate subsequent
messages. Generally, session-key establishment protocols perform authentication (a no-
table exception is Diffie-Hellman, Section 8.3.4). So the terms authentication protocol
and session-key establishment protocol are almost synonymous.

There is a core set of techniques used to ensure originality and timeliness in au-
thentication protocols. We describe those techniques before moving on to particular
protocols.

8.3.1 Originality and Timeliness Techniques
We have seen that authenticators alone do not enable us to detect messages that are not
original or timely. One approach is to include a timestamp in the message. Obviously the
timestamp itself must be tamperproof, so it must be covered by the authenticator. The
primary drawback to timestamps is that they require distributed clock synchronization.
Since our system would then depend on synchronization, the clock synchronization it-
self would need to be defended against security threats; this in addition to the usual
challenges of clock synchronization. Another issue is that distributed clocks are synchro-
nized to only a certain degree—a certain margin of error. Thus, the timing integrity
provided by timestamps is only as good as the degree of synchronization.

Another approach is to include a nonce—a random number used only once—in
the message. Participants can then detect replay attacks by checking whether a nonce
has been used previously. Unfortunately this requires keeping track of past nonces, of
which a great many could accumulate. One solution is to combine the use of timestamps
and nonces, so that nonces are required to be unique only within a certain span of
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Figure 8.7 A challenge-response protocol.

time. That makes ensuring uniqueness of nonces manageable while requiring only loose
synchronization of clocks.

Another solution to the shortcomings of timestamps and nonces is to use one
or both of them in a challenge-response protocol. Suppose we use a timestamp. In a
challenge-response protocol, Alice sends Bob a timestamp, challenging Bob to encrypt
it in a response message (if they share a symmetric key) or digitally sign it in a response
message (if Bob has a public key, as in Figure 8.7). The encrypted timestamp is like an
authenticator that additionally proves timeliness. Alice can easily check the timeliness
of the timestamp in a response from Bob since that timestamp comes from Alice’s own
clock—no distributed clock synchronization needed. Suppose instead that the protocol
uses nonces. Then Alice need only keep track of those nonces for which responses are
currently outstanding and haven’t been outstanding too long; any purported response
with an unrecognized nonce must be bogus.

The beauty of challenge-response, which might otherwise seem excessively com-
plex, is that it combines timeliness and authentication; after all, only Bob (and possibly
Alice, if it’s a symmetric-key cipher) knows the key necessary to encrypt the never-before-
seen timestamp or nonce. Timestamps or nonces are used in most of the authentication
protocols that follow.

8.3.2 Public-Key Authentication Protocols
Both of the public-key authentication protocols we present assume that Alice and Bob’s
public keys have been predistributed to each other via some PKI (Section 8.2.1). We
mean this to include the case where Alice includes her certificate in her first message to
Bob, and the case where Bob searches for a certificate about Alice when he receives her
first message.
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Figure 8.8 A public-key authentication protocol that depends on synchronization.

This first protocol (Figure 8.8) relies on Alice and Bob’s clocks being synchronized.
Alice sends Bob a message with a timestamp and her identity in plaintext plus her digital
signature. Bob uses the digital signature to authenticate the message, and the timestamp
to verify its freshness. Bob sends back a message with a timestamp and his identity in
plaintext, and a new session key encrypted (for confidentiality) using Alice’s public key,
all digitally signed. Alice can verify the authenticity and freshness of the message, so she
knows she can trust the new session key. To deal with imperfect clock synchronization,
the timestamps could be augmented with nonces.

The second protocol (Figure 8.9) is similar but does not rely on clock synchroniza-
tion. In this protocol, Alice again sends Bob a digitally signed message with a timestamp
and her identity. Because their clocks aren’t synchronized, Bob cannot be sure that
the message is fresh. Bob sends back a digitally signed message with Alice’s original
timestamp, his own new timestamp, and his identity. Alice can verify the freshness of
Bob’s reply by comparing her current time against the timestamp that originated with
her. She then sends Bob a digitally signed message with his original timestamp and a new
session key encrypted using Bob’s public key. Bob can verify the freshness of the message
because the timestamp came from his clock, so he knows he can trust the new session
key. The timestamps essentially serve as convenient nonces, and indeed this protocol
could use nonces instead.

8.3.3 Symmetric-Key Authentication Protocols
As explained in Section 8.2.2, only in fairly small systems is it practical to predistribute
symmetric keys to every pair of entities. We focus here on larger systems, where each
entity would have its own master key shared only with a KDC. In this case, symmetric-
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Figure 8.9 A public-key authentication protocol that does not depend on

synchronization. Alice checks her own timestamp against her own clock, and likewise

for Bob.

key-based authentication protocols involve three parties: Alice, Bob, and a KDC. The
end product of the authentication protocol is a session key shared between Alice and
Bob that they will use to communicate directly, without involving the KDC.

The Needham-Schroeder authentication protocol is illustrated in Figure 8.10.
Note that the KDC doesn’t actually authenticate Alice’s initial message and doesn’t com-
municate with Bob at all. Instead the KDC uses its knowledge of Alice’s and Bob’s master
keys to construct a reply that would be useless to anyone other than Alice (because only
Alice can decrypt it), and contains the necessary ingredients for Alice and Bob to perform
the rest of the authentication protocol themselves.

The nonce in the first two messages is to assure Alice that the KDC’s reply is
fresh. The second and third messages include the new session key and Alice’s identifier,
encrypted together using Bob’s master key. It is a sort of symmetric-key version of a
public-key certificate; it is in effect a signed statement by the KDC (because the KDC
is the only entity besides Bob who knows Bob’s master key) that the enclosed session
key is owned by Alice and Bob. Although the nonce in the last two messages is intended
to assure Bob that the third message was fresh, there is a flaw in this reasoning—see
Exercise 4.

Kerberos
Kerberos is an authentication system based on the Needham-Schroeder protocol and
specialized for client-server environments. Originally developed at MIT, it is an IETF
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Figure 8.10 The Needham-Schroeder authentication protocol.

standard and available as both open source and commercial products. We will focus here
on some of Kerberos’s interesting innovations.

Kerberos clients are human users, and users are authenticated using passwords.
Alice’s master key, shared with the KDC, is derived from her password—if you know the
password, you can compute the key. Kerberos assumes anyone can physically access any
client machine; therefore, it is important to minimize the exposure of Alice’s password or
master key not just in the network, but also on any machine where she logs in. Kerberos
takes advantage of Needham-Schroeder to accomplish this. In Needham-Schroeder, the
only time Alice needs to use her password is when decrypting the reply from the KDC.
Kerberos client-side software waits until the KDC’s reply arrives, prompts Alice to enter
her password, computes the master key and decrypts the KDC’s reply, and erases all
information about the password and master key to minimize its exposure. Also note that
the only sign a user sees of Kerberos is when the user is prompted for a password.
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Figure 8.11 Kerberos authentication.

In Needham-Schroeder, the KDC’s reply to Alice plays two roles: it gives her the
means to prove her identity (only Alice can decrypt the reply), and it gives her a sort
of symmetric-key certificate or “ticket” to present to Bob—the session key and Alice’s
identifier, encrypted with Bob’s master key. In Kerberos, those two functions—and the
KDC itself, in effect—are split up (Figure 8.11). A trusted server called an authentication
server (AS) plays the first KDC role of providing Alice with something she can use to
prove her identity—not to Bob this time, but to a second trusted server called a ticket-
granting server (TGS). The TGS plays the second KDC role, replying to Alice with
a ticket she can present to Bob. The beauty of this scheme is that if Alice needs to
communicate with several servers, not just Bob, then she can get tickets for each of them
from the TGS without going back to the AS.
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In the client-server application domain for which Kerberos is intended, it is rea-
sonable to assume a degree of clock synchronization. This allows Kerberos to use
timestamps and lifespans instead of Needham-Shroeder’s nonces, and thereby eliminate
the Needham-Schroeder security weakness explored in Exercise 4. Kerberos supports
a choice of cryptographic algorithms including the hashes SHA-1 and MD5 and the
symmetric-key ciphers AES, 3DES, and DES.

8.3.4 Diffie-Hellman Key Agreement
The Diffie-Hellman key agreement protocol establishes a session key without using any
predistributed keys. The messages exchanged between Alice and Bob can be read by
anyone able to eavesdrop, and yet the eavesdropper won’t know the session key that
Alice and Bob end up with. On the other hand, Diffie-Hellman doesn’t authenticate
the participants. Since it is rarely useful to communicate securely without being sure
whom you’re communicating with, Diffie-Hellman is usually augmented in some way to
provide authentication.

The protocol has two parameters, p and g , both of which are public and may be
used by all the users in a particular system. Parameter p must be a prime number. The
integers mod p (short for modulo p) are 0 through p − 1, since x mod p is the remainder
after x is divided by p, and form what mathematicians call a group under multiplication.
Parameter g (usually called a generator) must be a primitive root of p: for every number n
from 1 through p − 1 there must be some value k such that n = gk mod p. For example,
if p were the prime number 5 (a real system would use a much larger number), then we
might choose 2 to be the generator g since:

1 = 20 mod p

2 = 21 mod p

3 = 23 mod p

4 = 22 mod p

Suppose Alice and Bob want to agree on a shared symmetric key. Alice and Bob,
and everyone else, already know the values of p and g . Alice generates a random private
value a and Bob generates a random private value b. Both a and b are drawn from the set
of integers {1, . . . , p − 1}. Alice and Bob derive their corresponding public values—the
values they will send to each other unencrypted—as follows. Alice’s public value is

ga mod p

and Bob’s public value is

gb mod p
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They then exchange their public values. Finally, Alice computes

gab mod p = (gb mod p)a mod p

and Bob computes

gba mod p = (ga mod p)b mod p.

Alice and Bob now have gab mod p (which is equal to gba mod p) as their shared sym-
metric key.

Any eavesdropper would know p, g , and the two public values ga mod p and
gb mod p. If only the eavesdropper could determine a or b, she could easily compute
the resulting key. Determining a or b from that information is, however, computation-
ally infeasible for suitably large p, a, and b; it is known as the discrete logarithm prob-
lem.

On the other hand, there is the problem of Diffie-Hellman’s lack of authentication.
One attack that can take advantage of this is the man-in-the-middle attack. Suppose
Mallory is an adversary with the ability to intercept messages. Mallory already knows
p and g since they are public, and she generates random private values c and d to use
with Alice and Bob, respectively. When Alice and Bob send their public values to each
other, Mallory intercepts them and sends her own public values, as in Figure 8.12. The
result is that Alice and Bob each end up unknowingly sharing a key with Mallory instead
of each other.

A variant of Diffie-Hellman sometimes called fixed Diffie-Hellman supports au-
thentication of one or both participants. It relies on certificates that are similar to public-
key certificates but instead certify the Diffie-Hellman public parameters of an entity. For
example, such a certificate would state that Alice’s Diffie-Hellman parameters are p, g ,
and ga mod p (note that the value of a would still be known only to Alice). Such a cer-
tificate would assure Bob that the other participant in Diffie-Hellman is Alice—or else

Figure 8.12 A man-in-the-middle attack.
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the other participant won’t be able to compute the secret key, because she won’t know
a. If both participants have certificates for their Diffie-Hellman parameters, they can au-
thenticate each other. If just one has a certificate, then just that one can be authenticated.
This is useful in some situations; for example, when one participant is a web server and
the other is an arbitrary client—the client can authenticate the web server and establish
a session key for confidentiality before sending a credit card number to the web server.

8.4 Secure Systems
At this point, we have seen many of the components that are required to build a secure
system. These components include cryptographic algorithms, key predistribution mech-
anisms, and authentication protocols. In this section we examine some complete systems
that use these components.

These systems can be roughly categorized by the protocol layer at which they op-
erate. Systems that operate at the application layer include Pretty Good Privacy (PGP),
which provides electronic mail security, and Secure Shell (SSH), a secure remote login
facility. At the transport layer, there is the IETF’s Transport Layer Security (TLS) stan-
dard and the older protocol from which it derives, SSL (Secure Socket Layer). The IPsec
(IP security) protocols, as their name implies, operate at the IP (network) layer. 802.11i
provides security at the link layer of wireless networks. This section describes the salient
features of each of these approaches.

These security protocols have the ability to vary which cryptographic algorithms
they use. The idea of making a security system algorithm-independent is a very good one,
because you never know when your favorite cryptographic algorithm might be proved to
be insufficiently strong for your purposes. It would be nice if you could quickly change to
a new algorithm without having to change the protocol specification or implementation.

8.4.1 Pretty Good Privacy (PGP)
Pretty Good Privacy (PGP) is a widely used approach to providing security for elec-
tronic mail. It provides authentication, confidentiality, data integrity, and nonrepudi-
ation. Originally devised by Phil Zimmerman, it has evolved into an IETF standard
known as OpenPGP.

PGP’s confidentiality and receiver authentication depend on the the receiver having
a known public key. PGP’s sender authentication and nonrepudiation depend on the
sender having a known public key. These public keys are predistributed using certificates
and a web-of-trust PKI as described in Section 8.2.1. PGP supports RSA and DSS for
public-key certificates. These certificates may additionally specify which cryptographic
algorithms are supported or preferred by the key’s owner.
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Figure 8.13 PGP’s steps to prepare a message for emailing from Alice to Bob.

Note that “PGP” refers to both a protocol and an application that uses the proto-
col. The protocol involves only a single message transmitted in one direction, with the
interesting feature being the format of that message.

When Alice has a message to email to Bob, her PGP application goes through the
steps illustrated in Figure 8.13. First, the message is digitally signed by Alice; MD5 and
SHA-1 are among the hashes that may be used in the digital signature. Then her PGP ap-
plication generates a new session key for just this one message; AES and 3DES are among
the supported symmetric-key ciphers. The digitally signed message is encrypted using the
session key. Then the session key itself, encrypted using Bob’s public key, is appended to
the message. Alice’s PGP application reminds her of the level of trust she had previously
assigned to Bob’s public key, based on the number of certificates she has for Bob and the
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trustworthiness of the individuals who signed the certificates. Finally—not for security,
but to conform to email’s SMTP protocol—a base64 encoding (Section 9.1.1) is applied
to the message to convert it to an ASCII-compatible representation. Upon receiving the
PGP message in an email, Bob’s PGP application reverses this process step-by-step to
obtain the original plaintext message and confirm Alice’s digital signature—and reminds
Bob of the level of trust he has in Alice’s public key.

Email has unusual characteristics that allow PGP to embed an adequate authentica-
tion protocol in this one-message data transmission protocol, avoiding the need for any
prior message exchange. Alice’s digital signature suffices to authenticate her. Although
there is no proof that the message is timely, legitimate email isn’t timely, and the session
key and the data it encrypts arrive simultaneously anyway. Although there is no proof
that the message is original, Bob is an email user and probably a fault-tolerant human
who can recover from duplicate emails. Alice can be sure that only Bob could read the
message because the session key was encrypted with his public key. Although this proto-
col doesn’t prove to Alice that Bob is actually there and received the email, email doesn’t
guarantee delivery anyway.

8.4.2 Secure Shell (SSH)
The Secure Shell (SSH) protocol is used to provide a remote login service, and is in-
tended to replace the less-secure Telnet and rlogin programs used in the early days of
the Internet. (SSH can also be used to remotely execute commands and transfer files,
like the Unix rsh and rcp commands, respectively, but we will focus on how SSH
supports remote login.) SSH is most often used to provide strong client/server authen-
tication/message integrity—where the SSH client runs on the user’s desktop machine
and the SSH server runs on some remote machine that the user wants to log into—
but it also supports confidentiality. Telnet and rlogin provide none of these capabili-
ties. Note that “SSH” is used to refer to both the SSH protocol and applications that
use it.

To better appreciate the importance of SSH on today’s Internet, consider that a few
short years ago telecommuters used dialup modems to connect their home computers to
work (or school). This meant that when they logged in, their passwords were sent in the
clear over a phone line and the LAN at work. Sending your password in the clear over a
LAN isn’t a great idea, but at least it’s not as risky as sending it across the Internet. Today,
however, telecommuters often subscribe to ISPs that offer high-speed cable modem or
DSL service, and they go through these ISPs to reach work. This means that when
they login, both their passwords and all the data they send or receive potentially passes
through any number of untrusted networks. SSH provides a way to encrypt the data sent
over these connections, and to improve the strength of the authentication mechanism
they use to log in.



616 8 Network Security

The latest version of SSH, version 2, consists of three protocols:

■ SSH-TRANS, a transport layer protocol;

■ SSH-AUTH, an authentication protocol;

■ SSH-CONN, a connection protocol.

We focus on the first two, which are involved in remote login. We briefly discuss the
purpose of SSH-CONN at the end of the section.

SSH-TRANS provides an encrypted channel between the client and server ma-
chines. It runs on top of a TCP connection. Any time a user uses an SSH application to
log into a remote machine, the first step is to set up an SSH-TRANS channel between
those two machines. The two machines establish this secure channel by first having the
client authenticate the server using RSA. Once authenticated, the client and server es-
tablish a session key that they will use to encrypt any data sent over the channel. This
high-level description skims over several details, including the fact that the SSH-TRANS
protocol includes a negotiation of the encryption algorithm the two sides are going to
use. For example, AES is commonly selected. Also, SSH-TRANS includes a message
integrity check of all data exchanged over the channel.

The one issue we can’t skim over is how the client came to possess the server’s public
key that it needs to authenticate the server. Strange as it may sound, the server tells the
client its public key at connection time. The first time a client connects to a particular
server, the SSH application warns the user that it has never talked to this machine before,
and asks if the user wants to continue. Although it is a risky thing to do, because SSH
is effectively not able to authenticate the server, users often say “yes” to this question.
The SSH application then remembers the server’s public key, and the next time the
user connects to that same machine, it compares this saved key with the one the server
responds with. If they are the same, SSH authenticates the server. If they are different,
however, the SSH application again warns the user that something is amiss, and the user
is then given an opportunity to abort the connection. Alternatively, the prudent user can
learn the server’s public key through some out-of-band mechanism, save it on the client
machine, and thus never take the “first time” risk.

Once the SSH-TRANS channel exists, the next step is for the user to actually log
onto the machine, or more specifically, authenticate himself to the server. SSH allows
three different mechanisms for doing this. First, since the two machines are communi-
cating over a secure channel, it is OK for the user to simply send his password to the
server. This is not a safe thing to do when using Telnet since the password would be
sent in the clear, but in the case of SSH, the password is encrypted in the SSH-TRANS
channel. The second mechanism uses public-key encryption. This requires that the user
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has already placed his public key on the server. The third mechanism, called host-based
authentication, basically says that any user claiming to be so-and-so from a certain set
of trusted hosts is automatically believed to be that same user on the server. Host-based
authentication requires that the client host authenticate itself to the server when they first
connect; standard SSH-TRANS only authenticates the server by default.

The main thing you should take away from this discussion is that SSH is a fairly
straightforward application of the protocols and algorithms we have seen throughout this
chapter. However, what sometimes makes SSH a challenge to understand is all the keys
a user has to create and manage, where the exact interface is operating system depen-
dent. For example, the OpenSSH package that runs on most Unix machines supports a
ssh-keygen command that can be used to create public/private key pairs. These keys
are then stored in various files in directory .ssh in the user’s home directory. For ex-
ample, file ~/.ssh/known_hosts records the keys for all the hosts the user has logged
into, file ~/.ssh/authorized_keys contains the public keys needed to authenticate
the user when he logs into this machine (i.e., they are used on the server side), and file
~/.ssh/identity contains the private keys needed to authenticate the user on remote
machines (i.e., they are used on the client side).

Finally, SSH has proven so useful as a system for securing remote login, it has been
extended to also support other insecure TCP-based applications, such as X Windows
and IMAP mail readers. The idea is to run these applications over a secure SSH tunnel.
This capability is called port forwarding and it uses the SSH-CONN protocol. The idea is
illustrated in Figure 8.14, where we see a client on host A indirectly communicating with
a server on host B by forwarding its traffic through an SSH connection. The mechanism
is called port forwarding because when messages arrive at the well-known SSH port on
the server, SSH first decrypts the contents, and then forwards the data to the actual port
at which the server is listening.

Figure 8.14 Using SSH port forwarding to secure other TCP-based applications.
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8.4.3 Transport Layer Security (TLS, SSL, HTTPS)
To understand the design goals and requirements for the Transport Layer Security (TLS)
standard and the Secure Socket Layer (SSL) on which TLS is based, it is helpful to con-
sider one of the main problems that they are intended to solve. As the World Wide Web
became popular and commercial enterprises began to take an interest in it, it became
clear that some level of security would be necessary for transactions on the Web. The
canonical example of this is making purchases by credit card. There are several issues of
concern when sending your credit card information to a computer on the Web. First, you
might worry that the information would be intercepted in transit and subsequently used
to make unauthorized purchases. You might also worry about the details of a transaction
being modified, for example, to change the purchase amount. And you would certainly
like to know that the computer to which you are sending your credit card information
is in fact one belonging to the vendor in question and not some other party. Thus, we
immediately see a need for confidentiality, integrity, and authentication in Web transac-
tions. The first widely used solution to this problem was SSL, originally developed by
Netscape and subsequently the basis for the IETF’s TLS standard.

The designers of SSL and TLS recognized that these problems were not specific to
Web transactions (i.e., those using HTTP) and instead built a general-purpose protocol
that sits between an application protocol such as HTTP and a transport protocol such
as TCP. The reason for calling this “transport layer security” is that, from the applica-
tion’s perspective, this protocol layer looks just like a normal transport protocol except
for the fact that it is secure. That is, the sender can open connections and deliver bytes
for transmission, and the secure transport layer will get them to the receiver with the
necessary confidentiality, integrity, and authentication. By running the secure transport
layer on top of TCP, all of the normal features of TCP (reliability, flow control, con-
gestion control, etc.) are also provided to the application. This arrangement of protocol
layers is depicted in Figure 8.15.

When HTTP is used in this way, it is known as HTTPS (Secure HTTP). In fact,
HTTP itself is unchanged. It simply delivers data to and accepts data from the SSL/TLS
layer rather than TCP. For convenience, a default TCP port has been assigned to HTTPS

Figure 8.15 Secure transport layer inserted between application and TCP layers.
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(443). That is, if you try to connect to a server on TCP port 443, you will likely find
yourself talking to the SSL/TLS protocol, which will pass your data through to HTTP
provided all goes well with authentication and decryption. Although stand-alone imple-
mentations of SSL/TLS are available, it is more common for an implementation to be
bundled with applications that need it, primarily web browsers.

In the remainder of our discussion of transport layer security, we focus on TLS.
Although SSL and TLS are unfortunately not interoperable, they differ in only minor
ways, so nearly all of this description of TLS applies to SSL.

Handshake Protocol

A pair of TLS participants negotiate at runtime which cryptography to use. The partici-
pants negotiate a choice of:

■ Data integrity hash, MD5 or SHA, used to implement HMACs.

■ Symmetric-key cipher for confidentiality. Among the possibilities are DES,
3DES, and AES.

■ Session-key establishment approach. Among the possibilities are Diffie-Hellman,
fixed Diffie-Hellman, and public-key authentication protocols using RSA or
DSS.

Interestingly, the participants may also negotiate the use of a compression algorithm,
not because this offers any security benefits, but because it’s easy to do when you’re
negotiating all this other stuff and you’ve already decided to do some expensive per-byte
operations on the data.

In TLS, the confidentiality cipher uses two keys, one for each direction, and sim-
ilarly two initialization vectors. The HMACs are likewise keyed with different keys for
the two participants. Thus, regardless of the choice of cipher and hash, a TLS session
requires six keys. TLS derives all of them from a single shared master secret. The master
secret is a 384-bit (48-byte) value that is in turn derived in part from the session key that
results from TLS’s session-key establishment protocol.

The part of TLS that negotiates the choices and establishes the shared master se-
cret is called the handshake protocol. (Actual data transfer is performed by TLS’s record
protocol.) The handshake protocol is at heart a session-key establishment protocol, with
a master secret instead of a session key. TLS supports a choice of approach to session-key
establishment, ranging from public-key certificates to Diffie-Hellman. These call for cor-
respondingly different protocols. Furthermore, the handshake protocol supports a choice
between mutual authentication of both participants, authentication of just one partici-
pant (this is the most common case; e.g., authenticate a website but not a user), or no
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Figure 8.16 Handshake protocol to establish TLS session.

authentication at all (anonymous Diffie-Hellman). Thus, the handshake protocol knits
together several session key establishment protocols into a single protocol.

Rather than trying to explain in detail how the handshake protocol is able to ac-
commodate all these variations, we describe it at a high level (Figure 8.16). The client
initially sends a list of the combinations of cryptographic algorithms that it supports,
in decreasing order of preference. The server responds giving the single combination
of cryptographic algorithms it selected from those listed by the client. These messages
also contain a client-nonce and a server-nonce, respectively, that will be incorporated in
generating the master secret later.
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At this point the negotiation phase is complete. The server now sends additional
messages based on the negotiated session key establishment protocol (one of the possibil-
ities is anonymous Diffie-Hellman, so it wouldn’t be accurate to call it an authentication
protocol). That could involve sending a public-key certificate or a set of Diffie-Hellman
parameters. If the server requires authentication of the client, it sends a separate message
indicating that. The client then responds with its part of the negotiated key exchange
protocol.

Now the client and server each have the information necessary to generate the
master secret. The session key that they exchanged is not in fact a key, but instead what
TLS calls a premaster secret. The master secret is computed (using a published formula
incorporating both MD5 and SHA) from this premaster secret, the client-nonce, and
the server-nonce.

Using the keys derived from the master secret, the client then sends a message
that includes a hash of all the preceding handshake messages, to which the server re-
sponds with a similar message. This enables them to detect any discrepancies between
the handshake messages they sent and received, such as would result, for example, if a
man-in-the-middle modified the initial unencrypted client message to weaken its choices
of cryptographic algorithms.

Record Protocol

Within a session established by the handshake protocol, TLS’s record protocol adds con-
fidentiality and integrity to the underlying transport service. Messages handed down
from the application layer are:

1 Fragmented or coalesced into blocks of a convenient size for the following steps;

2 Optionally compressed;

3 Integrity-protected using an HMAC;

4 Encrypted using a symmetric-key cipher;

5 Passed to the transport layer (normally TCP) for transmission.

The record protocol uses an HMAC as an authenticator. The HMAC uses MD5
or SHA-1, whichever was negotiated by the participants. The client and server have
different keys to use when computing HMACs, making them even harder to break.
Furthermore, each record protocol message is assigned a sequence number, which is
included when the HMAC is computed—even though the sequence number is never
explicit in the message. This implicit sequence number prevents replays or reorderings
of messages. This is needed because, although TCP guarantees sequential no-duplicate
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messages under normal assumptions, those assumptions do not include an adversary that
can intercept TCP messages and send bogus ones. On the other hand, it is TCP’s deliv-
ery guarantees that make it possible for TLS to rely on a legitimate TLS message having
the next implicit sequence number in order.

Another interesting feature of the TLS protocol, which is quite a useful feature
for Web transactions, is the ability to “resume” a session. To understand the motivation
for this, it is helpful to understand how HTTP makes use of TCP connections. (The
details of HTTP are presented in Section 9.1.2.) Each HTTP operation, such as getting
a page of text or an image from a server, requires a new TCP connection to be opened.
Retrieving a single page with a number of embedded graphical objects might take many
TCP connections. Recall from Section 5.2 that opening a TCP connection requires a
three-way handshake before data transmission can start. Once the TCP connection is
ready to accept data, the client would then need to start the TLS handshake protocol,
taking at least another two RTTs (and consuming some amount of processing resources
and network bandwidth) before actual application data could be sent. The resumption
capability of TLS alleviates this problem.

Session resumption is an optimization of the handshake that can be used in those
cases where the client and the server have already established some shared state in the
past. The client simply includes the session ID from a previously established session in
its initial handshake message. If the server finds that it still has state for that session, and
the resumption option was negotiated when that session was originally created, then the
server can reply to the client with an indication of success, and data transmission can
begin using the algorithms and parameters previously negotiated. If the session ID does
not match any session state cached at the server, or if resumption was not allowed for the
session, then the server will fall back to the normal handshake process.

8.4.4 IP Security (IPsec)
Easily the most ambitious of all the efforts to integrate security into the Internet happens
at the IP layer. Support for IPsec, as the architecture is called, is optional in IPv4 but
mandatory in IPv6.

IPsec is really a framework (as opposed to a single protocol or system) for providing
all the security services discussed throughout this chapter. IPsec provides three degrees
of freedom. First, it is highly modular, allowing users (or more likely, system admin-
istrators) to select from a variety of cryptographic algorithms and specialized security
protocols. Second, IPsec allows users to select from a large menu of security properties,
including access control, integrity, authentication, originality, and confidentiality. Third,
IPsec can be used to protect narrow streams (e.g., packets belonging to a particular TCP
connection being sent between a pair of hosts) or wide streams (e.g., all packets flowing
between a pair of gateways).
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When viewed from a high level, IPsec consists of two parts. The first part is a pair
of protocols that implement the available security services. They are the Authentication
Header (AH), which provides access control, connectionless message integrity, authenti-
cation, and antireplay protection, and the Encapsulating Security Payload (ESP), which
supports these same services, plus confidentiality. AH is rarely used so we do not discuss
it further. The second part is support for key management, which fits under an um-
brella protocol known as Internet Security Association and Key Management Protocol
(ISAKMP).

The abstraction that binds these two pieces together is the security association (SA).
An SA is a simplex (one-way) connection with one or more of the available security prop-
erties. Securing a bidirectional communication between a pair of hosts—corresponding
to a TCP connection, for example—requires two SAs, one in each direction. Although
IP is a connectionless protocol, security depends on connection state information such
as keys and sequence numbers. When created, an SA is assigned an ID number called a
security parameters index (SPI) by the receiving machine. A combination of this SPI and
the destination IP addresses uniquely identifies an SA. ESP’s header includes the SPI so
the receiving host can determine which SA an incoming packet belongs to, and hence,
what algorithms and keys to apply to the packet.

SAs are established, negotiated, modified, and deleted using ISAKMP. It defines
packet formats for exchanging key generation and authentication data. These formats
aren’t terribly interesting because they provide a framework only—the exact form of the
keys and authentication data depend on the key generation technique, the cipher, and the
authentication mechanism that is used. Moreover, ISAKMP does not specify a particular
key exchange protocol, although it does suggest the Internet Key Exchange (IKE) as one
possibility, and IKE is what is used in practice.

ESP is the protocol used to securely transport data over an established SA. In IPv4,
the ESP header follows the IP header; in IPv6, it is an extension header. Its format uses
both a header and a trailer, as shown in Figure 8.17. The SPI field lets the receiving
host identify the security association to which the packet belongs. The SeqNum field
protects against replay attacks. The packet’s PayloadData contains the data described
by the NextHdr field. If confidentiality is selected, then the data is encrypted using
whatever cipher was associated with the SA. The PadLength field records how much
padding was added to the data; padding is sometimes necessary because, for example, the
cipher requires the plaintext to be a multiple of a certain number of bytes, or to ensure
that the resulting ciphertext terminates on a 4-byte boundary. Finally, the Authentica-
tionData carries the authenticator.

IPsec supports a tunnel mode as well as the more straightforward transport mode.
Each SA operates in one or the other mode. In a transport mode SA, ESP’s payload data
is simply a message for a higher layer such as UDP or TCP. In this mode, IPsec acts as an
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Figure 8.17 IPsec’s ESP format.

Figure 8.18 An IP packet with a nested IP packet encapsulated using ESP in tunnel

mode. Note that the inner and outer packets have different addresses.

intermediate protocol layer, much like SSL/TLS does between TCP and a higher layer.
When an ESP message is received, its payload is passed to the higher-level protocol.

In a tunnel mode SA, however, ESP’s payload data is itself an IP packet, as in
Figure 8.18. The source and destination of this inner IP packet may be different from
those of the outer IP packet. When an ESP message is received, its payload is forwarded
on as a normal IP packet. The most common way to use the ESP is to build an IPsec
tunnel between two routers, typically firewalls. For example, a corporation wanting to
link two sites using the Internet could open a pair of tunnel-mode SAs between a router
at one site and a router at the other site, as we discussed in Section 4.1.8. An IP packet
outgoing from one site would, at the outgoing router, become the payload of an ESP
message sent to the other site’s router. The receiving router would unwrap the payload
IP packet and forward it on to its true destination.

These tunnels may also be configured to use ESP with confidentiality and authen-
tication, thus preventing unauthorized access to the data that traverses this virtual link
and ensuring that no spurious data is received at the far end of the tunnel. Furthermore,
tunnels can provide traffic confidentiality, since multiplexing multiple flows through a
single tunnel obscures information about how much traffic is flowing between particular
endpoints. A network of such tunnels can be used to implement an entire virtual pri-
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vate network (VPN, Section 4.1.8). Hosts communicating over a VPN need not even be
aware that it exists.

8.4.5 Wireless Security (802.11i)
Wireless links (Section 2.8) are particularly exposed to security threats due to the lack
of any physical security. The IEEE 802.11i standard provides authentication, message
integrity, and confidentiality to 802.11 (Wi-Fi) at the link layer. Wi-Fi Protected Access 2
(WPA2) is often used as a synonym for 802.11i, although it is technically a trademark of
The Wi-Fi Alliance that certifies product compliance with 802.11i.

For backward compatibility, 802.11i includes definitions of first-generation secu-
rity algorithms—Wired Equivalent Privacy (WEP) and 802.11 entity authentication—
that are now known to have major security flaws. We will focus here on 802.11i’s newer,
stronger algorithms.

802.11i authentication supports two modes. In either mode, the end result of suc-
cessful authentication is a shared pairwise master key. Personal mode, also known as pre-
shared key (PSK) mode, provides weaker security but is more convenient and economical
for situations like a home 802.11 network. The wireless device and the access point (AP)
are preconfigured with a shared passphrase—essentially a very long password—from with
the pairwise master key is cryptographically derived.

802.11i’s stronger authentication mode is based on the IEEE 802.1X framework
for controlling access to a LAN, which uses an authentication server (AS) as in Fig-
ure 8.19. The AS and AP must be connected by a secure channel and could even share
the same host. The AP forwards authentication messages between the wireless device
and the AS. The protocol used for authentication is the Extensible Authentication Pro-
tocol (EAP). EAP is designed to support multiple authentication methods—smart cards,
Kerberos, one-time passwords, public-key authentication, and so on—as well as both
one-sided and mutual authentication. So EAP is better thought of as an authentication
framework than a protocol. Specific EAP-compliant protocols, of which there are many,
are called EAP methods. For example, EAP-TLS is an EAP method based on TLS au-
thentication. 802.11i does not place any restrictions on what the EAP method can use
as a basis for authentication. It does, however, require an EAP method that performs
mutual authentication because not only do we want to prevent an adversary accessing
the network via our AP, we also want to prevent an adversary fooling our wireless devices
with a bogus, malicious AP. The end result of a successful authentication is a pairwise
master key shared between the wireless device and the AS, which the AS then conveys to
the AP.

With a pairwise master key in hand, the wireless device and the AP execute a
session-key establishment protocol called the 4-way handshake to establish a pairwise
transient key. This pairwise transient key is really a collection of keys that includes a
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Figure 8.19 Use of an authentication server in 802.11i.

session key called a temporal key. This session key is used by the protocol, called CCMP,
that provides 802.11i’s data confidentiality and integrity.

CCMP stands for CTR (counter mode) with CBC-MAC (Cipher-Block Chain-
ing with Message Authentication Code) protocol. CCMP uses AES in counter mode
to encrypt for confidentiality. Recall that in counter-mode encryption, successive val-
ues of a counter are incorporated into the encryption of successive blocks of plaintext
(Section 8.1.1).

CCMP uses a message authentication code (MAC) as an authenticator. The MAC
algorithm is based on CBC (Section 8.1.1), even though CCMP doesn’t use CBC in
the confidentiality encryption. In effect, CBC is performed without transmitting any of
the CBC-encrypted blocks, solely so that the last CBC-encrypted block can be used as a
MAC (only its first 8 bytes are actually used). The role of initialization vector is played
by a specially constructed first block that includes a 48-bit packet number—a sequence
number. (The packet number is also incorporated in the confidentiality encryption, and
serves to expose replay attacks.) The MAC is subsequently encrypted along with the
plaintext in order to prevent birthday attacks, which depend on finding different mes-
sages with the same authenticator (Section 8.1.4).

8.5 Firewalls
A firewall is a system that is the sole point of connectivity between the site it protects and
the rest of the network, as illustrated in Figure 8.20. It is usually implemented as part
of a router, although a personal firewall may be implemented on an end-user machine.
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Figure 8.20 A firewall filters packets flowing between a site and the rest of the

Internet.

Firewall-based security depends on the firewall being the only connectivity to the site
from outside; there should be no way to bypass the firewall via other gateways, wireless
connections, or dial-up connections. The “wall” metaphor is misleading in the context
of networks since it is the absence of connectivity—not the presence of a barrier—that
prevents communication. In terms of walls, a firewall is like the only door (connection)
through a wall (the absence of any other connection). A firewall provides access control
by restricting which messages it will relay between the site and the rest of the network;
it forwards messages that are allowed, and filters out messages that are disallowed. For
example, it might filter out all incoming messages addressed to a particular IP address or
to a particular TCP port number.

In effect, a firewall divides a network into a more-trusted zone internal to the fire-
wall, and a less-trusted zone external to the firewall. This is useful if you do not want
external users to access a particular host or service within your site. Much of the com-
plexity comes from the fact that you want to allow different kinds of access to different
external users, ranging from the general public, to business partners, to remotely-located
members of your organization. A firewall may also impose restrictions on outgoing traf-
fic, to prevent certain attacks and to limit losses if an adversary succeeds in getting access
inside the firewall.

Firewalls may be used to create multiple zones of trust, such as a hierarchy of increas-
ingly trusted zones. A common arrangement involves three zones of trust: the internal
network, the demilitarized zone (DMZ ), and the rest of the Internet. The DMZ is used
to hold services such as DNS and email servers that need to be accessible to the outside.
Both the internal network and the outside world can access the DMZ, but hosts in the
DMZ cannot access the internal network. Therefore, if an adversary succeeds in com-
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promising a host in the exposed DMZ, they still cannot access the internal network. The
DMZ can be periodically restored to a “clean” state.

Firewalls filter based on IP, TCP, and UDP information, among other things. They
are configured with a table of addresses that characterize the packets they will, and will
not, forward. By addresses, we mean more than just the destination’s IP address, although
that is one possibility. Generally, each entry in the table is a 4-tuple: It gives the IP address
and TCP (or UDP) port number for both the source and destination.

For example, a firewall might be configured to filter out (not forward) all packets
that match the following description:

〈192.12.13.14, 1234, 128.7.6.5, 80〉
This pattern says to discard all packets from port 1234 on host 192.12.13.14 addressed
to port 80 on host 128.7.6.5. (Port 80 is the well-known TCP port for HTTP.) Of course
it’s often not practical to name every source host whose packets you want to filter, so the
patterns can include wildcards. For example,

〈*, *, 128.7.6.5, 80〉
says to filter out all packets addressed to port 80 on 128.7.6.5, regardless of what source
host or port sent the packet. Notice that address patterns like these require the firewall to
make forwarding/filtering decisions based on level 4 port numbers, in addition to level 3
host addresses. It is for this reason that network layer firewalls are sometimes called level 4
switches.

In the preceding discussion, the firewall forwards everything except where specif-
ically instructed to filter out certain kinds of packets. A firewall could also filter out
everything unless explicitly instructed to forward it, or use a mix of the two strategies.
For example, instead of blocking access to port 80 on host 128.7.6.5, the firewall might
be instructed to only allow access to port 25 (the SMTP mail port) on a particular mail
server, for example,

〈*, *, 128.19.20.21, 25〉
but to block all other traffic. Experience has shown that firewalls are very frequently
configured incorrectly, allowing unsafe access. Part of the problem is that filtering rules
can overlap in complex ways, making it hard for a system administrator to correctly
express the filtering she intends. A design principle that maximizes security is to configure
a firewall to discard all packets other than those that are explicitly allowed.

Many client-server applications dynamically assign a port to the client. If a client
inside a firewall initiates access to an external server, the server’s response would be ad-
dressed to the dynamically assigned port. This poses a problem: How can a firewall be
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configured to allow an arbitrary server’s response packet but disallow a similar packet
for which there was no client request? This is not possible with a stateless firewall, which
evaluates each packet in isolation. It requires a stateful firewall, which keeps track of the
state of each connection. An incoming packet addressed to a dynamically assigned port
would then be allowed only if it is a valid response in the current state of a connection
on that port.

Modern firewalls also understand and filter based on many specific application-
level protocols such as HTTP, Telnet, or FTP. They use information specific to that
protocol, such as URLs in the case of HTTP, to decide whether to discard a message.

8.5.1 Strengths and Weaknesses of Firewalls
At best, a firewall protects a network from undesired access from the rest of the Internet;
it cannot provide security to legitimate communication between the inside and the out-
side of the firewall. In contrast, the cryptography-based security mechanisms described
in this chapter are capable of providing secure communication between any participants
anywhere. This being the case, why are firewalls so common? One reason is that firewalls
can be deployed unilaterally, using mature commercial products, while cryptography-
based security requires support at both endpoints of the communication. A more fun-
damental reason for the dominance of firewalls is that they encapsulate security in a
centralized place, in effect factoring security out of the rest of the network. A system ad-
ministrator can manage the firewall to provide security, freeing the users and applications
inside the firewall from security concerns—at least some kinds of security concerns.

Unfortunately, firewalls have serious limitations. Since a firewall does not restrict
communication between hosts that are inside the firewall, the adversary who does man-
age to run code internal to a site can access all local hosts. How might an adversary get
inside the firewall? The adversary could be a disgruntled employee with legitimate ac-
cess. Or the adversary’s software could be hidden in some software installed from a CD
or downloaded from the Web. Or an adversary could bypass the firewall by using wireless
communication or telephone dial-up connections.

Another problem is that any parties granted access through your firewall, such
as business partners or externally located employees, become a security vulnerability. If
their security is not as good as yours, then an adversary could penetrate your security by
penetrating their security.

Another problem for firewalls is that a service that appears safe to expose may have
a bug that makes it unsafe. A classic example is PHF, a phone booklike service that
was available on many websites for looking up names and addresses. A buffer-overflow
bug in PHF made it possible for anyone to execute an arbitrary command on the web
server by using her browser to enter the command in an input field of the PHF form.
Such bugs are discovered regularly, so a system administrator has to constantly monitor
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announcements of them. Administrators frequently fail to do so, since firewall security
breaches routinely exploit security flaws that have been known for some time and have
straightforward solutions.

In addition to the (unintended) bugs that may be left accessible by a firewall, there
are also what could be thought of as intended, deliberate bugs. Malware (malicious soft-
ware) is software that is designed to act on a computer in ways concealed from and un-
wanted by the computer’s user. Viruses, worms, and spyware are common types of mal-
ware. (“Virus” is sometimes used synonymously with malware, but we will use it in the
narrower sense in which it refers to only a particular kind of malware.) Like buggy soft-
ware, malware code need not be natively executable object code; it could as well be inter-
preted code such as a script or an executable macro such as those used by Microsoft Word.

Viruses and worms are characterized by the ability to make and spread copies of
themselves; the difference between them is that a worm is a complete program, while
a virus is a bit of code that is inserted (and inserts copies of itself ) into another piece
of software, so that it is executed as part of the execution of that piece of software.
Viruses and worms typically cause problems such as consuming network bandwidth as
mere side effects of attempting to spread copies of themselves. Even worse, they can also
deliberately damage a system or undermine its security in various ways. They could, for
example, install a backdoor, which is software that allows remote access to the system
without the normal authentication. This could lead to a firewall exposing a service that
should be providing its own authentication procedures but has been undermined by a
backdoor.

Spyware is software that, without authorization, collects and transmits private in-
formation about a computer system or its users. Usually spyware is secretly embedded
in an otherwise useful program, and is spread by users deliberately installing copies. The
problem for firewalls is that the transmission of the private information looks like legiti-
mate communication.

A natural question to ask is whether firewalls (or cryptographic security) could keep
malware out of a system in the first place. Most malware is indeed transmitted via net-
works, although it may also be transmitted via portable storage devices such as CDs and
memory sticks. One of the two approaches used by antimalware applications it to ob-
serve programs for suspicious behavior as they execute—clearly not feasible for a firewall
that is not on the end-user machine. The other approach is searching for segments of
code from known malware, an approach already limited by the ability of clever malware
to tweak its representation in various ways. The main problem with implementing this
approach in a firewall is the impact on network performance. Cryptographic security
cannot eliminate the problem either, although it does provide a means to authenticate
the originator of a piece of software and detect any tampering, such as when a virus
inserts a copy of itself.
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8.6 Summary
Networks such as the Internet are shared by parties with conflicting interests. The job of
network security is to keep them from spying on or interfering with each other’s use of
the network. Confidentiality is achieved by encrypting messages. Data integrity can be
assured using cryptographic hashing. The two techniques can be combined to guarantee
authenticity of messages.

Symmetric-key ciphers such as AES and 3DES use the same secret key for both
encryption and decryption, so sender and receiver must share the same key. Public-key
ciphers such as RSA use a public key for encryption, and a secret, private key for decryp-
tion, so any party can use the public key to encrypt a message so that it is readable only
by the holder of the private key. The fastest technique known for breaking established
ciphers such as AES and RSA is brute-force search of the space of possible keys, which
is made computationally infeasible by the use of large keys. Most encryption for confi-
dentiality uses symmetric-key ciphers due to their vastly superior speed, while public-key
ciphers are usually reserved for authentication and session-key establishment.

An authenticator is a value attached to a message to verify the authenticity and data
integrity of the message. One way to generate an authenticator is to encrypt a message
digest that is output by a cryptographic hash function such as MD5 or SHA-1. If the
message digest is encrypted using the private key of a public-key cipher, the resulting
authenticator is considered a digital signature, since the public key can be used to verify
that only the holder of the private key could have generated it. Another kind of authenti-
cator is a message authentication code, which is output by a hashlike function that takes
a shared secret value as a parameter. A hashed MAC is a MAC computed by applying a
cryptographic hash to the concatenation of the plaintext message and the secret value.

A session key is used to secure a relatively short episode of communication. The
dynamic establishment of a session key depends on longer-lived predistributed keys. The
ownership of a predistributed public key by a certain party can be attested to by a public-
key certificate that is digitally signed by a trusted party. A public-key infrastructure is a
complete scheme for certifying such bindings, and depends on a chain or web of trust.
Predistribution of keys for symmetric-key ciphers is different because public certificates
can’t be used and because symmetric-key ciphers need a unique key for each pair of par-
ticipants. A key distribution center is a trusted entity that shares a predistributed secret
key with each other participant, so that they can use session keys, not predistributed
keys, between themselves.

Authentication and session-key establishment require a protocol to assure the time-
liness and originality of messages. Timestamps or nonces are used to guarantee the fresh-
ness of the messages. We saw two authentication protocols that use public-key ciphers,
one that required synchronized clocks and one that did not. Needham-Schroeder is a
protocol for authenticating two participants who each share a master symmetric-key
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cipher key with a key distribution center. Kerberos is an authentication system based
on the Needham-Schroeder protocol and specialized for client-server environments. The
Diffie-Hellman key agreement protocol establishes a session key without predistributed
keys and authentication.

We discussed several systems that provide security based on these cryptographic
algorithms and protocols. At the application level, PGP can be used to protect email
messages and SSH can be used to securely connect to a remote machine. At the transport
level, TLS can be used to protect commercial transactions on the World Wide Web. At
the network level, the IPsec architecture can be used to secure communication among
any set of hosts or gateways on the Internet.

A firewall filters the messages that pass between the site it protects and the rest of
the network. Firewalls filter based on IP, TCP, and UDP addresses, as well as fields of
some application protocols. A stateful firewall keeps track of the state of each connection
so that it can allow valid responses to be delivered to dynamically assigned ports. Al-
though firewall security has important limitations, it has the advantage of shifting some
responsibility for security from users and applications to system administrators.

O P E N I S S U E

Denial-of-Service Attacks

Unlike attacks on confidential-
ity, where an adversary is trying to gain
access to information it is not allowed
to see, a denial-of-service (DoS) attack
involves an adversary trying to keep
you from accessing information or re-
sources you have every right to access.

One well-known denial-of-service attack is called a SYN attack, named after the
TCP’s connection setup packet. In a SYN attack, a remote attacker floods your machine
with SYN packets, causing it to spend all its cycles setting up bogus TCP connections.
The key to this attack is that, unlike simply flooding a machine with bogus data packets,
each SYN packet requires nontrivial processing to determine that it’s OK to just throw
the packet away. Firewalls offer some level of protection, in that they can be programmed
to drop all packets from a known attacking host, but it’s easy for the attacker to simply
put a different source IP address in each SYN packet.

Another well-known DoS attack is to send a stream of “Christmas tree packets” to
a router—packets with all the “lights” turned on (e.g., all known IP options enabled).
The router spends so much time processing these options that it fails to process BGP
updates.

A less well-known example illustrates how subtle a denial-of-service attack can be.
An attacker flooded an ISP’s router with IP packets carrying a serial sequence of IP
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addresses. The sequence blew the router’s first-level route cache, which ultimately caused
the router’s processor to spend all its time building new forwarding tables. This happened
at the expense of the router responding to its neighbors’ routing probes, which caused
the neighbors to believe the router was down.

Protecting against denial-of-service attacks involves three steps. The first is to ac-
count for all resources consumed by every user (or flow). The second is to detect when the
resources consumed by a given user exceed those allowed by some system policy. Once
an attack is detected, the final step is to reclaim the consumed resources using as few ad-
ditional resources as possible; otherwise, removal of an offending user becomes a denial-
of-service attack in its own right. Unfortunately, few of today’s systems—including both
hosts and routers—accurately account for all resources used in the system, let alone de-
fine a policy as to what constitutes a denial-of-service attack.

In general, however, it is difficult to detect when a resource-usage policy has been
violated because the attacker doesn’t necessarily send a large stream of attack packets
from the same source. Instead, the attacker may bombard you with innocent-looking
packet streams from many sources. This is known as a distributed denial-of-service (DDoS)
attack, and involves the attacker first compromising a large set of machines (so-called
zombies) and then turning all of these zombies against you at the same time. For example,
highly visible sites like CNN, Yahoo, eBay, and Amazon were brought down by a DDoS
attack in February 2000. In the end, DDoS attacks are problematic because it is almost
impossible to distinguish between a legitimate heavy load from many sources (i.e., a flash
crowd) and a DDoS attack.

F U R T H E R R E A D I N G
The first two security-related papers, taken together, give a good overview of the topic.
The article by Lampson et al. contains a formal treatment of security, while the Satya-
narayanan paper gives a nice description of how a secure system is designed in practice.
The third paper gives an overview of the IPsec security architecture and is the right place
to start to fully understand the state of security in the Internet today.

■ Lampson, B. et al. “Authentication in Distributed Systems: Theory and Prac-
tice.” ACM Transactions on Computer Systems 10(4):265–310, November 1992.

■ Satyanarayanan, M. “Integrating Security in a Large Distributed System.” ACM
Transactions on Computer Systems 7(3):247–280, August 1989.

■ Kent, S., and K. Seo. “Security Architecture for the Internet Protocol.” Request
for Comments 4301, December 2005.
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There are several good books covering the full gamut of network security. We rec-
ommend Schneier [Sch95], Stallings [Sta03], and Kaufman et al. [KPS02]. The first two
give comprehensive treatments of the topic, while the last gives a very readable overview
of the subject. The full IPsec architecture is defined in a series of RFCs: [Ken05a],
[Eas05], [MG98a], [MG98b], [MD98], [Ken05b], [Kau05]. A book by Barrett and
Silverman [BS01] gives a thorough description of SSH. Menezes et al. [MvOV96] is a
comprehensive cryptography reference (a copy can be freely downloaded from the URL
listed below).

A discussion of the problem of recognizing and defending against denial-of-service
attacks can be found in Moore et. al. [MVS01], Spatscheck and Peterson [SP99] and Qie
et. al. [QPP02]. Recent techniques used to identify the source of attacks can be found in
papers by Bellovin [Bel00], Savage et. al. [SWKA00], and Snoeren et. al. [SPS+01]. The
increasing threat of DDoS attacks is discussed by Garber [Gar00] and Harrison [Har00],
and early approaches to defending against such attacks are reported in a paper by Park
and Lee [PL01].

Finally, we recommend the following live references:

■ ftp://cert.org/pub: A collection of security-related notices posted by the Com-
puter Emergency Response Team (CERT).

■ http://www.cacr.math.uwaterloo.ca/hac/: Downloadable copy of
[MvOV96], a comprehensive cryptography reference.

E X E R C I S E S
1 Find or install an encryption utility (e.g., the Unix des command or pgp)

on your system. Read its documentation and experiment with it. Measure how
fast it is able to encrypt and decrypt data. Are these two rates the same? Try
to compare these timing results using different key sizes; for example, compare
AES with triple-DES.

2 Diagram cipher block chaining as described in Section 8.1.1.

3 Learn about a key escrow, or key surrender, scheme (for example, Clipper).
What are the pros and cons of key escrow?

4 Suppose Alice uses the Needham-Schroeder authentication protocol described
in Section 8.3.3 to initiate a session with Bob. Further suppose that an adver-
sary is able to eavesdrop on the authentication messages and, long after the
session has completed, discover the (unencrypted) session key. How could the
adversary deceive Bob into authenticating the adversary as Alice?
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5 One mechanism for resisting “replay” attacks in password authentication is to
use one-time passwords: a list of passwords is prepared, and once password[N ]
has been accepted, the server decrements N and prompts for password[N − 1]
next time. At N = 0 a new list is needed. Outline a mechanism by which
the user and server need only remember one master password mp and have
available locally a way to compute password[N ] = f (mp,N ). (Hint: Let g be an
appropriate one-way function (e.g., MD5) and let password[N ] = gN (mp) = g
applied N times to mp.) Explain why knowing password[N ] doesn’t help reveal
password[N − 1].

6 Suppose a user employs one-time passwords as above (or, for that matter,
reusable passwords), but that the password is transmitted “sufficiently slowly.”

(a) Show that an eavesdropper can gain access to the remote server with a rel-
atively modest number of guesses. (Hint: The eavesdropper starts guessing
after the original user has typed all but one character of the password.)

(b) To what other attacks might a user of one-time passwords be subject?

7 The Diffie-Hellman key exchange protocol is vulnerable to a “man-in-the-
middle” attack as shown in Section 8.3.4 and Figure 8.12. Outline how Diffie-
Hellman can be extended to protect against this possibility.

8 Suppose we have a very short secret s (e.g., a single bit or even a Social Security
number), and we wish to send someone else a message m now that will not
reveal s but that can be used later to verify that we did know s. Explain why
m = MD5(s) or m = E(s) with RSA encryption would not be secure choices,
and suggest a better choice.

9 Suppose two people want to play poker over the network. To “deal” the cards
they need a mechanism for fairly choosing a random number x between them;
each party stands to lose if the other party can unfairly influence the choice of
x. Describe such a mechanism. (Hint: You may assume that if either of two bit
strings x1 and x2 are random, then the exclusive-OR x = x1 ⊕ x2 is random.)

10 Estimate the probabilities of finding two messages with the same MD5 check-
sum, given total numbers of messages of 263, 264, and 265. (Hint: This is the
birthday problem again, as in Exercise 49, and again the probability that the
k + 1th message has a different checksum from each of the preceding k is
1 − k/2128.) However, the approximation in the hint there for simplifying the
product fails rather badly now. So, instead, take the log of each side and use the
approximation log(1 − k/2128) ≈ −k/2128.



636 8 Network Security

11 Suppose we wanted to encrypt a Telnet session with, say, 3DES. Telnet sends
lots of 1-byte messages, while 3DES encrypts in blocks of 8 bytes at a time.
Explain how 3DES might be used securely in this setting.

12 Consider the following simple UDP protocol (based loosely on TFTP, Request
for Comments 1350) for downloading files:

■ Client sends a file request;

■ Server replies with first data packet;

■ Client sends ACK, and the two proceed using stop-and-wait.

Suppose client and server possess keys KC and KS , respectively, and that these
keys are known to each other.

(a) Extend the file downloading protocol, using these keys and MD5, to pro-
vide sender authentication and message integrity. Your protocol should also
be resistant to replay attacks.

(b) How does the extra information in your revised protocol protect against
arrival of late packets from prior connection incarnations and sequence
number wraparound?

13 Using the browser of your choice, find out what certification authorities for
HTTPS your browser is configured by default to trust. Do you trust these
agencies? Find out what happens when you disable trust of some or all of these
certification authorities.

14 Use an OpenPGP implementation such as GnuPG to do the following. Note
that no email is involved—you are working exclusively with files on a single
machine.

(a) Generate a public-private key pair.

(b) Use your public key to encrypt a file, as if for secure storage, and then use
your private key to decrypt it.

(c) Use your key pair to digitally sign an unencrypted file and then, as if you
were someone else, verify your signature using your public key.

(d) Consider the first public-private key pair as belonging to Alice, and gen-
erate a second public-private key pair, for Bob. Playing the role of Alice,
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encrypt and sign a file intended for Bob. (Be sure to sign as Alice, not
Bob.) Then, playing the role of Bob, verify Alice’s signature and decrypt
the file.

15 PuTTY (pronounced “putty”) is a popular free SSH client—an application that
implements the client side of SSH connections—for Unix and Windows. Its
documentation is accessible on the Web.

(a) How does PuTTY handle authentication of a server that it has not previ-
ously connected to?

(b) How are clients authenticated to servers?

(c) PuTTY supports several ciphers. How does it determine which one to use
for a particular connection?

(d) PuTTY supports ciphers, such as DES, that might be considered too weak
for some—or any—situations. Why? How does PuTTY determine which
ciphers are weak, and how does it use that information?

(e) For a given connection, PuTTY lets a user specify a maximum amount of
time and/or transmitted data after which PuTTY will initiate the estab-
lishment of a new session key, which the documentation refers to as a key
exchange or rekeying. What is the motivation behind this feature?

(f ) Use PuTTYgen, the PuTTY key generator, to generate a public-private key
pair for one of the PuTTY-supported public-key ciphers.

16 Suppose you want your firewall to block all incoming Telnet connections, but
to allow outbound Telnet connections. One approach would be to block all
inbound packets to the designated Telnet port (23).

(a) We might want to block inbound packets to other ports as well, but what
inbound TCP connections must be permitted in order not to interfere with
outbound Telnet?

(b) Now suppose your firewall is allowed to use the TCP header Flags bits
in addition to the port numbers. Explain how you can achieve the de-
sired Telnet effect here while at the same time allowing no inbound TCP
connections.

17 Suppose a firewall is configured to allow outbound TCP connections but in-
bound connections only to specified ports. The FTP protocol now presents a
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Figure 8.21 Diagram for Exercise 18.

problem: When an inside client contacts an outside server, the outbound TCP
control connection can be opened normally but the TCP data connection tra-
ditionally is inbound.

(a) Look up the FTP protocol in, for example, Request for Comments 959.
Find out how the PORT command works. Discuss how the client might
be written so as to limit the number of ports to which the firewall must
grant inbound access. Can the number of such ports be limited to one?

(b) Find out how the FTP PASV command can be used to solve this firewall
problem.

18 Suppose filtering routers are arranged as in Figure 8.21; the primary firewall
is R1. Explain how to configure R1 and R2 so that outsiders can Telnet to
net 2 but not to hosts on net 1. To avoid leapfrogging break-ins to net 1, also
disallow Telnet connections from net 2 to net 1.

19 Why might an Internet service provider want to block certain outbound traffic?

20 It is said that IPsec may not work with network address translation (NAT)
(RFC 1631). However, whether IPsec will work with NAT depends on which
mode of IPsec and NAT we use. Suppose we use true NAT, where only IP
addresses are translated (without port translation). Will IPsec and NAT work
in each of the following cases? Explain why or why not.

(a) IPsec uses ESP transport mode.

(b) IPsec uses ESP tunnel mode.

(c) What if we use port address translation (PAT), also known as network ad-
dress/port translation (NAPT) in NAT, where in addition to IP addresses,
port numbers will be translated to share one IP address from outside the
private network.





Applications

Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

—Winston Churchill

e started this book by talking about application programs—everything fromWweb browsers to videoconferencing tools—that people want to run over
computer networks. In the intervening chapters, we have developed, one

building block at a time, the networking infrastructure needed to make such applications
possible. We have now come full circle, back to network applications. These applications
are part network protocol (in the sense that they exchange messages with their peers on

P R O B L E M

Applications Need Their
Own Protocols

other machines) and part traditional
application program (in the sense that
they interact with the windowing sys-
tem, the file system, and ultimately,
the user). This chapter explores some
of the most popular network applica-
tions available today.

Looking at applications drives home the systems approach that we have emphasized
throughout this book. That is, the best way to build effective networked applications is
to understand the building blocks that a network can provide, and how those blocks can
interact with each other. Thus, for example, a particular networked application might
need to make use of a reliable transport protocol, authentication and privacy mecha-
nisms, and resource allocation capabilities of the underlying network. Applications often
work best when the application developer knows how to make best use of these facil-
ities (and there are also plenty of counterexamples of applications making poor use of
available networking capabilities). Applications typically need their own protocols too,
in many cases using the same principles that we have seen in our prior examination of
lower-layer protocols. Thus, our focus in this chapter is on how to put together the ideas
and techniques already described to build effective networked applications.

640



9
We proceed by examining a variety of familiar, and not so fa-

miliar, network applications. These range from exchanging email
and surfing the Web, to managing a set of network elements, to
integrating applications across businesses, to multimedia appli-
cations like vic and vat, to emerging peer-to-peer and content
distribution networks. This list is by no means exhaustive, but it
does serve to illustrate many of the key principles of designing
and building applications. Applications need to pick and choose
the appropriate building blocks that are available at other layers
either inside the network or in the host protocol stacks, and then
augment those underlying services to provide the precise commu-
nication service required by the application.



642 9 Applications

9.1 Traditional Applications
We begin our discussion of applications by focusing on two of the most popular—the
World Wide Web and email. We then turn to the domain name system (DNS)—not an
application that users normally invoke explicitly, but nevertheless an application that all
other applications depend upon. This is because the name server is used to translate host
names into host addresses; the existence of such an application allows the users of other
applications to refer to remote hosts by name rather than by address. In other words,
a name server is usually used by other applications rather than by humans. Our final
example in this section is network management, which although not so familiar to the
average user, is the application of choice for system administrators.

All of these application classes use the request/reply paradigm—users send requests
to servers, which then respond accordingly. We refer to these as traditional applications
because they typify the sort of applications that have existed since the early days of com-
puter networks. By contrast, later sections will look at a class of applications that have
become feasible only relatively recently: streaming applications (e.g., multimedia appli-
cations like video and audio) and various overlay-based applications.

Before taking a close look at each of these applications, there are three general
points that we need to make. The first is that it is important to distinguish between
application programs and application protocols. For example, the HyperText Transport
Protocol (HTTP) is an application protocol that is used to retrieve web pages from
remote servers. There can be many different application programs—that is, web clients
like Internet Explorer, Netscape, Firefox, and Safari—that provide users with a different
look and feel, but all of them use the same HTTP protocol to communicate with web
servers over the Internet. This section focuses on four application protocols:

■ SMTP: Simple Mail Transfer Protocol is used to exchange electronic mail.

■ HTTP: HyperText Transport Protocol is used to communicate between web
browsers and web servers.

■ DNS: Domain Name System protocol is used to query name servers and send
the responses. (As we will see, DNS refers to rather more than just a protocol.)

■ SNMP: Simple Network Management Protocol is used to query (and sometimes
modify) the state of remote network nodes.

The second point is that since all of the application protocols described in this
section follow the same request/reply communication pattern, we would expect that they
are all built on top of an RPC transport protocol. This is not the case, however, as they
are all implemented on top of either TCP or UDP. In effect, each protocol reinvents a
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simple RPC-like mechanism on top of one of the existing transport protocols. We say
“simple” because each protocol is not designed to support arbitrary remote procedure
calls, but is instead designed to send and respond to a specific set of request messages.
In fact, it is no coincidence that two of the protocols have the word “simple” in their
name.

All these protocols except DNS have a companion protocol that specifies the format
of the data that can be exchanged. This is one reason these protocols are relatively simple:
Much of the complexity is managed in this companion document. For example, SMTP
is a protocol for exchanging electronic mail messages, but RFC 822 (this specification
has no other name) and Multipurpose Internet Mail Extensions (MIME) define the
format of email messages. Similarly, HTTP is a protocol for fetching web pages, but
HyperText Markup Language (HTML) is a companion specification that defines the
form of those pages. Finally, SNMP is a protocol for querying a network node, but
management information base (MIB) defines the variables that can be queried.

9.1.1 Electronic Mail (SMTP, MIME, IMAP)
Email is one of the oldest network applications. After all, what could be more natural
than wanting to send a message to the user at the other end of a cross-country link
you just managed to get running? In fact, the pioneers of the ARPANET had not really
envisioned email as a key application when the network was created—remote access to
computing resources was the main design goal—but it turned out to be a surprisingly
successful application. Out of this work evolved the Internet’s email system, which is
now used by hundreds of millions of people every day.

As with all the applications described in this section, the place to start in under-
standing how email works is to (1) distinguish the user interface (i.e., your mail reader)
from the underlying message transfer protocol (in this case, SMTP), and (2) to distin-
guish between this transfer protocol and a companion protocol (RFC 822 and MIME)
that defines the format of the messages being exchanged. We start by looking at the
message format.

Message Format

RFC 822 defines messages to have two parts: a header and a body. Both parts are repre-
sented in ASCII text. Originally, the body was assumed to be simple text. This is still the
case, although RFC 822 has been augmented by MIME to allow the message body to
carry all sorts of data. This data is still represented as ASCII text, but because it may be
an encoded version of, say, a JPEG image, it’s not necessarily readable by human users.
More on MIME in a moment.

The message header is a series of <CRLF> terminated lines. (<CRLF> stands
for carriage-return + line-feed, which are a pair of ASCII control characters often used
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to indicate the end of a line of text.) The header is separated from the message body by a
blank line. Each header line contains a type and value separated by a colon. Many of these
header lines are familiar to users since they are asked to fill them out when they compose
an email message. For example, the To: header identifies the message recipient, and the
Subject: header says something about the purpose of the message. Other headers are
filled in by the underlying mail delivery system. Examples include Date: (when the
message was transmitted), From: (what user sent the message), and Received: (each
mail server that handled this message). There are, of course, many other header lines; the
interested reader is referred to RFC 822.

RFC 822 was extended in 1993 (and updated again in 1996) to allow email mes-
sages to carry many different types of data: audio, video, images, Word documents, and
so on. MIME consists of three basic pieces. The first piece is a collection of header lines
that augment the original set defined by RFC 822. These header lines describe, in various
ways, the data being carried in the message body. They include MIME-Version: (the
version of MIME being used), Content-Description: (a human-readable description
of what’s in the message, analogous to the Subject: line), Content-Type: (the type of
data contained in the message), and Content-Transfer-Encoding (how the data in
the message body is encoded).

The second piece is definitions for a set of content types (and subtypes). For
example, MIME defines two different still-image types, denoted image/gif and
image/jpeg, each with the obvious meaning. As another example, text/plain refers
to simple text you might find in a vanilla 822-style message, while text/richtext de-
notes a message that contains “marked up” text (text using special fonts, italics, etc.). As
a third example, MIME defines an application type, where the subtypes correspond
to the output of different application programs (e.g., application/postscript and
application/msword).

MIME also defines a multipart type that says how a message carrying more than
one data type is structured. This is like a programming language that defines both base
types (e.g., integers and floats) and compound types (e.g., structures and arrays). One
possible multipart subtype is mixed, which says that the message contains a set of
independent data pieces in a specified order. Each piece then has its own header line that
describes the type of that piece.

The third piece is a way to encode the various data types so they can be shipped
in an ASCII email message. The problem is that for some data types (a JPEG image,
for example), any given 8-bit byte in the image might contain one of 256 different
values. Only a subset of these values are valid ASCII characters. It is important that email
messages contain only ASCII, because they might pass through a number of intermediate
systems (gateways, as described below) that assume all email is ASCII and would corrupt
the message if it contained non-ASCII characters. To address this issue, MIME uses a
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straightforward encoding of binary data into the ASCII character set. The encoding is
called base64. The idea is to map every three bytes of the original binary data into
four ASCII characters. This is done by grouping the binary data into 24-bit units, and
breaking each such unit into four 6-bit pieces. Each 6-bit piece maps onto one of 64
valid ASCII characters; for example, 0 maps onto A, 1 maps onto B, and so on. If you
look at a message that has been encoded using the base64 encoding scheme, you’ll notice
only the 52 uppercase and lowercase letters, the 10 digits 0 through 9, and the special
characters + and /. These are the first 64 values in the ASCII character set.

As one aside, so as to make reading mail as painless as possible for those of us that
insist on using text-only mail readers, a MIME message that consists of regular text only
can be encoded using 7-bit ASCII. There’s also a readable encoding for mostly ASCII
data.

Putting this all together, a message that contains some plain text, a JPEG image,
and a PostScript file would look something like this:

MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="-------417CA6E2DE4ABCAFBC5"
From: Alice Smith <Alice@cisco.com>
To: Bob@cs.Princeton.edu
Subject: promised material
Date: Mon, 07 Sep 1998 19:45:19 -0400

---------417CA6E2DE4ABCAFBC5
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Bob,

Here’s the jpeg image and draft report I promised.

--Alice

---------417CA6E2DE4ABCAFBC5
Content-Type: image/jpeg
Content-Transfer-Encoding: base64
... unreadable encoding of a jpeg figure

---------417CA6E2DE4ABCAFBC5
Content-Type: application/postscript; name="draft.ps"
Content-Transfer-Encoding: 7bit
... readable encoding of a PostScript document
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In this example, the Content-Type line in the message header says that this mes-
sage contains various pieces, each denoted by a character string that does not appear
in the data itself. Each piece then has its own Content-Type and Content-Transfer-
Encoding lines.

Message Transfer

Next, we look at SMTP—the protocol used to transfer messages from one host to an-
other. To place SMTP in the right context, we need to identify the key players. First,
users interact with a mail reader when they compose, file, search, and read their email.
There are countless mail readers available, just like there are many web browsers to
choose from. In fact, most web browsers now include a mail reader. Second, there is
a mail daemon (or process) running on each host. You can think of this process as play-
ing the role of a post office: Mail readers give the daemon messages they want to send
to other users, the daemon uses SMTP running over TCP to transmit the message to
a daemon running on another machine, and the daemon puts incoming messages into
the user’s mailbox (where that user’s mail reader can later find it). Since SMTP is a
protocol that anyone could implement, in theory there could be many different imple-
mentations of the mail daemon. It turns out, though, that the mail daemon running on
most hosts is derived from the sendmail program originally implemented on Berkeley
Unix.

While it is certainly possible that the sendmail program on a sender’s machine
establishes an SMTP/TCP connection to the sendmail program on the recipient’s ma-
chine, in many cases the mail traverses one or more mail gateways on its route from the
sender’s host to the receiver’s host. Like the end hosts, these gateways also run a send-
mail process. It’s not an accident that these intermediate nodes are called “gateways”
since their job is to store and forward email messages, much like an “IP gateway” (which
we have referred to as a router) stores and forwards IP datagrams. The only difference is
that a mail gateway typically buffers messages on disk and is willing to try retransmitting
them to the next machine for several days, while an IP router buffers datagrams in mem-
ory and is only willing to retry transmitting them for a fraction of a second. Figure 9.1
illustrates a two-hop path from the sender to the receiver.

Why, you might ask, are mail gateways necessary? Why can’t the sender’s host
send the message to the receiver’s host? One reason is that the recipient does not
want to include the specific host on which he reads email in his address. For exam-
ple, mail delivered to Bob@cs.princeton.edu is first sent to a mail gateway in
the CS Department at Princeton (that is, to the host named cs.princeton.edu),
and then forwarded—involving a second SMTP/TCP connection—to the specific ma-
chine on which Bob happens to be reading his email today. The forwarding gate-
way maintains a database that maps users into the machine on which they currently



9.1 Traditional Applications 647

Figure 9.1 Sequence of mail gateways store and forward email messages.

want to receive their mail; the sender need not be aware of this specific name. (The
list of Received: header lines in the message will help you trace the mail gateways
that a given message traversed.) Another reason is that the recipient’s machine may
not always be up, in which case the mail gateway holds the message until it can be
delivered.

Independent of how many mail gateways are in the path, an independent SMTP
connection is used between each host to move the message closer to the recipient. Each
SMTP session involves a dialog between the two mail daemons, with one acting as the
client and the other acting as the server. Multiple messages might be transferred between
the two hosts during a single session. Since RFC 822 defines messages using ASCII as
the base representation, it should come as no surprise to learn that SMTP is also ASCII-
based. This means it is possible for a human at a keyboard to pretend to be an SMTP
client program.

SMTP is best understood by a simple example. The following is an exchange be-
tween sending host cs.princeton.edu and receiving host cisco.com. In this case,
user Bob at Princeton is trying to send email to users Alice and Tom at Cisco. The lines
sent by cs.princeton.edu are shown in black and the lines sent by cisco.com are
shown in green. Extra blank lines have been added to make the dialog more readable.

HELO cs.princeton.edu
250 Hello daemon@mail.cs.princeton.edu [128.12.169.24]

MAIL FROM:<Bob@cs.princeton.edu>
250 OK

RCPT TO:<Alice@cisco.com>
250 OK
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RCPT TO:<Tom@cisco.com>
550 No such user here

DATA
354 Start mail input; end with <CRLF>.<CRLF>
Blah blah blah...
...etc. etc. etc.
<CRLF>.<CRLF>
250 OK

QUIT
221 Closing connection

As you can see, SMTP involves a sequence of exchanges between the client and
the server. In each exchange, the client posts a command (e.g., HELO, MAIL, RCPT,
DATA, QUIT) and the server responds with a code (e.g., 250, 550, 354, 221). The
server also returns a human-readable explanation for the code (e.g., No such user
here). In this particular example, the client first identifies itself to the server with the
HELO command. It gives its domain name as an argument. The server verifies that this
name corresponds to the IP address being used by the TCP connection; you’ll notice
the server states this IP address back to the client. The client then asks the server if it is
willing to accept mail for two different users; the server responds by saying “yes” to one
and “no” to the other. Then the client sends the message, which is terminated by a line
with a single period (“.”) on it. Finally, the client terminates the connection.

There are, of course, many other commands and return codes. For example, the
server can respond to a client’s RCPT command with a 251 code, which indicates that
the user does not have a mailbox on this host, but that the server promises to forward
the message onto another mail daemon. In other words, the host is functioning as a mail
gateway. As another example, the client can issue a VRFY operation to verify a user’s
email address, but without actually sending a message to the user.

The only other point of interest is the arguments to the MAIL and RCPT oper-
ations; for example, FROM:<Bob@cs.princeton.edu> and TO:<Alice@cisco.
com>, respectively. These look a lot like 822 header fields, and in some sense, they are.
What actually happens is that the mail daemon parses the message to extract the infor-
mation it needs to run SMTP. The information it extracts is said to form an envelope for
the message. The SMTP client uses this envelope to parameterize its exchange with the
SMTP server. One historical note: The reason sendmail became so popular is that no
one wanted to reimplement this message parsing function. While today’s email addresses
look pretty tame (e.g., Bob@cs.princeton.edu), this was not always the case. In the
days before everyone was connected to the Internet, it was not uncommon to see email
addresses of the form user%host@site!neighbor.
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Mail Reader

The final step is for the user to actually retrieve her messages from the mailbox, read
them, reply to them, and possibly save a copy for future reference. The user performs
all these actions by interacting with a mail reader. In many cases, this reader is just a
program running on the same machine as the user’s mailbox resides, in which case it
simply reads and writes the file that implements the mailbox. In other cases, the user
accesses her mailbox from a remote machine using yet another protocol, such as the Post
Office Protocol (POP) or the Internet Message Access Protocol (IMAP). It is beyond
the scope of this book to discuss the user interface aspects of the mail reader, but it
is definitely within our scope to talk about the access protocol. We consider IMAP, in
particular.

IMAP is similar to SMTP in many ways. It is a client/server protocol running
over TCP, where the client (running on the user’s desktop machine) issues commands
in the form of <CRLF> terminated ASCII text lines and the mail server (running
on the machine that maintains the user’s mailbox) responds in-kind. The exchange be-
gins with the client authenticating herself, and identifying the mailbox she wants to
access. This can be represented by the simple state transition diagram shown in Fig-
ure 9.2. In this diagram, LOGIN, AUTHENTICATE, SELECT, EXAMINE, CLOSE,
and LOGOUT are example commands that the client can issue, while OK is one pos-
sible server response. Other common commands include FETCH, STORE, DELETE,
and EXPUNGE, with the obvious meanings. Additional server responses include NO
(client does not have permission to perform that operation) and BAD (command is ill-
formed).

When the user asks to FETCH a message, the server returns it in MIME format
and the mail reader decodes it. In addition to the message itself, IMAP also defines a
set of message attributes that are exchanged as part of other commands, independent of
transferring the message itself. Message attributes include information like the size of
the message, but more interestingly, various flags associated with the message, such as
Seen, Answered, Deleted, and Recent. These flags are used to keep the client and
server synchronized, that is, when the user deletes a message in the mail reader, the client
needs to report this fact to the mail server. Later, should the user decide to expunge all
deleted messages, the client issues an EXPUNGE command to the server, which knows
to actually remove all earlier deleted messages from the mailbox.

Finally, note that when the user replies to a message, or sends a new message, the
mail reader does not forward the message from the client to the mail server using IMAP,
but it instead uses SMTP. This means that the user’s mail server is effectively the first
mail gateway traversed along the path from the desktop to the recipient’s mailbox.
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Figure 9.2 IMAP state transition diagram.

9.1.2 World Wide Web (HTTP)
The World Wide Web has been so successful and has made the Internet accessible to so
many people that sometimes it seems to be synonymous with the Internet. One helpful
way to think of the Web is as a set of cooperating clients and servers, all of whom speak
the same language: HTTP. Most people are exposed to the Web through a graphical
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Figure 9.3 The Firefox web browser.

client program, or web browser, like Netscape, Firefox, or Explorer. Figure 9.3 shows the
Firefox browser in use, displaying a page of information from Princeton University.

Any web browser has a function that allows the user to open a URL. URLs provide
information about the location of objects on the Web; they look like the following:

http://www.cs.princeton.edu/index.html

If you opened that particular URL, your web browser would open a TCP connection to
the web server at a machine called www.cs.princeton.edu and immediately retrieve
and display the file called index.html. Most files on the Web contain images and text,
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and some have other objects such as audio and video clips. They also include URLs
that point to other files, and your web browser will have some way in which you can
recognize URLs and ask the browser to open them. These embedded URLs are called
hypertext links. When you ask your web browser to open one of these embedded URLs
(e.g., by pointing and clicking on it with a mouse), it will open a new connection and
retrieve and display a new file. This is called “following a link.” It thus becomes very easy
to hop from one machine to another around the network, following links to all sorts of
information.

When you select to view a page, your browser (the client) fetches the page from the
server using HTTP running over TCP. Like SMTP, HTTP is a text-oriented protocol.
At its core, each HTTP message has the general form

START_LINE <CRLF>
MESSAGE_HEADER <CRLF>
<CRLF>
MESSAGE_BODY <CRLF>

where as before, <CRLF> stands for carriage-return-line-feed. The first line
(START_LINE) indicates whether this is a request message or a response message. In ef-
fect, it identifies the “remote procedure” to be executed (in the case of a request message),
or the “status” of the request (in the case of a response message). The next set of lines
specify a collection of options and parameters that qualify the request or response. There
are zero or more of these MESSAGE_HEADER lines—the set is terminated by a blank
line—each of which looks like a header line in an email message. HTTP defines many
possible header types, some of which pertain to request messages, some to response mes-
sages, and some to the data carried in the message body. Instead of giving the full set of
possible header types, though, we just give a handful of representative examples. Finally,
after the blank line comes the contents of the requested message (MESSAGE_BODY);
this part of the message is typically empty for request messages.

Request Messages

The first line of an HTTP request message specifies three things: the operation to be per-
formed, the web page the operation should be performed on, and the version of HTTP
being used. Although HTTP defines a wide assortment of possible request operations—
including “write” operations that allow a web page to be posted on a server—the two
most common operations are GET (fetch the specified web page) and HEAD (fetch sta-
tus information about the specified web page). The former is obviously used when your
browser wants to retrieve and display a web page. The latter is used to test the validity
of a hypertext link or to see if a particular page has been modified since the browser last
fetched it. The full set of operations is summarized in Table 9.1.
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Operation Description

OPTIONS Request information about available options

GET Retrieve document identified in URL

HEAD Retrieve metainformation about document identified in URL

POST Give information (e.g., annotation) to server

PUT Store document under specified URL

DELETE Delete specified URL

TRACE Loopback request message

CONNECT For use by proxies

Table 9.1 HTTP request operations.

For example, the START_LINE

GET http://www.cs.princeton.edu/index.html
HTTP/1.1

says that the client wants the server on host www.cs.princeton.edu to return the
page named index.html. This particular example uses an absolute URL. It is also
possible to use a relative identifier and specify the host name in one of the MES-
SAGE_HEADER lines; for example,

GET index.html HTTP/1.1
Host: www.cs.princeton.edu

Here, Host is one of the possible MESSAGE_HEADER fields. One of the more in-
teresting of these is If-Modified-Since, which gives the client a way to conditionally
request a web page—the server returns the page only if it has been modified since the
time specified in that header line.

Response Messages

Like request messages, response messages begin with a single START_LINE. In this case,
the line specifies the version of HTTP being used, a three-digit code indicating whether
or not the request was successful, and a text string giving the reason for the response. For
example, the START_LINE

HTTP/1.1 202 Accepted

indicates that the server was able to satisfy the request, while
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Code Type Example Reasons

1xx Informational Request received, continuing process

2xx Success Action successfully received, understood, and accepted

3xx Redirection Further action must be taken to complete the request

4xx Client error Request contains bad syntax or cannot be fulfilled

5xx Server error Server failed to fulfill an apparently valid request

Table 9.2 Five types of HTTP result codes.

HTTP/1.1 404 Not Found

indicates that it was not able to satisfy the request because the page was not found. There
are five general types of response codes, with the first digit of the code indicating its type.
Table 9.2 summarizes the five types of codes.

Also similar to request messages, response messages can contain one or more
MESSAGE_HEADER lines. These lines relay additional information back to the
client. For example, the Location header line specifies that the requested URL is avail-
able at another location. Thus, if the Princeton CS Department web page had moved
from http://www.cs.princeton.edu/index.html to http://www.princeton.
edu/cs/index.html, for example, then the server at the original address might respond
with

HTTP/1.1 301 Moved Permanently
Location: http://www.princeton.edu/cs/index.html

In the common case, the response message will also carry the requested page. This
page is an HTML document, but since it may carry nontextual data (e.g., a GIF image),
it is encoded using MIME (see Section 9.1.1). Certain MESSAGE_HEADER lines
give attributes of the page contents, including Content-Length (number of bytes in
the contents), Expires (time at which the contents are considered stale), and Last-
Modified (time at which the contents were last modified at the server).

Uniform Resource Identifiers

The URLs that HTTP uses as addresses are one type of uniform resource identifier (URI).
A URI is a character string that identifies a resource, where a resource can be anything
that has identity, such as a document, an image, or a service.

The format of URIs allows various more-specialized kinds of resource identifiers
to be incorporated into the URI space of identifiers. The first part of a URI is a scheme
that names a particular way of identifying a certain kind of resource, such as mailto for
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email addresses or file for file names. The second part of a URI, separated from the first
part by a colon, is the scheme-specific part. It is a resource identifier consistent with the
scheme in the first part, as in the URIs

mailto:santa@northpole.org

and

file:///C:/foo.html

A resource doesn’t have to be retrievable or accessible. Even human beings and
corporations can be resources. A more concrete example is the mid scheme for message
IDs. Hence, URIs are not always some kind of address for locating the resource; they can
be purely identifiers. Furthermore, a URI qualifies as a URL only if it is intended to be
used to locate the resource. Even if a particular URI appears to be an address, such as a
URI that uses the http scheme, the URI is not considered a URL unless it is intended
to be used to locate the resource. For example, XML namespaces (Section 7.1.3) are
identified by URIs that use the http scheme but are nonetheless not URLs since there is
no requirement that the URI give the location of any resource related to the namespace.

TCP Connections

The original version of HTTP (1.0) established a separate TCP connection for each data
item retrieved from the server. It’s not too hard to see how this was a very inefficient
mechanism: connection setup and teardown messages had to be exchanged between the
client and server even if all the client wanted to do was verify that it had the most recent
copy of a page. Thus, retrieving a page that included some text and a dozen icons or
other small graphics would result in 13 separate TCP connections being established and
closed.

The most important improvement in the latest version of HTTP (1.1) is to allow
persistent connections—the client and server can exchange multiple request/response mes-
sages over the same TCP connection. Persistent connections have two advantages. First,
they obviously eliminate the connection setup overhead, thereby reducing the load on
the server, the load on the network caused by the additional TCP packets, and the delay
perceived by the user. Second, because a client can send multiple request messages down
a single TCP connection, TCP’s congestion window mechanism is able to operate more
efficiently. This is because it’s not necessary to go through the slow start phase for each
page.

Persistent connections do not come without a price, however. The problem is that
neither the client nor server necessarily knows how long to keep a particular TCP con-
nection open. This is especially critical on the server, which might be asked to keep
connections opened on behalf of thousands of clients. The solution is that the server
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must time out and close a connection if it has received no requests on the connection
for a period of time. Also, both the client and server must watch to see if the other side
has elected to close the connection, and they must use that information as a signal that
they should close their side of the connection as well. (Recall that both sides must close
a TCP connection before it is fully terminated.)

Caching

One of the most active areas of research (and entrepreneurship) in the Internet today
is how to effectively cache web pages. Caching has many benefits. From the client’s
perspective, a page that can be retrieved from a nearby cache can be displayed much more
quickly than if it has to be fetched from across the world. From the server’s perspective,
having a cache intercept and satisfy a request reduces the load on the server.

Caching can be implemented in many different places. For example, a user’s
browser can cache recently accessed pages, and simply display the cached copy if the
user visits the same page again. As another example, a site can support a single site-wide
cache. This allows users to take advantage of pages previously downloaded by other users.
Closer to the middle of the Internet, ISPs can cache pages. Note that in the second case,
the users within the site most likely know what machine is caching pages on behalf of the
site, and they configure their browsers to connect directly to the caching host. This node
is sometimes called a proxy. In contrast, the sites that connect to the ISP are probably not
aware that the ISP is caching pages. It simply happens to be the case that HTTP requests
coming out of the various sites pass through a common ISP router. This router can peek
inside the request message and look at the URL for the requested page. If it has the page
in its cache, it returns it. If not, it forwards the request to the server and watches for the
response to fly by in the other direction. When it does, the router saves a copy in the
hope that it can use it to satisfy a future request.

No matter where pages are cached, the ability to cache web pages is important
enough that HTTP has been designed to make the job easier. The trick is that the
cache needs to make sure it is not responding with an out-of-date version of the page.
For example, the server assigns an expiration date (the Expires header field) to each
page it sends back to the client (or to a cache between the server and client). The cache
remembers this date and knows that it need not reverify the page each time it is requested
until after that expiration date has passed. After that time (or if that header field is not set)
the cache can use the HEAD or conditional GET operation (GET with If-Modified-
Since header line) to verify that it has the most recent copy of the page. More generally,
there are a set of “cache directives” that must be obeyed by all caching mechanisms along
the request/response chain. These directives specify whether or not a document can be
cached, how long it can be cached, how fresh a document must be, and so on.
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9.1.3 Name Service (DNS)
In most of this book, we have been using addresses to identify hosts. While perfectly
suited for processing by routers, addresses are not exactly user friendly. It is for this
reason that a unique name is also typically assigned to each host in a network. Al-
ready in this section we have seen application protocols like HTTP using names such
as www.princeton.edu. We now describe how a naming service can be developed
to map user-friendly names into router-friendly addresses. Name services are some-
times called middleware because they fill a gap between applications and the underlying
network.

Host names differ from host addresses in two important ways. First, they are usually
of variable length and mnemonic, thereby making them easier for humans to remember.
(In contrast, fixed-length numeric addresses are easier for routers to process.) Second,
names typically contain no information that helps the network locate (route packets
toward) the host. Addresses, in contrast, sometimes have routing information embedded
in them; flat addresses (those not divisible into component parts) are the exception.

Before getting into the details of how hosts are named in a network, we first in-
troduce some basic terminology. First, a namespace defines the set of possible names.
A namespace can be either flat (names are not divisible into components), or it can be
hierarchical (Unix file names are an obvious example). Second, the naming system main-
tains a collection of bindings of names to values. The value can be anything we want
the naming system to return when presented with a name; in many cases it is an ad-
dress. Finally, a resolution mechanism is a procedure that, when invoked with a name,
returns the corresponding value. A name server is a specific implementation of a resolu-
tion mechanism that is available on a network and that can be queried by sending it a
message.

Because of its large size, the Internet has a particularly well-developed naming sys-
tem in place—the domain name system (DNS). We therefore use DNS as a framework
for discussing the problem of naming hosts. Note that the Internet did not always use
DNS. Early in its history, when there were only a few hundred hosts on the Internet, a
central authority called the Network Information Center (NIC) maintained a flat table
of name-to-address bindings; this table was called hosts.txt. Whenever a site wanted
to add a new host to the Internet, the site administrator sent email to the NIC giving
the new host’s name/address pair. This information was manually entered into the table,
the modified table was mailed out to the various sites every few days, and the system
administrator at each site installed the table on every host at the site. Name resolution
was then simply implemented by a procedure that looked up a host’s name in the local
copy of the table and returned the corresponding address.

It should come as no surprise that the hosts.txt approach to naming did not
work well as the number of hosts in the Internet started to grow. Therefore, in the
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Figure 9.4 Names translated into addresses, where the numbers 1–5 show the

sequence of steps in the process.

mid-1980s, the domain naming system was put into place. DNS employs a hierarchical
namespace rather than a flat namespace, and the “table” of bindings that implements this
namespace is partitioned into disjoint pieces and distributed throughout the Internet.
These subtables are made available in name servers that can be queried over the network.

What happens in the Internet is that a user presents a host name to an application
program (possibly embedded in a compound name such as an email address or URL),
and this program engages the naming system to translate this name into a host address.
The application then opens a connection to this host by presenting some transport pro-
tocol (e.g., TCP) with the host’s IP address. This situation is illustrated (in the case of
sending email) in Figure 9.4.

Domain Hierarchy

DNS implements a hierarchical namespace for Internet objects. Unlike Unix file names,
which are processed from left to right with the naming components separated with
slashes, DNS names are processed from right to left and use periods as the separator.
(Although they are processed from right to left, humans still “read” domain names from
left to right.) An example domain name for a host is cicada.cs.princeton.edu. No-
tice that we said domain names are used to name Internet objects. What we mean by this
is that DNS is not strictly used to map host names into host addresses. It is more accurate
to say that DNS maps domain names into values. For the time being, we assume that
these values are IP addresses; we will come back to this issue later in this section.

Like the Unix file hierarchy, the DNS hierarchy can be visualized as a tree, where
each node in the tree corresponds to a domain, and the leaves in the tree correspond to
the hosts being named. Figure 9.5 gives an example of a domain hierarchy. Note that
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Figure 9.5 Example of a domain hierarchy.

we should not assign any semantics to the term “domain” other than that it is simply a
context in which additional names can be defined.

There was actually a substantial amount of discussion that took place when the
domain name hierarchy was first being developed as to what conventions would govern
the names that were to be handed out near the top of the hierarchy. Without going
into that discussion in any detail, notice that the hierarchy is not very wide at the first
level. There are domains for each country, plus the “big six” domains: .edu, .com,
.gov, .mil, .org, and .net. These six domains were all originally based in the United
States (where the Internet and DNS were invented); for example, only U.S.-accredited
educational institutions can register a .edu domain name. Recently the number of top-
level domains has been expanded, partly to deal with the high demand for .com domains
names. The new top-level domains include .biz, .coop and .info.

Name Servers
The complete domain name hierarchy exists only in the abstract. We now turn our
attention to the question of how this hierarchy is actually implemented. The first step is
to partition the hierarchy into subtrees called zones. For example, Figure 9.6 shows how
the hierarchy given in Figure 9.5 might be divided into zones. Each zone can be thought
of as corresponding to some administrative authority that is responsible for that portion
of the hierarchy. For example, the top level of the hierarchy forms a zone that is managed
by the Internet Corporation for Assigned Names and Numbers (ICANN). Below this
is a zone that corresponds to Princeton University. Within this zone, some departments
do not want the responsibility of managing the hierarchy (and so they remain in the
university-level zone), while others, like the Department of Computer Science, manage
their own department-level zone.

The relevance of a zone is that it corresponds to the fundamental unit of imple-
mentation in DNS—the name server. Specifically, the information contained in each
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Figure 9.6 Domain hierarchy partitioned into zones.

Figure 9.7 Hierarchy of name servers.

zone is implemented in two or more name servers. Each name server, in turn, is a pro-
gram that can be accessed over the Internet. Clients send queries to name servers, and
name servers respond with the requested information. Sometimes the response contains
the final answer that the client wants, and sometimes the response contains a pointer to
another server that the client should query next. Thus, from an implementation perspec-
tive, it is more accurate to think of DNS as being represented by a hierarchy of name
servers rather than by a hierarchy of domains, as illustrated in Figure 9.7.

Note that each zone is implemented in two or more name servers for the sake of
redundancy, that is, the information is still available even if one name server fails. On
the flip side, a given name server is free to implement more than one zone.
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Each name server implements the zone information as a collection of resource
records. In essence, a resource record is a name-to-value binding, or more specifically,
a 5-tuple that contains the following fields:

〈 Name, Value, Type, Class, TTL 〉
The Name and Value fields are exactly what you would expect, while the Type field
specifies how the Value should be interpreted. For example, Type = A indicates that
the Value is an IP address. Thus, A records implement the name-to-address mapping
we have been assuming. Other record types include

■ NS: The Value field gives the domain name for a host that is running a name
server that knows how to resolve names within the specified domain.

■ CNAME: The Value field gives the canonical name for a particular host; it is
used to define aliases.

■ MX: The Value field gives the domain name for a host that is running a mail
server that accepts messages for the specified domain.

The Class field was included to allow entities other than the NIC to define useful record
types. To date, the only widely used Class is the one used by the Internet; it is denoted
IN. Finally, the TTL field shows how long this resource record is valid. It is used by
servers that cache resource records from other servers; when the TTL expires, the server
must evict the record from its cache.

To better understand how resource records represent the information in the domain
hierarchy, consider the following examples drawn from the domain hierarchy given in
Figure 9.5. To simplify the example, we ignore the TTL field and we give the relevant
information for only one of the name servers that implement each zone.

First, a root name server contains an NS record for each top-level domain (TLD)
name server. This identifies a server that can resolve queries for this part of the DNS
hierarchy (.edu and .com in this example). It also has A records that translates these
names into the corresponding IP addresses. Taken together, these two records effectively
implement a pointer from the root name server to one of the TLD servers.

〈 edu, a3.nstld.com, NS, IN 〉
〈 a3.nstld.com, 192.5.6.32, A, IN 〉
〈 com, a.gtld-servers.net, NS, IN 〉
〈 a.gtld-servers.net, 192.5.6.30, A, IN 〉
...
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Moving our way down the hierarchy by one level, the a3.nstld.com server has
records for .edu domains like this:

〈 princeton.edu, dns.princeton.edu, NS, IN 〉
〈 dns.princeton.edu, 128.112.129.15, A, IN 〉
...

In this case, we get an NS record and an A record for the name server that is respon-
sible for the princeton.edu part of the hierarchy. That server might be able to di-
rectly resolve some queries (e.g., for email.princeton.edu) while it would redirect
others to a server at yet another layer in the hierarchy (e.g., for a query about pen-
guins.cs.princeton.edu):

〈 email.princeton.edu, 128.112.198.35, A, IN 〉
〈 penguins.cs.princeton.edu, dns1.cs.princeton.edu, NS, IN 〉
〈 dns1.cs.princeton.edu, 128.112.136.10, A, IN 〉
...

Finally, a third-level name server, such as the one managed by domain
cs.princeton.edu, contains A records for all of its hosts. It might also define a set
of aliases (CNAME records) for each of those hosts. Aliases are sometimes just conve-
nient (e.g., shorter) names for machines, but they can also be used to provide a level
of indirection. For example, www.cs.princeton.edu is an alias for the host named
coreweb.cs.princeton.edu. This allows the site’s web server to move to another
machine without affecting remote users; they simply continue to use the alias without
regard for what machine currently runs the domain’s web server. The mail exchange
(MX) records serve the same purpose for the email application—it allows an adminis-
trator to change which host receives mail on behalf of the domain without having to
change everyone’s email address.

〈 penguins.cs.princeton.edu, 128.112.155.166,A, IN 〉
〈 www.cs.princeton.edu, coreweb.cs.princeton.edu, CNAME, IN 〉
〈 coreweb.cs.princeton.edu, 128.112.136.35, A, IN 〉
〈 cs.princeton.edu, mail.cs.princeton.edu, MX, IN 〉
〈 mail.cs.princeton.edu, 128.112.136.72, A, IN 〉
...

Note that although resource records can be defined for virtually any type of object,
DNS is typically used to name hosts (including servers) and sites. It is not used to name
individual people, or other objects like files or directories; other naming systems are
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typically used to identify such objects. For example, X.500 is an ISO naming system
designed to make it easier to identify people. It allows you to name a person by giving a
set of attributes: name, title, phone number, postal address, and so on. X.500 proved too
cumbersome—and in some sense, was usurped by powerful search engines now available
on the Web—but it did eventually evolve into the Lightweight Directory Access Protocol
(LDAP). LDAP is a subset of X.500 originally designed as a PC front end to X.500.
Today it is gaining in popularity, mostly at the enterprise level, as a system for learning
information about users.

Naming Conventions

Our description of DNS focuses on
the underlying mechanisms, that is,
how the hierarchy is partitioned over
multiple servers and how the resolu
tion process works. There is an equally
interesting, but much less technical,
issue of the conventions that are used to
decide the names to use in the mech-
anism. For example, it is by conven-
tion that all U.S. universities are under
the edu domain, while English uni-
versities are under the ac (academic)
subdomain of the uk (United King-
dom) domain. In fact, the very exis-
tence of the uk domain, rather than
a gb (Great Britain) domain, was a
source of great controversy in the early
days of DNS, since the latter does not
include Northern Ireland.

The thing to understand about
conventions is that they are sometimes
defined without anyone making an ex-
plicit decision. For example, by con-
vention a site hides the exact host
that serves as its mail exchange behind
the MX record. An alternative would
have been to adopt the convention

Name Resolution

Given a hierarchy of name servers, we
now consider the issue of how a client
engages these servers to resolve a domain
name. To illustrate the basic idea, sup-
pose the client wants to resolve the name
penguins.cs.princeton.edu relative
to the set of servers given in the previ-
ous subsection. The client could first send
a query containing this name to one of
the root servers (as we’ll see below, this
rarely happens in practice, but will suf-
fice to illustrate the basic operation for
now). The root server, unable to match
the entire name, returns the best match it
has—the NS record for edu that points
to the TLD server a3.nstld.com. The
server also returns all records that are re-
lated to this record, in this case, the A
record for a3.nstld.com. The client,
having not received the answer it was af-
ter, next sends the same query to the name
server at IP host 192.5.6.32. This server
also cannot match the whole name, and
so returns the NS and corresponding A
records for the princeton.edu domain.
Once again, the client sends the same
query as before to the server at IP host
128.112.129.15, and this time gets back
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the NS record and corresponding A record
for the cs.princeton.edu domain. This
time, the server that can fully resolve the
query has been reached. A final query to
the server at 128.112.136.10 yields the
A record for penguins.cs.princeton.
edu and the client learns that the cor-
responding IP address is 128.112.155.
166.

This example still leaves a couple
of questions about the resolution process
unanswered. The first question is, “How
did the client locate the root server in the
first place?” or said another way, “How
do you resolve the name of the server
that knows how to resolve names?” This
is a fundamental problem in any nam-
ing system, and the answer is that the
system has to be bootstrapped in some
way. In this case, the name-to-address
mapping for one or more root servers is
well known, that is, published through
some means outside the naming system
itself.

In practice, however, not all clients

of sending mail to user@mail.cs.
princeton.edu, much as we ex-
pect to find a site’s public FTP
directory at ftp.cs.princeton.edu
and its WWW server at www.cs.
princeton.edu.

Conventions also exist at the lo-
cal level, where an organization names
its machines according to some con-
sistent set of rules. Given that the
host names venus, saturn, and
mars are among the most popu-
lar in the Internet, it’s not too hard
to figure out one common naming
convention. Some host naming con-
ventions are more imaginative, how-
ever. For example, one site named its
machines up, down, crashed, re-
booting, and so on, resulting in con-
fusing statements like “rebooting has
crashed” and “up is down.” Of course,
there are also less imaginative names,
such as those who name their ma-
chines after the integers.

know about the root servers. Instead, the client program running on each Inter-
net host is initialized with the address of a local name server. For example, all the
hosts in the Department of Computer Science at Princeton know about the server on
dns1.cs.princeton.edu. This local name server, in turn, has resource records for one
or more of the root servers, for example:

〈 ‘root’, a.root-servers.net, NS, IN 〉
〈 a.root-servers.net, 198.41.0.4, A, IN 〉

Thus, resolving a name actually involves a client querying the local server, which in turn
acts as a client that queries the remote servers on the original client’s behalf. This results
in the client/server interactions illustrated in Figure 9.8. One advantage of this model is
that all the hosts in the Internet do not have to be kept up to date on where the current
root servers are located; only the servers have to know about the root. A second advantage
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Figure 9.8 Name resolution in practice, where the numbers 1–10 show the sequence

of steps in the process.

is that the local server gets to see the answers that come back from queries that are posted
by all the local clients. The local server caches these responses and is sometimes able to
resolve future queries without having to go out over the network. The TTL field in the
resource records returned by remote servers indicates how long each record can be safely
cached. This caching mechanism can be used further up the hierarchy as well, reducing
the load on the root and TLD servers.

The second question is how the system works when a user submits a partial name
(e.g., penguins) rather than a complete domain name (e.g., penguins.cs.princeton.
edu). The answer is that the client program is configured with the local domain in which
the host resides (e.g., cs.princeton.edu) and it appends this string to any simple names
before sending out a query.▲

Just to make sure we are clear, we have now seen three different levels of
identifiers—domain names, IP addresses, and physical network addresses—and the map-
ping of identifiers at one level into identifiers at another level happens at different points
in the network architecture. First, users specify domain names when interacting with
the application. Second, the application engages DNS to translate this name into an IP
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address; it is the IP address that is placed in each datagram, not the domain name. (As
an aside, this translation process involves IP datagrams being sent over the Internet, but
these datagrams are addressed to a host that runs a name server, not to the ultimate des-
tination.) Third, IP does forwarding at each router, which often means that it maps one
IP address into another, that is, it maps the ultimate destination’s address into the address
for the next hop router. Finally, IP engages ARP to translate the next hop IP address into
the physical address for that machine; the next hop might be the ultimate destination
or it might be an intermediate router. Frames sent over the physical network have these
physical addresses in their headers.

9.1.4 Network Management (SNMP)
A network is a complex system, both in terms of the number of nodes that are involved
and in terms of the suite of protocols that can be running on any one node. Even if you
restrict yourself to worrying about the nodes within a single administrative domain, such
as a campus, there might be dozens of routers and hundreds—or even thousands—of
hosts to keep track of. If you think about all the state that is maintained and manipulated
on any one of those nodes—for example, address translation tables, routing tables, TCP
connection state, and so on—then it is easy to become depressed about the prospect of
having to manage all of this information.

It is easy to imagine wanting to know about the state of various protocols on dif-
ferent nodes. For example, you might want to monitor the number of IP datagram re-
assemblies that have been aborted, so as to determine if the timeout that garbage collects
partially assembled datagrams needs to be adjusted. As another example, you might want
to keep track of the load on various nodes (i.e., the number of packets sent or received) so
as to determine if new routers or links need to be added to the network. Of course, you
also have to be on the watch for evidence of faulty hardware and misbehaving software.

What we have just described is the problem of network management, an issue that
pervades the entire network architecture. Since the nodes we want to keep track of are
distributed, our only real option is to use the network to manage the network. This
means we need a protocol that allows us to read, and possibly write, various pieces of
state information on different network nodes. The most widely used protocol for this
purpose is the Simple Network Management Protocol (SNMP).

SNMP is essentially a specialized request/reply protocol that supports two kinds of
request messages: GET and SET. The former is used to retrieve a piece of state from
some node, and the latter is used to store a new piece of state in some node. (SNMP
also supports a third operation—GET-NEXT—which we explain below.) The following
discussion focuses on the GET operation, since it is the one most frequently used.

SNMP is used in the obvious way. A system administrator interacts with a client
program that displays information about the network. This client program usually has
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a graphical interface. You can think of this interface as playing the same role as a web
browser. Whenever the administrator selects a certain piece of information that he wants
to see, the client program uses SNMP to request that information from the node in
question. (SNMP runs on top of UDP.) An SNMP server running on that node receives
the request, locates the appropriate piece of information, and returns it to the client
program, which then displays it to the user.

There is only one complication to this otherwise simple scenario: Exactly how does
the client indicate which piece of information it wants to retrieve, and likewise, how does
the server know which variable in memory to read to satisfy the request? The answer is
that SNMP depends on a companion specification called the management information
base (MIB). The MIB defines the specific pieces of information—the MIB variables—
that you can retrieve from a network node.

The current version of MIB, called MIB-II, organizes variables into 10 different
groups. You will recognize that most of the groups correspond to one of the protocols
described in this book, and nearly all of the variables defined for each group should look
familiar. For example:

■ System: general parameters of the system (node) as a whole, including where the
node is located, how long it has been up, and the system’s name.

■ Interfaces: information about all the network interfaces (adaptors) attached to
this node, such as the physical address of each interface, or how many packets
have been sent and received on each interface.

■ Address translation: information about the Address Resolution Protocol (ARP),
and in particular, the contents of its address translation table.

■ IP: variables related to IP, including its routing table, how many datagrams it
has successfully forwarded, and statistics about datagram reassembly. Includes
counts of how many times IP drops a datagram for one reason or another.

■ TCP: information about TCP connections, such as the number of passive and
active opens, the number of resets, the number of timeouts, default timeout
settings, and so on. Per-connection information persists only as long as the con-
nection exists.

■ UDP: information about UDP traffic, including the total number of UDP data-
grams that have been sent and received.

There are also groups for ICMP, EGP, and SNMP itself. The tenth group is used by
different media.
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Returning to the issue of the client stating exactly what information it wants to
retrieve from a node, having a list of MIB variables is only half the battle. Two prob-
lems remain. First, we need a precise syntax for the client to use to state which of the
MIB variables it wants to fetch. Second, we need a precise representation for the values
returned by the server. Both problems are addressed using ASN.1.

Consider the second problem first. As we already saw in Chapter 7, ASN.1/BER
defines a representation for different data types, such as integers. The MIB defines the
type of each variable, and then it uses ASN.1/BER to encode the value contained in
this variable as it is transmitted over the network. As far as the first problem is con-
cerned, ASN.1 also defines an object identification scheme; this identification system is
not described in Chapter 7. The MIB uses this identification system to assign a globally
unique identifier to each MIB variable. These identifiers are given in a “dot” notation,
not unlike domain names. For example, 1.3.6.1.2.1.4.3 is the unique ASN.1 identifier
for the IP-related MIB variable ipInReceives; this variable counts the number of IP
datagrams that have been received by this node. In this example, the 1.3.6.1.2.1 prefix
identifies the MIB database (remember, ASN.1 object IDs are for all possible objects in
the world), the 4 corresponds to the IP group, and the final 3 denotes the third variable
in this group.

Thus, network management works as follows. The SNMP client puts the ASN.1
identifier for the MIB variable it wants to get into the request message, and it sends
this message to the server. The server then maps this identifier into a local variable (i.e.,
into a memory location where the value for this variable is stored), retrieves the current
value held in this variable, and uses ASN.1/BER to encode the value it sends back to the
client.

There is one final detail. Many of the MIB variables are either tables or structures.
Such compound variables explain the reason for the SNMP GET-NEXT operation. This
operation, when applied to a particular variable ID, returns the value of that variable
plus the ID of the next variable, for example, the next item in the table or the next
field in the structure. This aids the client in walking through the elements of a table or
structure.

9.2 Web Services
Most of the applications that we have examined so far involve interaction between a hu-
man and a machine. For example, a human uses a web browser to interact with a server,
and the interaction proceeds in response to input from the user (e.g., by clicking on
links). However, there is increasing demand for direct computer-to-computer interac-
tion. And just as the applications of the previous section needed protocols, so too do the
applications that communicate directly with each other. In this section we will be look-
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ing at the challenges of building large numbers of application-to-application protocols
and some of the proposed solutions.

Much of the motivation for enabling direct application-to-application communi-
cation comes from the business world. Historically, interactions between enterprises—
businesses or other organizations—have involved some manual steps such as filling out
an order form or making a phone call to determine whether some product is in stock.
Even within a single enterprise it is common to have manual steps between software
systems that cannot interact directly due to being developed independently. Increasingly
such manual interactions are being replaced with direct application-to-application inter-
action. An ordering application at enterprise A would send a message to an order fulfill-
ment application at enterprise B, which would respond immediately indicating whether
the order can be filled. Perhaps, if the order cannot be filled by B, the application at A
would immediately order from another supplier, or solicit bids from a collection of sup-
pliers. In the business world, enabling applications to interact directly with each other
is called business-to-business (B2B) integration when the applications are at different
enterprises, and enterprise application integration (EAI) when they are within the same
enterprise.

Network applications, even those that cross organization boundaries, are not
new—we have just seen some examples in the preceding section. What is new about
this problem is the scale. Not scale in the size of the network, but scale in the number
of different kinds of network applications. Both the protocols’ specifications and the im-
plementations of those protocols for traditional applications like electronic mail and file
transfer have typically been developed by a small group of networking experts. To enable
the vast number of potential EAI and B2B network applications to be developed quickly,
it was necessary to come up with some technologies that simplify and automate the task
of application protocol design and implementation.

Here is a simple example of what we are talking about. Suppose you buy a book at
an online retailer like Amazon.com. Once your book has been shipped, Amazon could
send you the tracking number in an email, and then you could head over to the website
for the shipping company—http://www.fedex.com, perhaps—and track the pack-
age. However, you can also track your package directly from the Amazon.com website.
In order to make this happen, Amazon has to be able to send a query to Fedex, in a format
that Fedex understands, and then interpret the result, and display it in a web page that
perhaps contains other information about your order. Underlying the user experience
of getting all the information about their order served up at once on the Amazon.com
web page is the fact that Amazon and Fedex had to have a protocol for exchanging the
information needed to track packages—call it the Package Tracking Protocol. It should
be clear that there are so many potential protocols of this type that we’d better have some
tools to simplify the task of specifying them and building them.
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Two architectures have been advocated as solutions to this problem. Both archi-
tectures are called Web Services, taking their name from the term for the individual ap-
plications that offer a remotely accessible service to client applications to form network
applications.1 The terms used as informal shorthand to distinguish the two Web Ser-
vices architectures are SOAP and REST (as in, “the SOAP versus REST debate”). We
will discuss the technical meanings of those terms shortly.

The SOAP architecture’s approach to the problem is to make it feasible, at least in
theory, to generate protocols that are customized to each network application—a kind
of mass customization. The key elements of that approach are a framework for pro-
tocol specification, software toolkits for automatically generating protocol implementa-
tions from the specifications, and modular partial specifications that can be reused across
protocols.

The REST architecture’s approach to the problem is to regard individual Web
Services as World Wide Web resources—identified by URIs and accessed via HTTP.
Essentially, the REST architecture is just the web architecture. The web architecture’s
strengths include stability and a demonstrated scalability (in the network-size sense). It
could be considered a weakness that HTTP is not well suited to the usual procedural or
operation-oriented style of invoking a remote service. REST advocates argue, however,
that rich services can nonetheless be exposed using a more data-oriented or document-
passing style to which HTTP is well-suited.

Although both architectures are being actively adopted, they are still new enough
that we don’t yet have much empirical data about their real-world use. The way this
competition plays out may teach us something profound about networking applications.
One architecture may come to dominate, or they may merge in some way, or we may
find that one architecture is better suited to certain kinds of applications while the other
architecture is better for others.

9.2.1 Custom Application Protocols (WSDL, SOAP)
The architecture informally referred to as SOAP is based on Web Services Description
Language (WSDL) and SOAP.2 Both of these standards are issued by the World Wide
Web Consortium (W3C). This is the architecture that people usually mean when they
use the term Web Services. As these standards are still evolving rapidly, our discussion
here is effectively a snapshot.

WSDL and SOAP are frameworks for specifying and implementing application
protocols and transport protocols, respectively. They are generally used together, al-
though WSDL can be used to specify an application protocol that uses a transport

1The name Web Services is unfortunately so generic-sounding that many mistakenly assume that it includes any sort of
service associated with the Web.
2Although the name SOAP originated as an acronym, it officially no longer stands for anything.
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protocol not specified using SOAP, and a SOAP-based protocol can transport a non-
WSDL application protocol. WSDL is used to specify application-specific details such
as what operations are supported, the formats of the application data to invoke or re-
spond to those operations, and whether an operation involves a response. SOAP’s role is
to make it easy to define a transport protocol with exactly the desired semantics regarding
protocol features such as reliability and security.

Both WSDL and SOAP consist primarily of a protocol specification language. Both
languages are based on XML (Section 7.1.3) with an eye toward making specifications
accessible to software tools such as stub compilers and directory services. In a world
of many custom protocols, support for automating generation of implementations is
crucial to avoid the effort of manually implementing each protocol. Support software
generally takes the form of toolkits and application servers developed by third-party
vendors, which allows developers of individual web services to focus more on the business
problem they need to solve (such as tracking the package purchased by a customer).

Defining Application Protocols

WSDL has chosen a procedural operation model of application protocols. An abstract
web service interface consists of a set of named operations, each representing a simple
interaction between a client and the web service. An operation is analogous to a remotely
callable procedure in an RPC system. An example from W3C’s WSDL Primer is a hotel
reservation web service with two operations, CheckAvailability and MakeReservation.

Each operation specifies a message exchange pattern (MEP) that gives the sequence
in which the messages are to be transmitted, including the fault messages to be sent
when an error disrupts the message flow. Several MEPs are predefined, and new custom
MEPs can be defined, but it appears that in practice only two MEPs are being used:
In-Only (a single message from client to service) and In-Out (a request from client and
a corresponding reply from service). These patterns should be very familiar, and suggest
that the costs of supporting MEP flexibility perhaps outweigh the benefits.

MEPs are templates that have placeholders instead of specific message types or
formats, so part of the definition of an operation involves specifying which message
formats to map into the placeholders in the pattern. Message formats are not defined at
the bit-level that is typical of protocols we have discussed. They are instead defined as an
abstract data model using XML Schema (Section 7.1.3). XML Schema provides a set of
primitive data types and ways to define compound data types. Data that conforms to an
XML Schema-defined format—its abstract data model—can be concretely represented
using XML, or it can use another representation, such as the “binary” representation Fast
Infoset.

WSDL nicely separates the parts of a protocol that can be specified abstractly—
operations, MEPs, abstract message formats—from the parts that must be concrete.
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WSDL’s concrete part specifies an underlying protocol, how MEPs are mapped onto
it, and what bit-level representation is used for messages on the wire. This part of a spec-
ification is known as a binding, although it is better described as an implementation,
or a mapping onto an implementation. WSDL has predefined bindings for HTTP and
SOAP-based protocols, with parameters that allow the protocol designer to fine-tune
the mapping onto those protocols. There is a framework for defining new bindings, but
SOAP protocols dominate.

WSDL allows multiple bindings to be defined for the same abstract web service.
An instance of an abstract web service could be accessible via multiple bindings, or there
could even be two instances of the same abstract web service that are accessible only via
different bindings. Hence, in order to access a particular web service instance, a client
must know not just the address, but also the binding—and the type of address will
depend on the binding. The binding is effectively part of the address. This somewhat
complicates the naming of web services. WSDL helps with this by going beyond its role
as a specification language to also provide language for expressing both the bindings and
the addresses of particular web services instances.

A crucial aspect of how WSDL mitigates the problem of specifying large numbers
of protocols is through reuse of what are essentially specification modules. The WSDL
specification of a web service may be composed of multiple WSDL documents, and
individual WSDL documents may also be used in other web service specifications. This
modularity makes it easier to develop a specification, and easier to ensure that, if two
specifications are supposed to have some elements that are identical (for example, so that
they can be supported by the same tool), then those elements are indeed identical. This
modularity, together with WSDL’s defaulting rules, also helps keep specifications from
becoming overwhelmingly verbose for human protocol designers.

It works as follows. A WSDL document need not be a complete specification; it
could, for example, define a single message format, or one binding of a particular WSDL
interface. The partial specifications are uniquely identified using XML namespaces (Sec-
tion 7.1.3); each WSDL document specifies the URI of a target namespace, and any new
definitions in the document are named in the context of that namespace. One WSDL
document can incorporate components of another by including the second document
if both share the same target namespace or importing it if the target namespaces differ.
Note that such a scheme is only possible in the first place because all the protocols are
specified using the same language.

Defining Transport Protocols

Although SOAP is often called a protocol, it is better thought of as the foundation of a
family of protocols, or a framework for defining protocols. As the SOAP 1.2 specifica-
tion explains, “SOAP provides a simple messaging framework whose core functionality
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is concerned with providing extensibility.” SOAP uses many of the same strategies as
WSDL, including message formats defined using XML Schema, bindings to underlying
protocols, MEPs, and reusable specification elements identified using XML namespaces.

SOAP is used to define transport protocols with exactly the features needed to sup-
port a particular application protocol. SOAP aims to make it feasible to define many
such protocols by using reusable components. Each component captures the header in-
formation and logic that go into implementing a particular feature. To define a protocol
with a certain set of features, just compose the corresponding components. Of course it’s
not quite that simple. Let’s look more closely at this aspect of SOAP.

SOAP 1.2 introduced a feature abstraction, which the specification describes thus:
A SOAP feature is an extension of the SOAP messaging framework. Although SOAP poses
no constraints on the potential scope of such features, example features may include “relia-
bility,” “security,” “correlation,” “routing,” and message exchange patterns (MEPs) such as re-
quest/response, one-way, and peer-to-peer conversations. A SOAP feature specification must
include:

■ A URI that identifies the feature;

■ The state information and processing, abstractly described, that is required at
each SOAP node to implement the feature;

■ The information to be relayed to the next node;

■ If the feature is a MEP, the life cycle and temporal/causal relationships of the
messages exchanged (e.g., responses follow requests and are sent to the originator
of the request).

Note that this formalization of the concept of a protocol feature is rather low-level; it is
almost a design.

Given a set of features, there are two strategies for defining a SOAP protocol that
will implement them. One is by layering: binding SOAP to an underlying protocol in
such a way as to derive the features. For example, we could obtain a request-response
protocol by binding SOAP to HTTP, with a SOAP request in an HTTP request, and a
SOAP reply in an HTTP response. Because this is such a common example, it happens
that SOAP has a predefined binding to HTTP; new bindings may be defined using the
SOAP Protocol Binding Framework.

The more interesting way to implement features involves header blocks. A SOAP
message consists of an envelope, which contains a header that contains header blocks,
and a body that contains the payload destined for the ultimate receiver. This message
structure is illustrated in Figure 9.9.
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Figure 9.9 SOAP message structure.

It should be a familiar notion by now that certain header information corresponds
to particular features. A digital signature is used to implement authentication; a sequence
number is used for reliability; a checksum is used to detect message corruption. A SOAP
header block is intended to encapsulate the header information that corresponds to a
particular feature. The correspondence is not always one-to-one since multiple header
blocks could be involved in a single feature, or a single header block could be used in
multiple features. A SOAP module is a specification of the syntax and the semantics of
one or more header blocks. Each module is intended to provide one or more features,
and must declare the features it implements.

The goal behind SOAP modules is to be able to compose a protocol with a set of
features by simply including each of the corresponding module specifications. If your
protocol is required to have at-most-once semantics and authentication, include the cor-
responding modules in your specification. This represents a novel approach to modular-
izing protocol services, an alternative to the protocol layering we have seen throughout
this book. It is bit like flattening a series of protocol layers into a single protocol, but
in a structured way. It remains to be seen how well SOAP features and modules, intro-
duced in version 1.2 of SOAP, will work in practice. The main weakness of this scheme
is that modules may well interfere with each other. A module specification is required
to specify any known interactions with other SOAP modules, but clearly that doesn’t do
much to alleviate the problem. On the other hand, a core set of features and modules
that provides the most important properties may be small enough to be “well-known”
and well-understood.

Another important aspect of SOAP is that a given message may be processed by
not only a sender and a receiver, but also by SOAP-aware intermediary nodes. An inter-
mediary SOAP node may modify a message before relaying it, for example, by adding



9.2 Web Services 675

or removing a header, or encrypting or decrypting the message. An intermediary node
may even decide not to relay a message if, for example, there is a fault, or the message
fails some security requirement. This distributed processing model supports modular de-
composition of message processing, permitting the ultimate receiver, for example, to be
independent of whether it was necessary for the message to be secured.

SOAP prescribes how an intermediary node should process a given message. When
a message arrives, the node determines which SOAP roles it is to assume in processing
that message. A role, named with a URI, represents a responsibility that the node has in
processing the message, for example, verifying a security credential. There is a predefined
role next that applies to any node whenever it receives any message, whether the node
is an intermediary or the ultimate receiver. There is also a predefined role ultimateRe-
ceiver. Other roles are defined by protocol designers to support the protocol features they
require.

Each header block specifies one role. A node should only process header blocks
that specify a role assumed by the node. The header block also specifies whether or not a
node with that role is permitted to ignore that header block if the the node doesn’t have
the logic to process it. This distinguishes between critical header blocks, such as one
involved in decrypting a message, and header blocks whose absence would not interfere
with subsequent processing of the message, such as one involved in logging. If a node
doesn’t understand a header block that is mandatory for one of its roles, it must generate
a SOAP fault and not relay the message. Otherwise, of the header blocks targeted at one
of its roles, it processes all the mandatory ones and any optional ones that it understands.
If the node is not the ultimate receiver, it then forwards the message.

Standardizing Web Services Protocols

WSDL and SOAP aren’t protocols; they are standards for specifying protocols. For dif-
ferent enterprises to implement web services that interoperate with each other, it is not
enough to agree to use WSDL and SOAP to define their protocols; they must agree
on—standardize—specific protocols. For example, you could imagine that online retail-
ers and shipping companies might like to standardize a protocol by which they exchange
information, along the lines of the simple package tracking example at the start of this
section. This standardization is crucial for tool support as well as interoperability. And
yet, different network applications in this architecture must necessarily differ in at least
the message formats and operations they use.

This tension between standardization and customization is being tackled by es-
tablishing partial standards called profiles. A profile is a set of guidelines that narrow or
constrain choices available in WSDL, SOAP, and other standards that may be referenced
in defining a protocol. They may at the same time resolve ambiguities or gaps in those
standards. In practice, a profile often formalizes an emerging de facto standard.
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The broadest and most widely adopted profile is known as the WS-I Basic Profile.
It was proposed by the Web Services Interoperability Organization (WS-I), an industry
consortium, while WSDL and SOAP are specified by the World Wide Web Consortium
(W3C). The Basic Profile resolves some of the most basic choices faced in defining a web
service. Most notably it requires that WSDL be bound exclusively to SOAP, and SOAP
be bound exclusively to HTTP and use the HTTP POST method. It also specifies which
versions of WSDL and SOAP must be used. Alas, those versions are already out of date;
such are the challenges of new technology. Efforts to standardize protocols based on the
rapidly evolving WSDL and SOAP standards risks entrenching immature versions of
those standards.

The WS-I Basic Security Profile adds security constraints to the Basic Profile by
specifying how the SSL/TLS layer (Section 8.4.3) is to be used, and requiring confor-
mance to Web Services Security (WS-Security). WS-Security specifies how to use various
existing techniques such as X.509 public-key certificates (Section 8.2.1) and Kerberos
(Section 8.3.3) to provide security features in SOAP protocols.

WS-Security is just the first of a growing suite of SOAP-level standards estab-
lished by the industry consortium Organization for the Advancement of Structured In-
formation Standards (OASIS). The standards known collectively as WS-* include WS-
Reliability, WS-ReliableMessaging, WS-Coordination, and WS-AtomicTransaction.

The Basic Profile and the Basic Security Profile are “horizontal” profiles, applicable
across application domains. “Vertical” profiles are defined for specific domains, usually
industries. Profiles have been defined for domains as diverse as healthcare data, oper-
ations support for wireless telecommunication, distributed learning, and employment
screening.

9.2.2 A Generic Application Protocol (REST)
The WSDL/SOAP Web Services architecture is based on the assumption that the best
way to integrate applications across networks is via protocols that are customized to each
application. That architecture is designed to make it practical to specify and implement
all those protocols. In contrast, the REST Web Services architecture is based on the
assumption that the best way to integrate applications across networks is by applying
the model underlying the World Wide Web architecture (Section 9.1.2). This model,
articulated by Web architect Roy Fielding, is known as REpresentational State Transfer
(REST). There is no need for a new REST architecture for web services—the existing
web architecture is suitable, although a few extensions are probably necessary. In the web
architecture, individual web services are regarded as resources identified by URIs and ac-
cessed via HTTP—a single generic application protocol with a single generic addressing
scheme.
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Where WSDL has user-defined operations, HTTP has only a small set of methods,
some of which are frequently blocked by firewalls. So how can these simple methods
provide an interface to a rich web service? By employing the REST model, in which the
complexity is shifted from the protocol to the payload. The payload is a representation
of the abstract state of a resource. For example, a GET could return a representation of
the current state of the resource, and a POST could send a representation of a desired
state of the resource.

The representation of a resource state is abstract; it need not resemble how the re-
source is actually implemented by a particular web service instance. It is not necessary to
transmit a complete resource state in each message. The size of messages can be reduced
by transmitting just the parts of a state that are of interest (e.g., just the parts that are be-
ing modified). And, because web services share a single protocol and address space with
other web resources, parts of states can be passed by reference—by URI—even when
they are other web services.

This is a sort of data-oriented or document-passing style as opposed to a pro-
cedural style. Defining an application protocol in this architecture consists of defin-
ing the document structure (i.e., the state representation). XML and the lighter-weight
JavaScript Object Notation (JSON) are the most frequently used presentation languages
(Section 7.1) for this state. Interoperability depends on agreement, between a web ser-
vice and its client, on the state representation. Of course, the same is true in the SOAP
architecture; a web service and its client have to be in agreement on payload format.
The difference is that in the SOAP architecture, interoperability additionally depends on
agreement on the protocol; in the REST architecture, the protocol is always HTTP, so
that source of interoperability problems is eliminated.

The Web already supports intermediary nodes comparable to those of SOAP. Web
proxies can enforce security or cache information. Gateways can adapt nonweb systems
to the web architecture. Although HTTP doesn’t have a role mechanism for intermedi-
aries like SOAP, its standardized parts help intermediaries interpret messages. For exam-
ple, since GET has read-only semantics, an intermediary can cache the response regard-
less of the specific application.

In contrast with WSDL/SOAP, the Web has had time for standards to stabilize and
to demonstrate that it scales very well. It also comes with some security in the form of
SSL/TLS. The Web and REST may also have an advantage in evolvability. Although
the WSDL and SOAP frameworks are highly flexible with regard to what new features
and bindings can go into the definition of a protocol, that flexibility is irrelevant once
the protocol is defined. Standardized protocols such as HTTP are designed with provi-
sion for being extended in a backward-compatible way. HTTP’s own extensibility takes
the form of headers, new methods, and new contenttypes. (Indeed, it seems likely that
HTTP will need to be extended in certain ways to support web services.) Protocol de-
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signers using WSDL/SOAP need to design such extensibility into each of their custom
protocols. Of course, the designers of state representations in a REST architecture also
have to design for evolvability.

An area where WSDL/SOAP may have an advantage is in adapting or wrapping
previously written, legacy applications to conform to web services. This is an important
point since most web services will be based on legacy applications for the near future at
least. These applications usually have a procedural interface that maps more easily into
WSDL’s operations than REST states. The REST versus WSDL/SOAP competition may
very well hinge on how easy or difficult it turns out to be to devise REST-style interfaces
for individual web services. We may find that some web services are better served by
WSDL/SOAP and others by REST.

The online retailer Amazon, as it happens, was an early adopter (2002) of web
services. Interestingly, Amazon made its systems publicly accessible via both of the web
services architectures, and about 80% of their usage over several years has been via the
REST interface. Of course this is just one data point and may well reflect factors specific
to Amazon.

9.3 Multimedia Applications
Just like the traditional applications described earlier in this chapter, multimedia appli-
cations such as audioconferencing and videoconferencing applications need their own
protocols. Much of the initial experience in designing protocols for multimedia appli-
cations came from the “MBone tools”—applications such as vat and vic that were de-
veloped for use on the MBone, an overlay network that supports IP multicast to enable
multiparty conferencing. (More on overlay networks including the MBone in the next
section.) Initially, each application implemented its own protocol (or protocols), but it
became apparent that many multimedia applications have common requirements. This
ultimately led to the development of a number of general-purpose protocols for use by
multimedia applications.

We have already seen a number of protocols that multimedia applications use.
The Real-Time Transport Protocol (RTP—described in Section 5.4) provides many of
the functions that are common to multimedia applications such as conveying timing
information and identifying the coding schemes and media types of an application.

The Resource Reservation Protocol, RSVP (see Section 6.5.2), can be used to re-
quest the allocation of resources in the network so that the desired quality of service
(QoS) can be provided to an application. We will see how resource allocation interacts
with other aspects of multimedia applications in Section 9.3.2.

In addition to these protocols for multimedia transport and resource allocation,
many multimedia applications also need a session control protocol. For example, suppose
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that we wanted to be able to make IP-based telephone calls across the Internet. We would
need some mechanism to notify the intended recipient of such a call that we wanted to
talk to her, for example, by sending a message to some multimedia device that would
cause it to make a ringing sound. We would also like to be able to support features
like call forwarding and three-way calling. The Session Initiation Protocol (SIP) and
H.323 are examples of protocols that address the issues of session control; we begin our
discussion of multimedia applications by examining these protocols.

9.3.1 Session Control and Call Control (SDP, SIP, H.323)
To understand some of the issues of session control, consider the following problem.
Suppose you want to hold a videoconference at a certain time and make it available to a
wide number of participants. Perhaps you have decided to encode the video stream using
the MPEG-2 standard, to use the multicast IP address 224.1.1.1 for transmission of the
data, and to send it using RTP over UDP port number 4000. How would you make all
that information available to the intended participants? One way would be to put all that
information in an email and send it out, but ideally there should be a standard format
and protocol for disseminating this sort of information. The IETF has a working group
(the Multiparty Multimedia Session Control group) that has defined protocols for just
this purpose. The protocols that have been defined include

■ Session Description Protocol (SDP);

■ Session Announcement Protocol (SAP);

■ Session Initiation Protocol (SIP);

■ Simple Conference Control Protocol (SCCP).

You might think that this is a lot of protocols for a seemingly simple task, but there
are many aspects of the problem and several different situations in which it must be
addressed. For example, there is a difference between announcing the fact that a certain
conference session is going to be made available on the MBone (which would be done
using SDP and SAP) and trying to make an Internet phone call to a certain user at a
particular time (which could be done using SDP and SIP). In the former case, you could
consider your job done once you have sent all the session information in a standard
format to a well-known multicast address. In the latter, you would need to locate one or
more users, get a message to them announcing your desire to talk (analogous to ringing
their phone), and perhaps negotiate a suitable audio encoding among all parties. We will
look first at SDP, which is common to many applications, then at SIP, which is becoming
widely used for a number of interactive applications such as Internet telephony.
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Session Description Protocol (SDP)

The Session Description Protocol (SDP) is a rather general protocol that can be used in
a variety of situations. It conveys the following information:

■ The name and purpose of the session;

■ Start and end times for the session;

■ The media types (e.g., audio, video) that comprise the session;

■ Detailed information needed to receive the session (e.g., the multicast address
to which data will be sent, the transport protocol to be used, the port numbers,
the encoding scheme(s)).

SDP provides this information formatted in ASCII using a sequence of lines of text,
each of the form <type>=<value>. An example of an SDP message will illustrate
the main points.

v=0
o=larry 2890844526 2890842807 IN IP4 128.112.136.10
s=Networking 101
i=A class on computer networking
u=http://www.cs.princeton.edu/
e=larry@cs.princeton.edu
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 31
m=application 32416 udp wb

Note that SDP, like HTML, is fairly easy for a human to read, but has strict for-
matting rules that make it possible for machines to interpret the data unambiguously.
For example, the SDP specification defines all the possible information “types” that are
allowed to appear, the order in which they must appear, and the format and reserved
words for every type that is defined.

The first thing to notice is that each information “type” is identified by a single
character. For example, the line v=0 tells us that “version” has the value zero (i.e., this
message is formatted according to version zero of SDP). The next line provides the “ori-
gin” of the session which contains enough information to uniquely identify the session.
larry is a username of the session creator, and 128.112.136.10 is the IP address of his
computer. The number following larry is a session identifier that is chosen to be unique
to that machine. This is followed by a “version” number for the SDP announcement; if
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Figure 9.10 A session directory tool displays information extracted from SDP

messages.

the session information was updated by a later message, the version number would be
increased.

The next three lines (s, i, and u)—the session name, a session description, and a
session URI (Uniform Resource Identifier, as described in Section 9.1.2)—all provide
information that would be helpful to a user in deciding whether to participate in this
session. Such information could be displayed in the user interface of a session directory
tool that shows current and upcoming events that have been advertised using SDP. The
next line (e=. . . ) contains an email address of a person to contact regarding the session.
Figure 9.10 shows a screen shot of a session directory tool called sdr along with the
descriptions of several sessions that had been announced at the time the picture was
taken.

Next we get to the technical details that would enable an application program to
participate in the session. The line beginning c=. . . provides the IP multicast address to
which data for this session will be sent; a user would need to join this multicast group
to receive the session. Next we see the start and end times for the session (encoded as
integers according to the Network Time Protocol). Finally, we get to the information
about the media for this session. This session has three media types available—audio,
video, and a shared whiteboard application known as wb. For each media type there is
one line of information formatted as follows:
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m=<media> <port> <transport> <format>

The media types are self-explanatory, and the port numbers in each case are UDP
ports. When we look at the transport field, we can see that the wb application runs di-
rectly over UDP, while the audio and video are transported using RTP/AVP. This means
that they run over RTP and use the application profile (as defined in Section 5.4) known
as AVP. That application profile defines a number of different encoding schemes for au-
dio and video; we can see in this case that the audio is using encoding 0 (which is an
encoding using an 8-kHz sampling rate and 8 bits per sample) and the video is using
encoding 31, which represents the H.261 encoding scheme. These “magic numbers” for
the encoding schemes are defined in the RFC that defines the AVP profile; it is also
possible to describe nonstandard coding schemes in SDP.

Finally we see a description of the wb media type. All the encoding information for
this data is specific to the wb application, and so it is sufficient just to provide the name
of the application in the format field. This is analogous to putting application/wb in
a MIME message.

Now that we know how to describe sessions, we can look at how they can be
initiated. One way in which SDP is used is to announce multimedia conferences, by
sending SDP messages to a well-known multicast address. The session directory tool
shown in Figure 9.10 would function by joining that multicast group and displaying
information that it gleans from received SDP messages.

SDP also plays an important role in conjunction with the Session Initiation Pro-
tocol (SIP). With the increased importance of voiceover IP (VOIP, i.e., the support of
telephony-like applications over IP networks), SIP has attracted a great deal of attention
and now has its own working group at the IETF. While SIP can be used for many things
other than IP telephony, that is certainly one of its driving applications.

SIP
SIP is an application-layer protocol that bears a certain resemblance to HTTP, being
based on a similar request/response model. However, it is designed with rather different
sorts of applications in mind, and thus provides quite different capabilities than HTTP.
The capabilities provided by SIP can be grouped into five categories:

■ User location: determining the correct device with which to communicate to
reach a particular user;

■ User availability: determining if the user is willing or able to take part in a
particular communication session;

■ User capabilities: determining such items as the choice of media and coding
scheme to use;
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■ Session setup: establishing session parameters such as port numbers to be used
by the communicating parties;

■ Session management: a range of functions including transferring sessions (e.g.,
to implement call forwarding) and modifying session parameters.

Most of these functions are easy enough to understand but the issue of location
bears some further discussion. One important difference between SIP and, say, HTTP,
is that SIP is primarily used for human-to-human communication. Thus, it is important
to be able to locate individual users, not just machines. And unlike email, it’s not good
enough to just locate a server that the user will be checking on at some later date and
dump the message there—we need to know where the user is right now if we want to be
able to communicate with him in real time. This is further complicated by the fact that
a user might choose to communicate using a range of different devices (e.g., using his
desktop PC when he’s in the office and using a handheld device when traveling). Multiple
devices might be active at the same time, and might have widely different capabilities
(e.g., an alphanumeric pager and a PC-based video phone). Ideally, it should be possible
for other users to be able to locate and communicate with the appropriate device at any
time. Furthermore, the user must be able to have control over when, where, and from
whom he receives calls.

To enable a user to exercise the appropriate level of control over his calls, SIP
introduces the notion of a proxy. An SIP proxy can be thought of as a point of contact
for a user to which initial requests for communication with him are sent. Proxies also
perform functions on behalf of callers. We can see how proxies work best through an
example.

Consider the two users in Figure 9.11. The first thing to notice is that each user
has a name in the format user@domain, very much like an email address. When user

Figure 9.11 Establishing communication through SIP proxies.
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Bruce wants to initiate a session with Larry, he sends his initial SIP message to the local
proxy for his domain, cisco.com. Among other things, this initial message contains a
SIP URI—these are a form of uniform resource identifier that look like this:

SIP:larry@princeton.edu

A SIP URI provides complete identification of a user, but (unlike a URL) does
not provide his location, since that may change over time. We will see shortly how the
location of a user can be determined.

Upon receiving the initial message from Bruce, the cisco.com proxy looks at the
SIP URI and deduces that this message should be sent to the princeton.edu proxy.
For now, we assume that the princeton.edu proxy has access to some database that
enables it to obtain a mapping from the name larry@princeton.edu to the IP address
of one or more devices at which Larry currently wishes to receive messages. The proxy
can therefore forward the message on to Larry’s chosen device(s). Sending the message
to more than one device is called forking, and may be done either in parallel or in series
(e.g., send it to his cellphone if he doesn’t answer the phone at his desk).

The initial message from Bruce to Larry is likely to be a SIP invite message, which
looks something like the following:

INVITE sip:larry@princeton.edu SIP/2.0
Via: SIP/2.0/UDP bsd-pc.cisco.com;branch=z9hG4bK433yte4
To: Larry <sip:larry@princeton.edu>
From: Bruce <sip:bruce@cisco.com>;tag=55123
Call-ID: xy745jj210re3@bsd-pc.cisco.com
CSeq: 271828 INVITE
Contact: <sip:bruce@bsd-pc.cisco.com>
Content-Type: application/sdp
Content-Length: 142

The first line identifies the type of function to be performed (invite); the resource
on which to perform it, that is, the called party (sip:larry@princeton.edu); and the
protocol version (2.0). The subsequent header lines probably look somewhat familiar
because of their resemblance to the header lines in an email message. SIP defines a large
number of header fields, only some of which we describe here. Note that the Via: header
in this example identifies the device from which this message originated. The Content-
Type: and Content-Length: headers describe the contents of the message following
the header, just as in a MIME-encoded email message. In this case, the content is a
Session Description Protocol (SDP) message. That message would describe such things
as the type of media (audio, video, etc.) and that Bruce would like to exchange with Larry
and other properties of the session such as codec types that he supports. Note that the
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Figure 9.12 Message flow for a basic SIP session.

Content-Type: field in SIP provides the capability to use any protocol for this purpose,
although SDP is the most common.

Returning to the example, when the invite message arrives at the cisco.com
proxy, the proxy not only forwards the message on toward princeton.edu, it also re-
sponds to the sender of the invite. Just as in HTTP, all responses have a response code,
and the organization of codes is similar to that for HTTP, as shown in Table 9.2. In
Figure 9.12 we can see a sequence of SIP messages and responses.

The first response message in this figure is the provisional response 100 trying,
which indicates that the message was received without error by the caller’s proxy. Once
the invite is delivered to Larry’s phone, it alerts Larry and responds with a 180 ringing
message. The arrival of this message at Bruce’s computer is a sign that it can generate a
ringtone. Assuming Larry is willing and able to communicate with Bruce, he could pick
up his phone, causing the message 200 OK to be sent. Bruce’s computer responds with
an ACK, and at this point media (e.g., an RTP-encapsulated audio stream) can begin
to flow between the two parties. Note that at this point the parties know each others
addresses, so the ACK can be sent directly, bypassing the proxies. At this point the proxies
are no longer involved in the call. Note that the media will therefore typically take a
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different path through the network than the original signaling messages. Furthermore,
even if one or both of the proxies were to crash at this point, the call could continue
on normally. Finally, when one party wishes to end the session, it sends a BYE message,
which elicits a 200 OK response under normal circumstances.

There are a few details that we have glossed over. One is the negotiation of session
characteristics. Perhaps Bruce would have liked to communicate using both audio and
video but Larry’s phone only supports audio. Thus, Larry’s phone would send an SDP
message in its 200 OK describing the properties of the session that will be acceptable
to Larry and the device, considering the options that were proposed in Bruce’s invite.
In this way, mutually acceptable session parameters are agreed before the media flow
starts.

The other big issue we have glossed over is that of locating the correct device for
Larry. First, Bruce’s computer had to send its invite to the cisco.com proxy. This
could have been a configured piece of information in the computer, or it could have
been learned by DHCP. Then the cisco.com proxy had to find the princeton.edu
proxy. This could be done using a special sort of DNS lookup that would return the IP
address of the SIP proxy for the princeton.edu domain. Finally, the princeton.edu
proxy had to find a device on which Larry could be contacted. Typically, a proxy server
has access to a location database that can be populated in several ways. Manual config-
uration is one option, but a more flexible option is to use the registration capabilities
of SIP.

A user can register with a location service by sending an SIP register message
to the registrar for her domain. This message creates a binding between an address of
record and a contact address. An address of record is likely to be SIP URI that is the
well-known address for the user (e.g., sip:larry@princeton.edu) and the contact
address will be the address at which the user can currently be found (e.g., sip:larry@
llpph.cs.princeton.edu). This is exactly the binding that was needed by the
princeton.edu proxy in our example.

Note that a user may register at several locations, and that multiple users may
register at a single device. For example, one can imagine a group of people walking into
a conference room that is equipped with an IP phone and all of them registering on it so
that they can receive calls on that phone.

SIP is a very rich and flexible protocol that can support a wide range of complex
calling scenarios as well as applications that have little or nothing to do with telephony.
For example, SIP supports operations that enable a call to be routed to a music-on-hold
server or a voicemail server. It is also easy to see how it could be used for applications like
instant messaging; the SIMPLE working group at the IETF is defining standards in that
area at the time of writing.
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H.323

The ITU has also been very active in the call control area, which is not surprising given
its relevance to telephony, the traditional realm of that body. Fortunately, there has been
considerable coordination between the IETF and the ITU in this instance, so that the
various protocols are somewhat interoperable. The major ITU recommendation for mul-
timedia communication over packet networks is known as H.323, which ties together
many other recommendations, including H.225 for call control. The full set of recom-
mendations covered by H.323 runs to many hundreds of pages, and the protocol is
known for its complexity, so it is only possible to give a brief overview of it here.

H.323 is popular as a protocol for Internet telephony, and we consider that appli-
cation here. A device that originates or terminates calls is known as an H.323 terminal;
this might be a workstation running an Internet telephony application, or it might be
a specially designed appliance—a telephonelike device with networking software and an
Ethernet port, for example. H.323 terminals can talk to each other directly, but the calls
are frequently mediated by a device known as a gatekeeper. Gatekeepers perform a num-
ber of functions such as translating among the various address formats used for phone
calls, and controlling how many calls can be placed at a given time to limit the band-
width used by the H.323 applications. H.323 also includes the concept of a gateway,
which connects the H.323 network to other types of networks. The most common use
of a gateway is to connect an H.323 network to the public switched telephone network
(PSTN) as illustrated in Figure 9.13. This enables a user running an H.323 application
on a computer to talk to a person using a conventional phone on the public telephone
network. One useful function performed by the gatekeeper is to help a terminal find a
gateway, perhaps choosing among several options to find one that is relatively close to
the ultimate destination of the call. This is clearly useful in a world where conventional

Figure 9.13 Devices in an H.323 network.
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phones greatly outnumber PC-based phones. When an H.323 terminal makes a call to
an endpoint that is a conventional phone, the gateway becomes the effective endpoint
for the H.323 call and is responsible for performing the appropriate translation of both
signalling information and the media stream that need to be carried over the telephone
network.

An important part of H.323 is the H.245 protocol, which is used to negotiate the
properties of the call, somewhat analogously to the use of SDP described above. H.245
messages might list a number of different audio codec standards that it can support, the
far endpoint of the call would reply with a list of its own supported codecs, and the two
ends could pick a coding standard that they can both live with. H.245 can also be used
to signal the UDP port numbers that will be used by RTP and RTCP for the media
stream (or streams—a call might include both audio and video, for example) in this call.
Once this is accomplished, the call can proceed, with RTP being used to transport the
media streams and RTCP carrying the relevant control information.

9.3.2 Resource Allocation for Multimedia Applications
As we have just seen, session control protocols like SIP and H.323 can be used to initiate
and control communication in multimedia applications, while RTP provides transport-
level functions for the data streams of the applications. A final piece of the puzzle in
getting multimedia applications to work is making sure that suitable resources are allo-
cated inside the network to ensure that the quality of service needs of the application
are met. We presented a number of methods for resource allocation in Chapter 6. The
motivation for developing these technologies was largely for the support of multimedia
applications. So how do applications take advantage of the underlying resource allocation
capabilities of the network?

It is worth noting that many multimedia applications run successfully over best-
effort networks, such as the public Internet. The wide array of commercial voiceover
IP services (such as Skype) are testimony to the fact that you only have to worry about
resource allocation when resources are not abundant—and in many parts of today’s In-
ternet, resource abundance is the norm.

A protocol like RTCP (Section 5.4) can help applications in best-effort networks,
by giving the application detailed information about the quality of service that is being
delivered by the network. Recall that RTCP carries information about the loss rate and
delay characteristics between participants in a multimedia application. An application
can use this information to change its coding scheme—changing to a lower bitrate codec,
for example, when bandwidth is scarce. Note that while it might be tempting to change
to a codec that sends additional, redundant information when loss rates are high, this is
frowned upon: it is analogous to increasing the window size of TCP in the presence of
loss, the exact opposite of what is required to avoid congestion collapse.
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As discussed in Section 6.5.3, Differentiated Services can be used to provide fairly
basic and scalable resource allocation to applications. A multimedia application can set
the differentiated services code point (DSCP) in the IP header of the packets that it
generates in an effort to ensure that both the media and control packets receive appro-
priate quality of service. For example, it is common to mark voice media packets as EF
(expedited forwarding) to cause them to be placed in a low-latency or priority queue in
routers along the path, while the call signaling (e.g., SIP) packets are often marked with
some sort of AF (assured forwarding) to enable them to be queued separately from best
effort traffic and thus reduce their risk of loss.

Of course, it only makes sense to mark the packets inside the sending host or
appliance if network devices such as routers pay attention to the DSCP. In general,
routers in the public Internet ignore the DSCP, providing best-effort service to all pack-
ets. However, enterprise or corporate networks have the ability to use DiffServ for their
internal multimedia traffic, and frequently do so. Also, even residential users of the
Internet can often improve the quality of VoIP or other multimedia applications just
by using DiffServ on the outbound direction of their Internet connections, as illus-
trated in Figure 9.14. This is effective because of the asymmetry of many broadband
Internet connections: If the outbound link is substantially slower (i.e., more resource-
constrained) than the inbound, then resource allocation using DiffServ on that link may
be enough to make all the difference in quality for latency- and loss-sensitive applica-
tions.

While DiffServ is appealing for its simplicity, it is clear that it cannot meet the needs
of applications under all conditions. For example, suppose the upstream bandwidth in

Figure 9.14 Differentiated Services applied to a VoIP application. DiffServ queueing is

applied only on the upstream link from customer router to ISP.
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Figure 9.14 is only 100 kbps, and the customer attempts to place two VoIP calls, each
with a 64-kbps codec. Clearly the upstream link is now more than 100% loaded, which
will lead to large queueing delays and lost packets. No amount of clever queueing in the
customer’s router can fix that.

The characteristics of many multimedia applications are such that, rather than try
to squeeze too many calls into a too-narrow pipe, it would be better to block one call
while allowing another to proceed. That is, better to have one person carrying on a
conversation successfully while another hears a busy signal, than to have both callers
experiencing unacceptable audio quality at the same time. We sometimes refer to such
applications as having a steep utility curve, meaning that the utility (usefulness) of the
application drops rapidly as the quality of service provided by the network degrades.
Multimedia applications often have this property, whereas many traditional applications
do not. Email, for example, continues to work quite well even if delays run into the
hours.

Applications with steep utility curves are often well suited to some form of admis-
sion control. If you cannot be sure that sufficient resources will always be available to
support the offered load of the applications, then admission control provides a way to
say “no” to some applications while allowing others to get the resources they need.

We saw one way to do admission control using RSVP in Section 6.5.2, and we
will return to that shortly, but multimedia applications that use session control proto-
cols provide some other admission control options. The key point to observe here is that
session control protocols like SIP or H.323 often involve some sort of message exchange
between an endpoint and another entity (SIP proxy or H.323 gatekeeper) at the begin-
ning of a call or session. This can provide a handy means to say “no” to a new call for
which sufficient resources are not available.

As an example, consider the network in Figure 9.15. Suppose the wide area link
from the branch office to the head office has enough bandwidth to accommodate three
VoIP calls simultaneously using 64-kbps codecs. Each phone already needs to commu-
nicate with the local SIP proxy or H.323 gatekeeper when it begins to place a call, so it
is easy enough for the proxy/gatekeeper to send back a message that tells the IP phone to
play a busy signal if that link is already fully loaded. The proxy or gatekeeper can even
deal with the possibility that a particular IP phone might be making multiple calls at
the same time, and that different codec speeds might be used. However, this scheme will
work only if no other device can overload the link without first talking to the gatekeeper
or proxy. DiffServ queueing can be used to ensure that, for example, a PC engaged in
a file transfer doesn’t interfere with the VoIP calls. But suppose some VoIP application
that doesn’t first talk to the gatekeeper or proxy is enabled in the remote office. Such an
application, if it can get its packets marked appropriately and in the same queue as the
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Figure 9.15 Admission control using session control protocol.

existing VoIP traffic, can clearly drive the link to the point of overload with no feedback
from the proxy or gatekeeper.

Another problem with the approach just described is that it depends on the gate-
keeper or proxy having knowledge of the path that each application will use. In the
simple topology of Figure 9.15 this isn’t a big issue, but in more complex networks it
can quickly become unmanageable. We only need to imagine the case where the remote
office has two different connections to the outside world to see that we are asking the
proxy or gatekeeper to understand not just SIP or H.323 but also routing, link failures
and current network conditions. This can quickly become unmanageable.

We refer to the sort of admission control just described as off-path, in the sense
that the device making admission control decisions does not sit on the data path where
resources need to be allocated. The obvious alternative is on-path admission control,
and the standard example of a protocol that does on-path admission control in IP
networks is RSVP. We saw in Section 6.5.2 how RSVP can be used to ensure that
sufficient resources are allocated along a path, and it is straightforward to use RSVP
in applications like those described in this section. The one detail that still needs to
be filled in is how the admission control protocol interacts with the session control
protocol.

Coordinating the actions of an admission control (or resource reservation) protocol
and a session control protocol is not rocket science, but it does require some attention
to details. As an example, consider a simple telephone call between two parties. Before
you can make a reservation, you need to know how much bandwidth the call is going
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Figure 9.16 Coordination of SIP signalling and resource reservation.

to use, which means you need to know what codecs are to be used. That implies you
need to do some of the session control first, to exchange information about the codecs
supported by the two phones. However, you can’t do all the session control first, because
you wouldn’t want the phone to ring before the admission control decision had been
made, in case admission control failed. Figure 9.16 illustrates this situation where SIP
is used for session control and RSVP is used to make the admission control decision
(successfully in this case).

The main thing to notice here is the interleaving of session control and resource al-
location tasks. Solid lines represent SIP messages; dashed lines represent RSVP messages.
Note that SIP messages are transmitted directly from phone to phone in this example
(i.e., we have not shown any SIP proxies), whereas the RSVP messages are also processed
by the routers in the middle as the check for sufficient resources to admit the call.

We begin with an initial exchange of codec information in the first two SIP mes-
sages (recall that SDP is used to list available codecs, among other things). PRACK is a
provisional acknowledgment. Once these messages have been exchanged, RSVP PATH
messages, which contain a description of the amount of resources that will be required,
can be sent as the first step in reserving resources in both directions of the call. Next,
RESV messages can be sent back to actually reserve the resources. Once an RESV is
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received by the initiating phone, it can send an updated SDP message reporting the fact
that resources have been reserved in one direction. When the called phone has received
both that message and the RESV from the other phone, it can start to ring, and tell the
other phone that resources are now reserved in both directions (with the SDP message)
and also notify the calling phone that it is ringing. From here on, normal SIP signaling
and media flow, similar to that shown in Figure 9.12, proceeds.

Again we see how building applications requires us to understand the interaction
between different building blocks (SIP and RSVP in this case). The designers of SIP ac-
tually made some changes to the protocol to enable this interleaving of functions between
protocols with different jobs. Hence, our repeated emphasis in this book on focusing on
complete systems rather than just looking at one layer or component in isolation from
the other parts of the system.

9.4 Overlay Networks
From its inception, the Internet has adopted a clean model, in which the routers in-
side the network are responsible for forwarding packets from source to destination, and
application programs run on the hosts connected to the edges of the network. The
client/server paradigm illustrated by the applications discussed in the first two sections
of this chapter certainly adhere to this model.

In the last few years, however, the distinction between packet forwarding and ap-
plication processing has become less clear. New applications are being distributed across
the Internet, and in many cases, these applications make their own forwarding decisions.
These new hybrid applications can sometimes be implemented by extending traditional
routers and switches to support a modest amount of application-specific processing. For
example, so called level-7 switches sit in front of server clusters and forward HTTP re-
quests to a specific server based on the requested URL. However, overlay networks are
quickly emerging as the mechanism of choice for introducing new functionality into the
Internet.

You can think of an overlay as a logical network implemented on top of a physical
network. By this definition, the Internet itself is an overlay network, which is, in fact,
a true statement. Figure 9.17 depicts an overlay implemented on top of an underlying
network. Each node in the overlay also exists in the underlying network; it processes
and forwards packets in an application-specific way. The links that connect the overlay
nodes are implemented as tunnels through the underlying network. Multiple-overlay
networks can exist on top of the same underlying network—each implementing their
own application-specific behavior—and overlays can be nested, one on top of another.
For example, all of the example overlay networks discussed in this section treat today’s
Internet as the underlying network.
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Figure 9.17 Overlay network layered on top of a physical network.

Figure 9.18 Overlay nodes tunnel through physical nodes.

We have already seen examples of tunneling, for example, to implement virtual
private networks (VPNs). As a brief refresher, the nodes on either end of a tunnel treat
the multihop path between them as a single logical link, where the nodes that are “tun-
neled through” forward packets based on the outer header, never aware that the end
nodes have attached an inner header. For example, Figure 9.18 shows three overlay nodes
(A, B, and C) connected by a pair of tunnels. In this example, overlay node B might make
a forwarding decision for packets from A to C based on the inner header (IHdr), and
then attach an outer header (OHdr) that identifies C as the destination in the underly-
ing network. Nodes A, B, and C are able to interpret both the inner and outer header,
whereas the intermediate routers understand only the outer header. Similarly, A, B, and
C have addresses in both the overlay network and the underlying network, but they are
not necessarily the same (e.g., their underlying address might be a 32-bit IP address,
while their overlay address might be an experimental 128-bit address). In fact, the over-
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Overlays and the Ossification

of the Internet
Given its popularity and widespread
use, it is easy to forget that at one time
the Internet was a laboratory for re-
searchers to experiment with packet-
switched networking. The more the
Internet has become a commercial
success, however, the less useful it is as
a platform for playing with new ideas.
Today, commercial interests shape the
Internet’s continued development. In
fact, a recent report from the National
Research Council points to the ossifi-
cation of the Internet, both intellec-
tually (pressure for compatibility with
current standards stifles innovation)
and in terms of the infrastructure
itself (it is nearly impossible for re-
searchers to affect the core infrastruc-
ture). The report goes on to observe
that at the same time, a whole new
set of challenges are emerging that
may require a fresh approach. The
dilemma, according to the report, is
that

. . . successful and widely adopted tech-
nologies are subject to ossification, which
makes it hard to introduce new capabili-
ties or, if the current technology has run
its course, to replace it with something
better. Existing industry players are not
generally motivated to develop or deploy
disruptive technologies . . .

Finding the right way to intro-
duce disruptive technologies is an in-
teresting issue. Such innovations are
likely to do some things very well,

lay need not use conventional addresses at
all, but may route based on URLs, domain
names, an XML query, or even the content
of the packet.

9.4.1 Routing Overlays
The simplest kind of overlay is one
that exists purely to support an alterna-
tive routing strategy; no additional ap-
plication-level processing is performed at
the overlay nodes. You can view a virtual
private network (see Section 4.1.8) as an
example of a routing overlay, but one that
doesn’t so much define an alternative strat-
egy or algorithm, as it defines alternative
routing table entries to be processed by
the standard IP forwarding algorithm. In
this particular case, the overlay is said to
use IP tunnels, and the ability to utilize
these VPNs is supported in most commer-
cial routers.

Suppose, however, you wanted to
use a routing algorithm that commercial
router vendors were not willing to include
in their products. How would you go
about doing it? You could simply run your
algorithm on a collection of end hosts,
and tunnel through the Internet routers.
These hosts would behave like routers in
the overlay network: as hosts they are likely
connected to the Internet by only one
physical link, but as a node in the over-
lay they would be connected to multiple
neighbors via tunnels.

Since overlays, almost by definition,
are a way to introduce new technolo-
gies independent of the standardization
process, there are no standard overlays
we can point to as examples. Instead, we
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illustrate the general idea of routing over-
lays by describing several experimental
systems recently proposed by network
researchers.

Experimental Versions of IP

Overlays are ideal for deploying experi-
mental versions of IP that you hope will
eventually take over the world. For exam-
ple, IP multicast is an extension to IP that
interprets class D addresses (those with
the prefix 1110) as multicast addresses. IP
multicast is used in conjunction with one
of the multicast routing protocols, such as
DVMRP, described in Section 4.4.

The multicast backbone (MBone) is
an overlay network that implements IP
multicast. One of the popular applica-
tions run on top of the MBone is vic,
a tool that supports multiparty videocon-
ferencing. vic is used to broadcast both
seminars and meetings across the Inter-
net. For example, IETF meetings—which
are a week long and attract thousands of
participants—were for many years broad-
cast over the MBone.

Like VPNs, the MBone uses both
IP tunnels and IP addresses, but unlike
VPNs, the MBone implements a different
forwarding algorithm—it forwards pack-
ets to all downstream neighbors in the
shortest path multicast tree. As an overlay,

but overall they lag behind present
technology in other important areas.
For example, to introduce a new
routing strategy into the Internet,
one would have to build a router that
not only supports this new strategy,
but also competes with established
vendors in terms of performance,
reliability, management toolset, and
so on. This is an extremely tall order.
What the innovator needs is a way
to allow users to take advantage of
the new idea without having to write
the hundreds of thousands of lines of
code needed to support just the base
system.

Overlay networks provide ex-
actly this opportunity. Overlay nodes
can be programmed to support the
new capability or feature, and then
depend on conventional nodes to
provide the underlying connectivity.
Over time, if the idea deployed in
the overlay proves useful, there may
be economic motivation to migrate
the functionality into the base sys-
tem, that is, add it to the feature set
of commercial routers. On the other
hand, the functionality may be com-
plex enough that an overlay layer may
be exactly where it belongs.

multicast-aware routers tunnel through legacy routers, with the hope that one day there
will be no more legacy routers.

The 6-BONE is a similar overlay that is used to incrementally deploy IPv6. Like
the MBone, the 6-BONE uses tunnels to forward packets through IPv4 routers. Unlike
the MBone, however, 6-BONE nodes do not simply provide a new interpretation of
IPv4’s 32-bit addresses. Instead, they forward packets based on IPv6’s 128-bit address
space. Moreover, the 6-BONE also supports IPv6 multicast.
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End System Multicast
Although IP multicast is popular with researchers and certain segments of the networking
community, its deployment in the global Internet has been limited at best. In response,
multicast-based applications like videoconferencing have recently turned to an alterna-
tive strategy, called end system multicast. The idea of end system multicast is to accept
that IP multicast will never become ubiquitous, and to instead let the end-hosts that
are participating in a particular multicast-based application implement their own mul-
ticast trees. (As an aside, there is a school of thought that says IP multicast never took
off because it simply doesn’t belong at the network layer, due to the fact that it must
support high-layer functionality such as error, flow, and congestion control, as well as
membership management.)

Before describing how end system multicast works, it is important to first under-
stand that, unlike VPNs and the MBone, end system multicast assumes that only In-
ternet hosts (as opposed to Internet routers) participate in the overlay. Moreover, these
hosts typically exchange messages with each other through UDP tunnels rather than IP
tunnels, making it easy to implement as regular application programs. This makes it
possible to view the underlying network as a fully connected graph, since every host in
the Internet is able to send a message to every other host. Abstractly, then, end system
multicast solves the following problem: starting with a fully connected graph represent-
ing the Internet, the goal is to find the embedded multicast tree that spans all the group
members.

Since we take the underlying Internet to be fully connected, a naive solution would
be to have each source directly connected to each member of the group. In other words,
end system multicast could be implemented by having each node send unicast mes-
sages to every group member. To see the problem in doing this, especially compared to
implementing IP multicast in routers, consider the example topology in Figure 9.19.
Figure 9.19(a) depicts an example physical topology, where R1 and R2 are routers con-
nected by a low-bandwidth transcontinental link; A, B, C, and D are end hosts; and
link delays are given as edge weights. Assuming A wants to send a multicast message
to the other three hosts, Figure 9.19(b) shows how naive unicast transmission would
work. This is clearly undesirable because the same message must traverse the link A–R1
three times, and two copies of the message traverse R1–R2. Figure 9.19(c) depicts the IP
multicast tree constructed by DVMRP. Clearly, this approach eliminates the redundant
messages. Without support from the routers, however, the best one can hope for with
end system multicast is a tree similar to the one shown in Figure 9.19(d). End system
multicast defines an architecture for constructing this tree.

The general approach is to support multiple levels of overlay networks, each of
which extracts a subgraph from the overlay below it, until we have selected the subgraph
that the application expects. For end system multicast in particular, this happens in two
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Figure 9.19 Alternative multicast trees mapped onto a physical topology.

stages: first we construct a simple mesh overlay on top of the fully connected Internet, and
then we select a multicast tree within this mesh. The idea is illustrated in Figure 9.20,
again assuming the four end-hosts A, B, C, and D. The first step is the critical one: Once
we have selected a suitable mesh overlay, we simply run a standard multicast routing
algorithm (e.g., DVMRP) on top of it to build the multicast tree. We also have the luxury
of ignoring the scalability issue that Internet-wide multicast faces since the intermediate
mesh can be selected to include only those nodes that want to participate in a particular
multicast group.

The key to constructing the intermediate mesh overlay is to select a topology that
roughly corresponds to the physical topology of the underlying Internet, but we have to
do this without anyone telling us what the underlying Internet actually looks like since
we are running only on end hosts and not routers. The general strategy is for the end
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Figure 9.20 Multicast tree embedded in an overlay mesh.

hosts to measure the roundtrip latency to other nodes, and decide to add links to the
mesh only when they like what they see. This works as follows.

First, assuming a mesh already exists, each node exchanges the list of all other
nodes it believes is part of the mesh with its directly connected neighbors. When a node
receives such a membership list from a neighbor, it incorporates that information into
its membership list and forwards the resulting list to its neighbors. This information
eventually propagates through the mesh, much as in a distance vector routing protocol.

When a host wants to join the multicast overlay, it must know the IP address of
at least one other node already in the overlay. It then sends a “join mesh” message to
this node. This connects the new node to the mesh by an edge to the known node.
In general, the new node might send a join message to multiple current nodes, thereby
joining the mesh by multiple links. Once a node is connected to the mesh by a set of
links, it periodically sends “keep alive” messages to its neighbors, letting it know that it
still wants to be part of the group.

When a node leaves the group, it sends a “leave mesh” message to its directly con-
nected neighbors, and this information is propagated to the other nodes in the mesh
via the membership list described above. Alternatively, a node can fail, or just silently
decide to quit the group, in which case its neighbors detect that it is no longer sending
“keep alive” messages. Some node departures have little affect on the mesh, but should
a node detect that the mesh has become partitioned due to a departing node, it creates
a new edge to a node in the other partition by sending it a “join mesh” message. Note
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that multiple neighbors can simultaneously decide that a partitioned has occurred in the
mesh, leading to multiple cross-partition edges being added to the mesh.

As described so far, we will end up with a mesh that is a subgraph of the original
fully-connected Internet, but it may have suboptimal performance because (1) initial
neighbor selection adds random links to the topology, (2) partition repair might add
edges that are essential at the moment but not useful in the long run, (3) group mem-
bership may change due to dynamic joins and departures, and (4) underlying network
conditions may change. What needs to happen is that the system must evaluate the value
of each edge, resulting in new edges being added to the mesh and existing edges being
removed over time.

To add new edges, each node i periodically probes some random member j that
it is not currently connected to in the mesh, measures the round-trip latency of edge
(i, j), and then evaluates the utility of adding this edge. If the utility is above a certain
threshold, link (i, j) is added to the mesh. Evaluating the utility of adding edge (i, j)
might look something like this:

EvaluateUtility(j)
utility = 0
for each member m not equal to i

CL = current latency to node m along route through mesh
NL = new latency to node m along mesh if edge (i, j) is added
if (NL < CL) then

utility += (CL - NL)/CL
return utility

Deciding to remove an edge is similar, except each node i computes the cost of each link
to current neighbor j as follows:

EvaluateCost(j)
Costij = number of members for which i uses j as next hop
Cost ji = number of members for which j uses i as next hop
return max(Costij , Cost ji )

It then picks the neighbor with the lowest cost, and drops it if the cost falls below a
certain threshold.

Finally, since the mesh is maintained using what is essentially a distance vector
protocol, it is trivial to run DVMRP to find an appropriate multicast tree in the mesh.
Note that although it is not possible to prove that the protocol just described results
in the optimum mesh network, thereby allowing DVMRP to select the best possible
multicast tree, both simulation and extensive practical experience suggests that it does a
good job.
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Resilient Overlay Networks

Another routing overlay gaining in popularity is one that finds alternative routes for
traditional unicast applications. Such overlays exploit the observation that the triangle
inequality does not hold in the Internet. Figure 9.21 illustrates what we mean by this. It
is not uncommon to find three sites in the Internet—call them A, B, and C—such that
the latency between A and B is greater than the sum of the latencies from A to C, and
from C to B. That is, sometimes you would be better off indirectly sending your packets
via some intermediate node than sending them directly to the destination.

How can this be? Well, BGP never promised that it would find the shortest route
between any two sites; it only tries to find some route. To make matters worse, there are
countless opportunities for human-directed policies to override BGP’s normal operation.
This often happens, for example, at peering points between major backbone ISPs. In
short, that the triangle inequality does not hold in the Internet should not come as a
surprise.

How do we exploit this observation? The first step is to realize that there is a fun-
damental trade-off between the scalability and optimality of a routing algorithm. On the
one hand, BGP scales to very large networks, but often does not select the best possible
route and is slow to adapt to network outages. On the other hand, if you were only wor-
ried about finding the best route among a handful of sites, you could do a much better

Figure 9.21 The triangle inequality does not necessarily hold in networks.
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job of monitoring the quality of every path you might use, thereby allowing you to select
the best possible route at any moment in time.

An experimental overlay, called Resilient Overlay Network (RON), does exactly
this. RON scales to only a few dozen nodes because it uses an N×N strategy of closely
monitoring (via active probes) three aspects of path quality—latency, available band-
width, and loss probability—between every pair of sites. It is then able to both select
the optimal route between any pair of nodes and rapidly change routes should network
conditions change. Experience shows that RON is able to deliver modest performance
improvements to applications, but more importantly, it recovers from network failures
much more quickly. For example, during one 64-hour period in 2001, an instance of
RON running on 12 nodes detected 32 outages lasting over 30 minutes, and it was able
to recover from all of them in less than 20 seconds on average. This experiment also
suggested that forwarding data through just one intermediate node is usually sufficient
to recover from Internet failures.

Since RON does not scale, it is not possible to use RON to help random host A
communicate with random host B; A and B have to know ahead of time that they are
likely to communicate, and then join the same RON. However, RON seems like a good
idea in certain settings, such as when connecting a few dozen corporate sites spread across
the Internet, or allowing you and 50 of your friends to establish your own private overlay
for the sake of running some application. The real question, though, is what happens
when everyone starts to run their own RON. Does the overhead of millions of RONs
aggressively probing paths swamp the network, and does anyone see improved behavior
when many RONs compete for the same paths? These questions are still unanswered.▲

All of these overlays illustrate a concept that is central to computer networks in
general: virtualization. That is, it is possible to build a virtual network from abstract
(logical) resources on top of a physical network constructed from physical resources.
Moreover, it is possible to stack these virtualized networks on top of each other, and
for multiple virtual networks to coexist at the same level. Each virtual network, in turn,
provides new capabilities that are of value to some set of users, applications, or higher-
level networks.

9.4.2 Peer-to-Peer Networks (Gnutella, BitTorrent)
Music-sharing applications like Napster and KaZaA introduced the term “peer-to-peer”
into the popular vernacular. But what exactly does it mean for a system to be peer-to-
peer? Certainly in the context of sharing MP3 files it means not having to download
music from a central site, but instead being able to access music files directly from who-
ever in the Internet happens to have a copy stored on their computer. More generally
then, we could say that a peer-to-peer network allows a community of users to pool
their resources (content, storage, network bandwidth, disk bandwidth, CPU), thereby
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providing access to a larger archival store, larger video/audio conferences, more complex
searches and computations, and so on, than any one user could afford individually.

Quite often, attributes like decentralized and self-organizing are mentioned when
discussing peer-to-peer networks, meaning that individual nodes organize themselves
into a network without any centralized coordination. If you think about it, terms like
these could be used to describe the Internet itself. Ironically, however, Napster is not a
true peer-to-peer system by this definition since it depends on a central registry of known
files, and users have to search this directory to find what machine offers a particular file. It
is only the last step—actually downloading the file—that takes place between machines
that belong to two users, but this is little more than a traditional client/server transaction.
The only difference is that the server is owned by someone just like you rather than a
large corporation.

So we are back to the original question: What’s interesting about peer-to-peer net-
works? One answer is that both the process of locating an object of interest and the
process of downloading that object onto your local machine happen without your hav-
ing to contact a centralized authority, and at the same time, the system is able to scale
to millions of nodes. A peer-to-peer system that can accomplish these two tasks in a de-
centralized manner turns out to be an overlay network, where the nodes are those hosts
that are willing to share objects of interest (e.g., music and other assorted files), and the
links (tunnels) connecting these nodes represent the sequence of machines that you have
to visit to track down the object you want. This description will become clearer after we
look at two examples.

Gnutella

Gnutella is an early peer-to-peer network that attempted to distinguish between exchang-
ing music (which likely violates somebody’s copyright) and the general sharing of files
(which must be good since we’ve been taught to share since the age of two). What’s in-
teresting about Gnutella is that it was one of the first such systems to not depend on a
centralized registry of objects. Instead Gnutella participants arrange themselves into an
overlay network similar to the one shown in Figure 9.22. That is, each node that runs
the Gnutella software (i.e., implements the Gnutella protocol) knows about some set of
other machines that also run the Gnutella software. The relationship “A and B know
each other” corresponds to the edges in this graph. (We’ll talk about how this graph is
formed in a moment.)

Whenever the user on a given node wants to find an object, Gnutella sends a
QUERY message for the object—for example, specifying the file’s name—to its neigh-
bors in the graph. If one of the neighbors has the object, it responds to the node that
sent it the query with a QUERY RESPONSE message, specifying where the object can
be downloaded (e.g., an IP address and TCP port number). That node can subsequently
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Figure 9.22 Example topology of a Gnutella peer-to-peer network.

use GET or PUT messages to access the object. If the node cannot resolve the query, it
forwards the QUERY message to each of its neighbors (except the one that sent it the
query), and the process repeats. In other words, Gnutella floods the overlay to locate
the desired object. Gnutella sets a TTL on each query so this flood does not continue
indefinitely.

In addition to the TTL and query string, each QUERY message contains a unique
query identifier (QID), but it does not contain the identity of the original message
source. Instead, each node maintains a record of the QUERY messages it has seen re-
cently: both the QID and the neighbor that sent it the QUERY. It uses this history in
two ways. First, if it ever receives a QUERY with a QID that matches one it has seen re-
cently, the node does not forward the QUERY message. This serves to cut off forwarding
loops more quickly than the TTL might have done. Second, whenever the node receives
a QUERY RESPONSE from a downstream neighbor, it knows to forward the response
to the upstream neighbor that originally sent it the QUERY message. In this way, the
response works its way back to the original node without any of the intermediate nodes
knowing who wanted to locate this particular object in the first place.

Returning to the question of how the graph evolves, a node certainly has to know
about at least one other node when it joins a Gnutella overlay. The new node is attached
to the overlay by at least this one link. After that, a given node learns about other nodes
as the result of QUERY RESPONSE messages, both for objects it requested and for
responses that just happen to pass through it. A node is free to decide which of the
nodes it discovers in this way that it wants to keep as a neighbor. The Gnutella protocol
provides PING and PONG messages by which a node probes whether or not a given
neighbor still exists and that neighbor’s response, respectively.

It should be clear that Gnutella as described here is not a particularly clever proto-
col, and subsequent systems have tried to improve upon it. One dimension along which
improvements are possible is in how queries are propagated. Flooding has the nice prop-
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erty that it is guaranteed to find the desired object in the fewest possible hops, but it does
not scale well. It is possible to forward queries randomly, or according to the probability
of success based on past results. A second dimension is to proactively replicate the ob-
jects, since the more copies of a given object there are, the easier it should be to find a
copy. Alternatively, one could develop a completely different strategy, which is the topic
we consider next.

Structured Overlays

At the same time file-sharing systems have been fighting to fill the void left by Napster,
the research community has been exploring an alternative design for peer-to-peer net-
works. We refer to these networks as structured, to contrast them with the essentially ran-
dom (unstructured) way in which a Gnutella network evolves. Unstructured overlays like
Gnutella employ trivial overlay construction and maintenance algorithms, but the best
they can offer is unreliable, random search. In contrast, structured overlays are designed
to conform to a particular graph structure that allows reliable and efficient (probabilisti-
cally bounded delay) object location, in return for additional complexity during overlay
construction and maintenance.

If you think about what we are trying to do at a high level, there are two questions
to consider: (1) How do we map objects onto nodes? and (2) How do we route a request
to the node that is responsible for a given object? We start with the first question, which
has a simple statement: How do we map an object with name x into the address of some
node n that is able to serve that object? While traditional peer-to-peer networks have no
control over which node hosts object x, if we could control how objects get distributed
over the network, we might be able to do a better job of finding those objects at a later
time.

A well-known technique for mapping names into addresses is to use a hash table,
so that

hash(x) −→ n

implies object x is first placed on node n, and at a later time, a client trying to locate
x would only have to perform the hash of x to determine that it is on node n. A hash-
based approach has the nice property that it tends to spread the objects evenly across the
set of nodes, but straightforward hashing algorithms suffer from a fatal flaw: How many
possible values of n should we allow? (In hashing terminology, how many buckets should
there be?) Naively, we could decide that there are, say, 101 possible hash values, and we
use a modulo hash function, that is,

hash(x)
return x % 101
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Figure 9.23 Both nodes and objects map (hash) onto the ID space, where objects are

maintained at the nearest node in this space.

Unfortunately, if there are more than 101 nodes willing to host objects, then we can’t
take advantage of all of them. On the other hand, if we select a number larger than
the largest possible number of nodes, then there will be some values of x that will hash
into an address for a node that does not exist. There is also the not-so-small issue of
translating the value returned by the hash function into an actual IP address.

To address these issues, structured peer-to-peer networks use an algorithm known
as consistent hashing, which hashes a set of objects x uniformly across a large ID space.
Figure 9.23 visualizes a 128-bit ID space as a circle, where we use the algorithm to place
both objects

hash(object_name) −→ objid

and nodes

hash(IP_addr) −→ nodeid

onto this circle. Since a 128-bit ID space is enormous, it is unlikely that an object will
hash to exactly the same ID as a machine’s IP address hashes to. To account for this
unlikelihood, each object is maintained on the node whose ID is closest, in this 128-bit
space, to the object ID. In other words, the idea is to use a high-quality hash function to
map both nodes and objects into the same large, sparse ID space; you then map objects
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Figure 9.24 Objects are located by routing through the peer-to-peer overlay network.

to nodes by numerical proximity of their respective identifiers. Like ordinary hashing,
this distributes objects fairly evenly across nodes, but unlike ordinary hashing, only a
small number of objects have to move when a node (hash bucket) joins or leaves.

We now turn to the second question: How does a user that wants to access object x
know which node is closest in x’s ID in this space? One possible answer is that each node
keeps a complete table of node IDs and their associated IP addresses, but this would not
be practical for a large network. The alternative, which is the approach used by structured
peer-to-peer networks, is to route a message to this node! In other words, if we construct
the overlay in a clever way—which is the same as saying that we need to choose entries
for a node’s routing table in a clever way—then we find a node simply by routing toward
it. Collectively, this approach is sometimes called distributed hash tables (DHT), since
conceptually, the hash table is distributed over all the nodes in the network.

Figure 9.24 illustrates what happens for a simple 28-bit ID space. To keep the
discussion as concrete as possible, we consider the approach used by a particular peer-
to-peer network called Pastry. Other systems work in a similar manner. (See the papers
cited at the end of the chapter for additional examples.)

Suppose you are at the node with ID 65a1fc (hex) and you are trying to locate
the object with ID d46a1c. You realize that your ID shares nothing with the object’s,
but you know of a node that shares at least the prefix d. That node is closer than you in
the 128-bit ID space, so you forward the message to it. (We do not give the format of
the message being forwarded, but you can think of it as saying “locate object d46a1c.”)
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Assuming node d13da3 knows of another node that shares an even longer prefix with
the object, it forwards the message on. This process of moving closer in ID space con-
tinues until you reach a node that knows of no closer node. This node is, by definition,
the one that hosts the object. Keep in mind that as we logically move through ID space
the message is actually being forwarded, node to node, through the underlying Internet.

Each node maintains both a routing table (more below) and the IP addresses of a
small set of numerically larger and smaller node IDs. This is called the node’s leaf set.
The relevance of the leaf set is that once a message is routed to any node in the same
leaf set as the node that hosts the object, that node can directly forward the message to
the ultimate destination. Said another way, the leaf set facilitates correct and efficient
delivery of a message to the numerically closest node, even though multiple nodes may
exist that share a maximal length prefix with the object ID. Moreover, the leaf set makes
routing more robust because any of the nodes in a leaf set can route a message just as well
as any other node in the same set. Thus, if one node is unable to make progress routing
a message, one of its neighbors in the leaf set may be able to. In summary, the routing
procedure is defined as follows:

Route(D)
if D is within range of my leaf set

forward to numerically closest member in leaf set
else

let l = length of shared prefix
let d = value of l -th digit in D’s address
if RouteTab[l,d ] exists

forward to RouteTab[l,d ]
else
forward to known node with at least as long a shared prefix
and numerically closer than this node

The routing table, denoted RouteTab, is a two-dimensional array. It has a row for
every hex digit in an ID (there such 32 digits in a 128-bit ID) and a column for every
hex value (there are obviously 16 such values). Every entry in row i shares a prefix of
length i with this node, and within this row, the entry in column j has the hex value
j in the i + 1th position. Figure 9.25 shows the first three rows of an example routing
table for node 65a1fcx, where x denotes an unspecified suffix. This figure shows the ID
prefix matched by every entry in the table. It does not show the actual value contained
in this entry—the IP address of the next node to route to.

Adding a node to the overlay works much like routing a “locate object message” to
an object. The new node must know of at least one current member. It asks this member
to route an “add node message” to the node numerically closest to the ID of the joining
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Figure 9.25 Example routing table at the node with ID 65a1fcx.

Figure 9.26 Adding a node to the network.

node, as shown in Figure 9.26. It is through this routing process that the new node learns
about other nodes with a shared prefix, and is able to begin filling out its routing table.
Over time, as additional nodes join the overlay, existing nodes also have the option of
including information about the newly joining node in their routing tables. They do
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this when the new node adds a longer prefix than they currently have in their table.
Neighbors in the leaf sets also exchange routing tables with each other, which means that
over time routing information propagates through the overlay.

The reader may have noticed that although structured overlays provide a proba-
bilistic bound on the number of routing hops required to locate a given object—the
number of hops in Pastry is bounded by log16N , where N is the number of nodes in the
overlay—each hop may contribute substantial delay. This is because each intermediate
node may be at a random location in the Internet. (In the worst case, each node is on
a different continent!) In fact, in a worldwide overlay network using the algorithm as
described above, the expected delay of each hop is the average delay among all pairs of
nodes in the Internet! Fortunately, one can do much better in practice. The idea is to
choose each routing table entry such that it refers to a nearby node in the underlying
physical network, among all nodes with an ID prefix that is appropriate for the entry. It
turns out that doing so achieves end-to-end routing delays that are within a small factor
of the delay between source and destination node.

Finally, the discussion up to this point has focused on the general problem of locat-
ing objects in a peer-to-peer network. Given such a routing infrastructure, it is possible
to build different services. For example, a file sharing service would use file names as
object names. To locate a file, you first hash its name into a corresponding object ID,
and then route a “locate object message” to this ID. The system might also replicate each
file across multiple nodes to improve availability. Storing multiple copies on the leaf set
of the node to which a given file normally routes would be one way of doing this. Keep
in mind that even though these nodes are neighbors in the ID space, they are likely to
be physically distributed across the Internet. Thus, while a poweroutage in an entire city
might take down physically close replicas of a file in a traditional file system, one or more
replicas would likely survive such a failure in a peer-to-peer network.

Services other than file-sharing can also be built on top of distributed hash tables.
Consider multicast applications, for example. Instead of constructing a multicast tree
from a mesh, one could construct the tree from edges in the structured overlay, thereby
amortizing the cost of overlay construction and maintenance across several applications
and multicast groups.

BitTorrent

BitTorrent is a peer-to-peer file sharing protocol devised by Bram Cohen. It is based on
replicating the file, or rather, replicating segments of the file, which are called pieces. Any
particular piece can usually be downloaded from multiple peers, even if only one peer has
the entire file. The primary benefit of BitTorrent’s replication is avoiding the bottleneck
of having only one source for a file. The beauty of BitTorrent is that replication is a
natural side effect of the downloading process: as soon as a peer downloads a particular
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piece, it becomes another source for that piece. The more peers downloading pieces of
the file, the more piece replication occurs, distributing the load proportionately. Pieces
are downloaded in random order to avoid a situation where peers find themselves lacking
the same set of pieces.

Each file is shared via its own independent BitTorrent network, called a swarm.
(A swarm could potentially share a set of files, but we describe the single file case for
simplicity.) The lifecycle of a typical swarm is as follows. The swarm starts as a singleton
peer with a complete copy of the file. A node that wants to download the file joins the
swarm, becoming its second member, and begins downloading pieces of the file from the
original peer. In doing so, it becomes another source for the pieces it has downloaded,
even if it has not yet downloaded the entire file. (In fact, it is common for peers to leave
the swarm once they have completed their downloads, although they are encouraged to
stay longer.) Other nodes join the swarm and begin downloading pieces from multiple
peers, not just the original peer. (See Figure 9.27.)

If the file remains in high demand, with a stream of new peers replacing those who
leave the swarm, the swarm could remain active indefinitely; if not, it could shrink back
to include only the original peer until new peers join the swarm.

Now that we have an overview of BitTorrent, we can ask how requests are routed
to the peers that have a given piece. To make requests, a would-be downloader must first
join the swarm. It starts by downloading a .torrent file containing metainformation
about the file and swarm. The .torrent file, which may be easily replicated, is typically

Figure 9.27 Peers in a BitTorrent swarm download from other peers that may not yet

have the complete file.
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downloaded from a web server and discovered by following links from web pages. It
contains:

■ The target file’s size;

■ The piece size;

■ SHA-1 hash values (Section 8.1.4) precomputed from each piece;

■ The URL of the swarm’s tracker.

A tracker is a server that tracks a swarm’s current membership. We’ll see later that
BitTorrent can be extended to eliminate this point of centralization, with its attendant
potential for bottleneck or failure.

The would-be downloader then joins the swarm, becoming a peer, by sending a
message to the tracker giving its network address and a peer ID that it has generated
randomly for itself. The message also carries a SHA-1 hash of the main part of the
.torrent file, which is used as a swarm ID.

Let’s call the new peer P. The tracker replies to P with a partial list of peers giving
their IDs and network addresses, and P establishes connections, over TCP, with some of
these peers. Note that P is directly connected to just a subset of the swarm, although it
may decide to contact additional peers or even request more peers from the tracker. To
establish a BitTorrent connection with a particular peer after their TCP connection has
been established, P sends P’s own peer ID and swarm ID, and the peer replies with its
peer ID and swarm ID. If the swarm IDs don’t match, or the reply peer ID is not what
P expects, the connection is aborted.

The resulting BitTorrent connection is symmetric: each end can download from the
other. Each end begins by sending the other a bitmap reporting which pieces it has, so
each peer knows the other’s initial state. Whenever a downloader D finishes downloading
another piece, it sends a message identifying that piece to each of its directly connected
peers, so those peers can update their internal representation of D’s state. This, finally, is
the answer to the question of how a download request for a piece is routed to a peer that
has the piece, because it means that each peer knows which directly connected peers have
the piece. If D needs a piece that none of its connections has, it could connect to more
or different peers (it can get more from the tracker), or occupy itself with other pieces in
hopes that some of its connections will obtain the piece from their connections.

How are objects—in this case, pieces—mapped onto peer nodes? Of course each
peer eventually obtains all the pieces, so the question is really about which pieces a peer
has at a given time before it has all the pieces, or equivalently, about the order in which
a peer downloads pieces. The answer is that they download pieces in random order, to
keep them from having a strict subset or superset of the pieces of any of their peers.
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The BitTorrent described so far utilizes a central tracker that constitutes a single
point of failure for the swarm and could potentially be a performance bottleneck. Also,
providing a tracker can be a nuisance for someone who would like to make a file available
via BitTorrent. Newer versions of BitTorrent additionally support trackerless swarms that
use a DHT-based implementation. BitTorrent client software that is trackerless-capable
implements not just a BitTorrent peer, but also what we’ll call a peer finder (the BitTor-
rent terminology is simply “node”) that the peer uses to find peers.

Peer finders form their own overlay network, using their own protocol over UDP
to implement a DHT. Furthermore, a peer finder network includes peer finders whose
associated peers belong to different swarms. In other words, while each swarm forms a
distinct network of BitTorrent peers, a peer finder network instead spans swarms.

Peer finders randomly generate their own finder IDs, which are the same size
(160 bits) as swarm IDs. Each finder maintains a modest table containing primarily
finders (and their associated peers) whose IDs are close to its own, plus some finders
whose IDs are more distant. The following algorithm ensures that finders whose IDs are
close to a given swarm ID are likely to know of peers from that swarm; the algorithm si-
multaneously provides a way to look them up. When a finder F needs to find peers from
a particular swarm, it sends a request to the finders in its table whose IDs are close to that
swarm’s ID. If a contacted finder knows of any peers for that swarm, it replies with their
contact information. Otherwise, it replies with the contact information of the finders in
its table that are close to the swarm, so that F can iteratively query those finders.

After the search is exhausted, because there are no finders closer to the swarm, F
inserts the contact information for itself and its associated peer into the finders closest to
the swarm. The net effect is that peers for a particular swarm get entered in the tables of
the finders that are close to that swarm.

The above scheme assumes that F is already part of the finder network, that is, that
it already knows how to contact some other finders. This assumption is true for finder
installations that have run previously, because they are supposed to save information
about other finders, even across executions. If a swarm uses a tracker, its peers are able to
tell their finders about other finders (in a reversal of the peer and finder roles) because the
BitTorrent peer protocol has been extended to exchange finder contact information. But
how can a newly installed finder discover other finders? The .torrent files for trackerless
swarms include contact information for one or a few finders, instead of a tracker URL,
for just that situation.

An unusual aspect of BitTorrent is that it deals head-on with the issue of fairness,
or good “network citizenship.” Protocols often depend on the good behavior of individ-
ual peers without being able to enforce it. For example, an unscrupulous Ethernet peer
could get better performance by using a backoff algorithm that is more aggressive than
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exponential backoff, or an unscrupulous TCP peer could get better performance by not
cooperating in congestion control.

The good behavior that BitTorrent depends on is peers uploading pieces to other
peers. Since the typical BitTorrent user just wants to download the file as quickly as
possible, there is a temptation to implement a peer that tries to download all the pieces
while doing as little uploading as possible—this is a bad peer. To discourage bad behav-
ior, the BitTorrent protocol includes mechanisms that allow peers to reward or punish
each other. If a peer is misbehaving by not nicely uploading to another peer, the second
peer can choke the bad peer: it can decide to stop uploading to the bad peer, at least
temporarily, and send it a message saying so. There is also a message type for telling a
peer that it has been unchoked. The choking mechanism is also used by a peer to limit
the number of its active BitTorrent connections, to maintain good TCP performance.
There are many possible choking algorithms, and devising a good one is an art.

9.4.3 Content Distribution Networks
We have already seen how HTTP running over TCP allows web browsers to retrieve
pages from web servers. However, anyone that has waited an eternity for a web page to
return knows that the system is far from perfect. Considering that the backbone of the
Internet is now constructed from OC-192 (10-Gbps) links, it’s not obvious why this
should happen. It is generally agreed that when it comes to downloading web pages,
there are three potential bottlenecks in the system:

■ The first mile. The Internet may have high-capacity links in it, but that doesn’t
help you download a web page any faster when you’re connected by a 56-Kbps
modem.

■ The last mile. The link that connects the server to the Internet, along with the
server itself, can be overloaded by too many requests.

■ Peering points. The handful of ISPs that collectively implement the backbone
of the Internet may internally have high-bandwidth pipes, but they have little
motivation to provide high-capacity connectivity to their peers. If you are con-
nected to ISP A and the server is connected to ISP B, then the page you request
may get dropped at the point A and B peer with each other.

There’s not a lot anyone except you can do about the first problem, but it is possible
to use replication to address the second and third problems. Systems that do this are often
called content distribution networks (CDN). Akamai is probably the best-known CDN.

The idea of a CDN is to geographically distribute a collection of server surrogates
that cache pages normally maintained in some set of backend servers. Thus, rather than
have millions of users wait forever to contact www.cnn.com when a big news story
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breaks—such a situation is known as a flash crowd—it is possible to spread this load
across many servers. Moreover, rather than having to traverse multiple ISPs to reach
www.cnn.com, if these surrogate servers happen to be spread across all the backbone
ISPs, then it should be possible to reach one without having to cross a peering point.
Clearly, maintaining thousands of surrogate servers all over the Internet is too expensive
for any one site that wants to provide better access to its web pages. Commercial CDNs
provide this service for many sites, thereby amortizing the cost across many customers.

Although we call them surrogate servers, in fact, they can just as correctly be viewed
as caches. If they don’t have a page that has been requested by a client, they ask the
backend server for it. In practice, however, the backend servers proactively replicate their
data across the surrogates rather than wait for surrogates to request it on-demand. It’s also
the case that only static pages, as opposed to dynamic content, are distributed across the
surrogates. Clients have to go to the backend server for any content that either changes
frequently (e.g., as sports scores and stock quotes) or is produced as the result of some
computation (e.g., a database query).

Having a large set of geographically distributed servers does not fully solve the
problem. To complete the picture, CDNs also need to provide a set of redirectors that
forward client requests to the most appropriate server, as shown in Figure 9.28. The

Figure 9.28 Components in a content distribution network (CDN).
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primary objective of the redirectors is to select the server for each request that results in
the best response time for the client. A secondary objective is for the system as a whole to
process as many requests-per-second as the underlying hardware (network links and web
servers) is able to support. The average number of requests that can be satisfied in a given
time period—known as the system throughput—is primarily an issue when the system is
under heavy load; for example, when a flash crowd is accessing a small set of pages or a
distributed denial of service (DDoS) attacker is targeting a particular site, as happened
to CNN, Yahoo, and several other high-profile sites in February 2000.

CDNs use several factors to decide how to distribute client requests. For example,
to minimize response time, a redirector might select a server based on its network proxim-
ity. In contrast, to improve the overall system throughput, it is desirable to evenly balance
the load across a set of servers. Both throughput and response time are improved if the
distribution mechanism takes locality into consideration, that is, selects a server that is
likely to already have the page being requested in its cache. The exact combination of
factors that should be employed by a CDN is open to debate. This section considers
some of the possibilities.

Mechanisms

As described so far, a redirector is just an abstract function, although it sounds like
something a router might be asked to do since it logically forwards a request message
much like a router forwards packets. In fact, there are several mechanisms that can be
used to implement redirection. Note that for the purpose of this discussion we assume
that each redirector knows the address of every available server. (From here on, we drop
the “surrogate” qualifier and talk simply in terms of a set of servers.) In practice, some
form of out-of-band communication takes place to keep this information up-to-date as
servers come and go.

First, redirection could be implemented by augmenting DNS to return differ-
ent server addresses to clients. For example, when a client asks to resolve the name
www.cnn.com, the DNS server could return the IP address of a server hosting CNN’s
web pages that is known to have the lightest load. Alternatively, for a given set of servers,
it might just return addresses in a round-robin fashion. Note that the granularity of
DNS-based redirection is usually at the level of a site (e.g., cnn.com) rather than a
specific URL (e.g., http://www.cnn.com/2002/WORLD/europe/06/21/william.
birthday/index.html). However, when returning an embedded link, the server can
rewrite the URL, thereby effectively pointing the client at the most appropriate server
for that specific object.

Commercial CDNs essentially use a combination of URL rewriting and DNS-
based redirection. For scalability reasons, the high-level DNS server first points to a
regional-level DNS server, which replies with the actual server address. In order to
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respond to changes quickly, the DNS servers tweak the TTL of the resource records they
return to a very short period, such as 20 seconds. This is necessary so clients don’t cache
results, and thus fail to go back to the DNS server for the most recent URL-to-server
mapping.

Another possibility is to use the HTTP redirect feature: the client sends a request
message to a server, which responds with a new (better) server that the client should con-
tact for the page. Unfortunately, server-based redirection incurs an additional round-trip
time across the Internet, and even worse, servers can be vulnerable to being overloaded
by the redirection task itself. Instead, if there is a node close to the client—for example,
a local web proxy—that is aware of the available servers, then it can intercept the request
message and instruct the client to instead request the page from an appropriate server. In
this case, either the redirector would need to be on a choke point so that all requests leav-
ing the site pass through it, or the client would have to cooperate by explicitly addressing
the proxy (as with a classical, rather than transparent, proxy).

At this point you may be wondering what CDNs have to do with overlay net-
works, and while viewing a CDN as an overlay is a bit of a stretch, they do share one
very important trait in common. Like an overlay node, a proxy-based redirector makes
an application-level routing decision. Rather than forward a packet based on an address
and its knowledge of the network topology, it forwards HTTP requests based on a URL
and its knowledge of the location and load of a set of servers. Today’s Internet archi-
tecture does not support redirection directly—where by “directly” we mean the client
sends the HTTP request to the redirector, which forwards it to the destination—so in-
stead redirection is typically implemented indirectly by having the redirector return the
appropriate destination address and the client contacts the server itself.

Policies

We now consider some example policies that redirectors might use to forward requests.
Actually, we have already suggested one simple policy—round-robin. A similar scheme
would be to simply select one of the available servers at random. Both of these approaches
do a good job of spreading the load evenly across the CDN, but they do not do a partic-
ularly good job of lowering the client-perceived response time.

It’s obvious that neither of these two schemes take network proximity into con-
sideration, but just as a importantly, they also ignore locality. That is, requests for the
same URL are forwarded to different servers, making it less likely that the page will be
served from the selected server’s in-memory cache. This forces the server to retrieve the
page from its disk, or possibly even from the backend server. How can a distributed set
of redirectors cause requests for the same page to go to the same server (or small set of
servers) without global coordination? The answer is surprisingly simple: All redirectors
use some form of hashing to deterministically map URLs into a small range of values.
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The primary benefit of this approach is that no interredirector communication is re-
quired to achieve coordinated operation; no matter which redirector receives a URL, the
hashing process produces the same output.

So what makes for a good hashing scheme? The classic modulo hashing scheme—
which hashes each URL modulo the number of servers—is not suitable for this envi-
ronment. This is because should the number of servers change, the modulo calculation
will result in a diminishing fraction of the pages keeping their same server assignments.
While we do not expect frequent changes in the set of servers, the fact that addition of
new servers into the set will cause massive reassignment is undesirable.

An alternative is to use the same consistent hashing algorithm discussed in Sec-
tion 9.4.2. Specifically, each redirector first hashes every server into the unit circle. Then
for each URL that arrives, the redirector also hashes the URL to a value on the unit cir-
cle, and the URL is assigned to the server that lies closest on the circle to its hash value.
If a node fails in this scheme, its load shifts to its neighbors (on the unit circle), so the
addition/removal of a server only causes local changes in request assignments. Note that
unlike the peer-to-peer case, where a message is routed from one node to another in order
to find the server whose ID is closest to the objects, each redirector knows how the set of
servers map onto the unit circle, so they can each independently select the “nearest” one.

This strategy can easily be extended to take server load into account. Assume the
redirector knows the current load of each of the available servers. This information may
not be perfectly up-to-date, but we can imagine the redirector simply counting how
many times it has forwarded a request to each server in the last few seconds, and using this
count as an estimate of that server’s current load. Upon receiving a URL, the redirector
hashes the URL plus each of the available servers, and sorts the resulting values. This
sorted list effectively defines the order in which the redirector will consider the available
servers. The redirector then walks down this list until it finds a server whose load is below
some threshold. The benefit of this approach compared to plain consistent hashing is that
server order is different for each URL, so if one server fails, its load is distributed evenly
among the other machines. This approach is the basis for the Cache Array Routing
Protocol (CARP), and is shown in pseudocode below:

SelectServer(URL, S)
for = each server si in server set S

weighti = hash(URL, address(si ))
sort weight
for each server sj in decreasing order of weightj

if = Load(sj ) < threshold then
return sj

return server with highest weight
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As the load increases, this scheme changes from using only the first server on the
sorted list to spreading requests across several servers. Some pages normally handled
by busy servers will also start being handled by less busy servers. Since this process is
based on aggregate server load rather than the popularity of individual pages, servers
hosting some popular pages may find more servers sharing their load than servers hosting
collectively unpopular pages. In the process, some unpopular pages will be replicated in
the system simply because they happen to be primarily hosted on busy servers. At the
same time, if some pages become extremely popular, it is conceivable that all of the
servers in the system could be responsible for serving them.

Finally, it is possible to introduce network proximity into the equation in at least
two different ways. The first is to blur the distinction between server load and network
proximity by monitoring how long a server takes to respond to requests, and using this
measurement as the server load parameter in the preceding algorithm. This strategy tends
to prefer nearby/lightly-loaded servers over distant/heavily-loaded servers. A second ap-
proach is to factor proximity into the decision at an earlier stage by limiting the candidate
set of servers considered by the above algorithms (S) to only those that are nearby. The
harder problem is deciding which of the potentially many servers are suitably close. One
approach would be to select only those servers that are available on the same ISP as
the client. A slightly more sophisticated approach would be to look at the map of au-
tonomous systems produced by BGP, and select only those servers within some number
of hops from the client as candidate servers. Finding the right balance between network
proximity and server cache locality is a subject of ongoing research.

9.5 Summary
We have seen four client/server-based application protocols: SMTP used to exchange
electronic mail, HTTP used to walk the World Wide Web, the DNS protocol used by
the domain naming system, and SNMP used to query remote nodes for the sake of
network management. We have seen how application-to-application communication is
driving the creation of new protocol development frameworks such as SOAP and REST.
And we have examined session control protocols, such as SIP and H.323, which are used
to control multimedia applications such as voiceover IP. Finally, we looked at emerging
applications—including overlay, peer-to-peer, and content distribution networks—that
blend application processing and packet forwarding in innovative ways.

Application protocols are a curious lot. In many ways, the traditional client/server
applications are like another layer of transport protocol, except they have application-
specific knowledge built into them. You could argue that they are just specialized
transport protocols, and that transport protocols get layered on top of each other un-
til producing the precise service needed by the application. Similarly, the overlay and
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peer-to-peer protocols can be viewed as providing an alternative routing infrastructure,
but again, one that is tailored for a particular application’s needs. One sure lesson we
draw from this observation is that designing application-level protocols is really no dif-
ferent than designing core network protocols, and that the more one understands about
the latter, the better they will do designing the former. We also observe that the systems
approach—understanding how functions and components interact to build a complete
system—applies at least as much in the design of applications as in any other aspect of
networking.

O P E N I S S U E

New Network
Architecture

It’s difficult to put a finger on a
specific open issue in the realm of ap-
plication protocols—the entire field is
open as new applications are invented
every day, and the networking needs
of these applications are, well, applica-
tion dependent. The real challenge to

network designers is to recognize that what applications need from the network changes
over time, and these changes drive the transport protocols we develop and the function-
ality we put into network routers.

Developing new transport protocols is a reasonably tractable problem. You may not
be able to get the IETF to bless your transport protocol as an equal of TCP or UDP, but
there’s certainly nothing stopping you from designing the world’s greatest multimedia
application that comes bundled with a new end-to-end protocol that runs on top of
UDP, much like what happens with RTP.

On the other hand, pushing application-specific knowledge into the middle of the
network—into the routers—is a much more difficult problem. This is because in order
to effect a particular application, any new network service or functionality may need to
be loaded into many, if not all, of the routers in the Internet. Overlay networks provide
a way of introducing new functionality into the network without cooperation of all (or
even any) of the routers, but in the long run, we can expect the underlying network
architecture will need to change to accommodate these overlays. We saw this issue with
RON—how RON and BGP route selection interact with each other—and can expect it
to be a general question as overlay networks become more prevalent.

One possibility is that an alternative fixed architecture does not evolve, but instead,
the next network architecture will be highly adaptive. In the limit, rather than defining
an infrastructure for carrying data packets, the network architecture might allow packets
to carry both data and code (or possibly pointers to code) that tell the routers how it
should process the packet. Such a network raises a host of issues, not the least of which is
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how to enforce security in a world where arbitrary applications can effectively program
routers.

F U R T H E R R E A D I N G
Our first article provides an interesting perspective on the early design and implemen-
tation of the World Wide Web, written by its inventors before it had taken the world
by storm. The development of DNS is well described by Mockapetris and Dunlap. Al-
though overlays and peer-to-peer networks are still an emerging area, the last six research
papers provide a good place to start understanding the issues.

■ Berners-Lee, T., R. Caillia, A. Luotonen, H. Nielsen, and A. Secret. “The World
Wide Web.” Communications of the ACM 37(8), pp. 76–82, 1994.

■ Mockapetris, P., and K. Dunlap. “Development of the Domain Name System.”
Proceedings of the SIGCOMM ’88 Symposium, pp. 123–133, August 1988.

■ Karger, D., et al. “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web.” Proceedings of the
ACM Symposium on Theory of Computing, pp. 654–663, 1997.

■ Chu, Y., S. Rao, and H. Zhang. “A Case for End System Multicast.” Proceedings
of the ACM SIGMETRICS ’00 Conference, pp. 1–12, June 2000.

■ Andersen, D., et al. “Resilient Overlay Networks.” Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), pp. 131–145, October 2001.

■ Rowstron, A., and P. Druschel. “Storage Management and Caching in PAST, a
Large-Scale Persistent Peer-to-Peer Storage Utility.” Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), pp. 188–201, October 2001.

■ Stoica, I., et al. “Chord: A Peer-to-Peer Lookup Service for Internet Applica-
tions.” Proceedings of the ACM SIGCOMM Conference, September 2001.

■ Ratnasamy, S., et al. “A Scalable Content-Addressable Network.” Proceedings of
ACM SIGCOMM ’01, August 2001.

SMTP was originally defined in RFC 821 [Pos82], and of course, RFC 822 is
RFC 822 [Cro82]. They have been, in IETF terminology, “obsoleted” by [Kle01] and
[Res01], respectively. MIME is defined in a series of RFCs; the original specification was
in RFC 1521 [BF93] and the most recent version is defined in RFC 2045 [FB96].

Version 1.0 of HTTP is specified in RFC 1945 [BLFF96], and the latest ver-
sion (1.1) is defined in RFC 2616 [FGM+99]. There are a wealth of papers written about
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web performance, especially web caching. A good example is a paper by Danzig on web
traffic and its implications on the effectiveness of caching [Dan98]. Roy Fielding’s Ph.D.
thesis [Fie00] is the ultimate reference for REST.

There are a wealth of papers on naming, as well as on the related issue of resource
discovery (finding out what resources exist in the first place). General studies of naming
can be found in Terry [Ter86], Comer and Peterson [CP89], Birrell et al. [BLNS82],
Saltzer [Sal78], Shoch [Sho78], and Watson [Wat81]; attribute-based (descriptive) nam-
ing systems are described in Peterson [Pet88] and Bowman et al. [BPY90]; and resource
discovery is the subject of Bowman et al. [BDMS94].

Network management is a sufficiently large and important field that the IETF
devotes an entire area to it. There are well over 100 RFCs describing various aspects of
SNMP and MIBs. The two key references, however, are RFC 2578 [MPS99], which
defines the structure of management information for version 2 of SNMP (SNMPv2),
and RFC 3416 [Pre02], which defines the protocol operations for SNMPv2. Many of the
other SNMP/MIB-related RFCs define extensions to the core set of MIB variables—for
example, variables that are specific to a particular network technology or to a particular
vendor’s product. Perkins et al. [PM97] provides a good introduction to SNMP and
MIBS.

SIP is defined in RFC 3261 [SCJ+02], which contains a helpful tutorial section as
well as the detailed specification of the protocol.

The National Research Council report on the ossification of the Internet can be
found in [NRC01], and a proposal to use overlay networks to introduce disruptive tech-
nology was made by Peterson, Anderson, Culler, and Roscoe [PACR02]. The original
case for overriding BGP routes is made by Savage, Collins, Hoffman, Snell, and Ander-
son [SCH+99]. The idea of using DNS to load-balance a set of servers is described in
RFC 1794 [Bri95]. The Cache Array Routing Protocol (CARP) is defined in an Internet
Draft [CPVR97]. A comprehensive treatment of the issue of web caching versus repli-
cated servers can be found in Rabinovich and Spatscheck’s book [RS02]. Wang, Pai, and
Peterson explore the design space for redirectors [WPP02].

Finally, we recommend the following live reference to help keep tabs on the rapid
evolution of the Web and for a wealth of information related to web services:

■ http://www.w3.org: World Wide Web Consortium.

E X E R C I S E S
1 ARP and DNS both depend on caches; ARP cache entry lifetimes are typically

10 minutes, while DNS cache is on the order of days. Justify this difference.
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What undesirable consequences might there be in having too long a DNS cache
entry lifetime?

2 IPv6 simplifies ARP out of existence by allowing hardware addresses to be part
of the IPv6 address. How does this complicate the job of DNS? How does this
affect the problem of finding your local DNS server?

3 DNS servers also allow reverse lookup; given an IP address 128.112.169.4, it
is reversed into a text string 4.169.112.128.in-addr.arpa and looked up using
DNS PTR records (which form a hierarchy of domains analogous to that for
the address domain hierarchy). Suppose you want to authenticate the sender
of a packet based on its host name and are confident that the source IP address
is genuine. Explain the insecurity in converting the source address to a name
as above and then comparing this name to a given list of trusted hosts. (Hint:
Whose DNS servers would you be trusting?)

4 What is the relationship between a domain name (e.g., cs.princeton.edu)
and an IP subnet number (e.g., 192.12.69.0)? Do all hosts on the subnet have
to be identified by the same name server? What about reverse lookup, as in the
previous exercise?

5 Suppose a host elects to use a name server not within its organization for ad-
dress resolution. When would this result in no more total traffic, for queries
not found in any DNS cache, than with a local name server? When might this
result in a better DNS cache hit rate and possibly less total traffic?

6 Figure 9.7 shows the hierarchy of name servers. How would you represent this
hierarchy if one name server served multiple zones? In that setting, how does
the name server hierarchy relate to the zone hierarchy? How do you deal with
the fact that each zone may have multiple name servers?

7 Use the whois utility/service to find out who is in charge of your site, at least
as far as the InterNIC is concerned. Look up your site both by DNS name
and by IP network number; for the latter you may have to try an alternative
whois server (e.g., whois -h whois.arin.net. . . ). Try princeton.edu
and cisco.com as well.

8 Many smaller organizations have their websites maintained by a third party.
How could you use whois to find if this is the case, and, if so, the identity of
the third party?
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9 One feature of the existing DNS .com hierarchy is that it is extremely “wide.”

(a) Propose a more hierarchical reorganization of the .com hierarchy. What
objections might you foresee to your proposal’s adoption?

(b) What might be some of the consequences of having most DNS domain
names contain four or more levels, versus the two of many existing names?

10 Suppose, in the other direction, we abandon any pretense at all of DNS
hierarchy, and simply move all the .com entries to the root name server:
www.cisco.com would become www.cisco, or perhaps just cisco. How
would this affect root name server traffic in general? How would this affect
such traffic for the specific case of resolving a name like cisco into a web
server address?

11 What DNS cache issues are involved in changing the IP address of, say, a web
server host name? How might these be minimized?

12 Take a suitable DNS-lookup utility (e.g., dig) and disable the recursive lookup
feature (e.g., with +norecursive), so that when your utility sends a query to
a DNS server, and that server is unable to fully answer the request from its own
records, the server sends back the next DNS server in the lookup sequence
rather than automatically forwarding the query to that next server. Then carry
out manually a name lookup such as that in Figure 9.8; try the host name
www.cs.princeton.edu. List each intermediate name server contacted. You
may also need to specify that queries are for NS records rather than the usual
A records.

13 Discuss how you might rewrite SMTP or HTTP to make use of a hypothetical
general-purpose request/reply protocol. Could an appropriate analog of per-
sistent connections be moved from the application layer into such a transport
protocol? What other application tasks might be moved into this protocol?

14 Most Telnet clients can be used to connect to port 25, the SMTP port, instead
of to the Telnet port. Using such a tool, connect to an SMTP server and send
yourself (or someone else, with permission) some forged email. Then examine
the headers for evidence the message isn’t genuine.

15 What features might be used by (or added to) SMTP and/or a mail daemon
such as sendmail to provide some resistance to email forgeries as in the pre-
vious exercise?
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16 Find out how SMTP hosts deal with unknown commands from the other side,
and how in particular this mechanism allows for the evolution of the protocol
(e.g., to “extended SMTP”). You can either read the RFC or contact an SMTP
server as in Exercise 14 and test its responses to nonexistent commands.

17 As presented in the text, SMTP involves the exchange of several small mes-
sages. In most cases, the server responses do not affect what the client sends
subsequently. The client might thus implement command pipelining : sending
multiple commands in a single message.

(a) For what SMTP commands does the client need to pay attention to the
server’s responses?

(b) Assume the server reads each client message with gets() or the equivalent,
which reads in a string up to a <LF>. What would it have to do even to
detect that a client had used command pipelining?

(c) Pipelining is nonetheless known to break with some servers; find out how
a client can negotiate its use.

18 Find out what other features DNS MX records provide in addition to sup-
plying an alias for a mail server; the latter could, after all, be provided by a
DNS CNAME record. MX records are provided to support email; would an
analogous web record be of use in supporting HTTP?

19 One of the central problems faced by a protocol such as MIME is the vast
number of data formats available. Consult the MIME RFC to find out how
MIME deals with new or system-specific image and text formats.

20 MIME supports multiple representations of the same content using the mul-
tipart/alternative syntax; for example, text could be sent as text/plain,
text/richtext, and application/postscript. Why do you think plaintext
is supposed to be the first format, even though implementations might find it
easier to place plaintext after their native format?

21 Consult the MIME RFC to find out how base64 encoding handles binary
data of a length not evenly divisible by three bytes.

22 In HTTP version 1.0, a server marked the end of a transfer by closing the
connection. Explain why, in terms of the TCP layer, this was a problem for
servers. Find out how HTTP version 1.1 avoids this. How might a general-
purpose request/reply protocol address this?
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23 Find out how to configure an HTTP server so as to eliminate the 404 not
found message, and have a default (and hopefully friendlier) message returned
instead. Decide if such a feature is part of the protocol or part of an implemen-
tation, or is technically even permitted by the protocol. (Documentation for
the apache HTTP server can be found at www.apache.org.)

24 Why does the HTTP GET command

GET http://www.cs.princeton.edu/index.html HTTP/1.1

contain the name of the server being contacted? Wouldn’t the server already
know its name? Use Telnet, as in Exercise 14, to connect to port 80 of an
HTTP server and find out what happens if you leave the host name out.

25 When an HTTP server initiates a close() at its end of a connection, it must
then wait in TCP state FIN_WAIT_2 for the client to close the other end.
What mechanism within the TCP protocol could help an HTTP server deal
with noncooperative or poorly implemented clients that don’t close from their
end? If possible, find out about the programming interface for this mechanism,
and indicate how an HTTP server might apply it.

26 The POP3 Post Office Protocol only allows a client to retrieve email, using a
password for authentication. Traditionally, to send email a client would simply
send it to its server and expect that it be relayed.

(a) Explain why email servers often no longer permit such relaying from arbi-
trary clients.

(b) Propose an SMTP option for remote client authentication.

(c) Find out what existing methods are available for addressing this issue.

27 Suppose a very large website wants a mechanism by which clients access
whichever of multiple HTTP servers is “closest” by some suitable measure.

(a) Discuss developing a mechanism within HTTP for doing this.

(b) Discuss developing a mechanism within DNS for doing this.

Compare the two. Can either approach be made to work without upgrading
the browser?
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28 Find out if there is available to you an SNMP node that will answer queries
you send it. If so, locate some SNMP utilities (e.g., the ucd-snmp suite) and
try the following:

(a) Fetch the entire system group, using something like

snmpwalk nodename public system

Also try the above with 1 in place of system.

(b) Manually walk through the system group, using multiple SNMP GET-
NEXT operations (e.g., using snmpgetnext or equivalent), retrieving
one entry at a time.

29 Using the SNMP device and utilities of the previous exercise, fetch the tcp
group (numerically group 6), or some other group. Then do something to
make some of the group’s counters change, and fetch the group again to show
the change. Try to do this in such a way that you can be sure your actions were
the cause of the change recorded.

30 What information provided by SNMP might be useful to someone planning
the IP spoofing attack of Exercise 17 in Chapter 5? What other SNMP infor-
mation might be considered sensitive?

31 Application protocols such as FTP and SMTP were designed from scratch,
and they seem to work reasonably well. What is it about business-to-business
and Enterprise Application Integration protocols that calls for a Web Services
protocol framework?

32 Choose a web service with equivalent REST and SOAP interfaces, such as those
offered by Amazon.com. Compare how equivalent operations are implemented
in the two styles.

33 Get the WSDL for some SOAP-style web service and choose an operation. In
the messages that implement that operation, identify the fields.

34 Suppose some receivers in a large conference can receive data at a significantly
higher bandwidth than others. What sorts of things might be implemented to
address this? (Hint: Consider both the session announcement protocol (SAP)
and the possibility of utilizing third-party mixers.)

35 How might you encode audio (or video) data in two packets so that if one
packet is lost, then the resolution is simply reduced to what would be expected
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with half the bandwidth? Explain why this is much more difficult if a JPEG-
type encoding is used.

36 Explain the relationship between uniform resource locators (URLs) and uni-
form resource identifiers (URIs). Given an example of a URI that is not a URL.

37 What problem would a DNS-based redirection mechanism encounter if it
wants to select an appropriate server based on current load information?

38 Consider the following simplified BitTorrent scenario. There is a swarm of 2n

peers and, during the time in question, no peers join or leave the swarm. It
takes a peer 1 unit of time to upload or download a piece, during which time
it can only do one or the other. Initially one peer has the whole file and the
others have nothing.

(a) If the swarm’s target file consists of only 1 piece, what is the minimum
time necessary for all the peers to obtain the file? Ignore all but up-
load/download time.

(b) Let x be your answer to the preceding question. If the swarm’s target file
instead consisted of 2 pieces, would it be possible for all the peers to obtain
the file in less than 2x time units? Why or why not?
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Chapter 1
6. We will count the transfer as completed when the last data bit arrives at its

destination.

(a) 1.5 MB = 12,582,912 bits. 2 initial RTT’s (160 ms) + 12,582,912/10,

000,000 bps (transmit) + RTT/2 (propagation) ≈ 1.458 seconds.

(b) Number of packets required = 1.5 MB/1 KB = 1,536. To the above we
add the time for 1,535 RTTs (the number of RTTs between when packet
1 arrives and packet 1,536 arrives), for a total of 1.458+122.8 = 124.258
seconds.

(c) Dividing the 1,536 packets by 20 gives 76.8. This will take 76.5 RTTs
(half an RTT for the first batch to arrive, plus 76 RTTs between the first
batch and the 77th partial batch), plus the initial 2 RTTs, for 6.28 seconds.

(d) Right after the handshaking is done we send one packet. One RTT after
the handshaking we send two packets. At n RTTs past the initial hand-
shaking we have sent 1 + 2 + 4 + · · ·+ 2n = 2n+1 − 1 packets. At n = 10
we have thus been able to send all 1,536 packets; the last batch arrives
0.5 RTT later. Total time is 2 + 10.5 RTTs, or 1 second.

8. Propagation delay is 50 × 103 m/(2 × 108 m/sec) = 250 µs 800 bits/250 µs
is 3.2 Mbits/sec. For 512-byte packets, this rises to 16.4 Mbit/sec.

16. (a) Propagation delay on the link is (55 × 109)/(3 × 108) = 184 seconds.
Thus the RTT is 368 seconds.

(b) The delay × bandwidth product for the link is = 184 × 128 × 103 =
2.81 MB.

(c) After a picture is taken it must be transmitted on the link, and be com-
pletely propagated before Mission Control can interpret it. Transmit delay
for 5 MB of data is 41,943,040 bits/128 × 103 = 328 seconds. Thus, the
total time required is transmit delay + propagation delay = 328 + 184 =
512 seconds.
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19. (a) For each link, it takes 1 Gbps/5 kb = 5 µs to transmit the packet on the
link, after which it takes an additional 10 µs for the last bit to propagate
across the link. Thus, for a LAN with only one switch that starts forward-
ing only after receiving the whole packet, the total transfer delay is two
transmit delays + two propagation delays = 30 µs.

(b) For three switched and thus four links, the total delay is four transmit
delays + four propagation delays = 60 µs.

(c) For “cut-through,” a switch need only decode the first 128 bits before
beginning to forward. This takes 128 ns. This delay replaces the switch
transmit delays in the previous answer for a total delay of one transmit
delay + three cut-through decoding delays + four propagation delays =
45.384 µs.

29. (a) 1,920 × 1,080 × 24 × 30 = 1,492,992,000 ≈ 1.5 Gbps.

(b) 8 × 8,000 = 64 Kbps.

(c) 260 × 50 = 13 Kbps.

(d) 24 × 88,200 = 216,800 ≈ 2.1 Mbps.

Chapter 2
3. The 4B/5B encoding of the given bit sequence is the following.

11011 11100 10110 11011 10111 11100 11100 11101

7. Let ∧ mark each position where a stuffed 0 bit was removed. There was one
error where the sever consecutive 1s are detected (err). At the end of the bit
sequence, the end of frame was detected (eof ).

01101011111∧∧∧101001111111err1err1err0 110 01111110eof01111110eof01111110eof
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19. (a) We take the message 1011 0010 0100 1011, append 8 zeros and divide
by 1 0000 0111 (x8 + x2 + x1 + 1). The remainder is 1001 0011. We
transmit the original message with this remainder appended, resulting in
1011 0010 0100 0011 1001 0011.

(b) Inverting the first bit gives 0011 0010 0100 1011 1001 0011. Dividing
by 1 0000 0111 (x8 + x2 + x1 + 1) gives a a remainder of 1011 0110.

25. One-way latency of the link is 100 msec. (Bandwidth) × (roundtrip delay) is
about 125 pps × 0.2 sec, or 25 packets. SWS should be this large.

(a) If RWS = 1, the necessary sequence number space is 26. Therefore, 5 bits
are needed.

(b) If RWS = SWS, the sequence number space must cover twice the SWS,
or up to 50. Therefore, 6 bits are needed.

32. Figure 1 gives the timeline for the first case. The second case reduces the total
transaction time by roughly 1 RTT.

Figure 1
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Chapter 3
2. See Table 1. This table is cumulative; at each part the VCI tables consist of the

entries at that part and also all previous entries.

Exercise Switch Input Output

Part Port VCI Port VCI

(a) 1 0 0 1 0
2 3 0 1 0
4 3 0 0 0

(b) 2 0 0 1 1
3 3 0 0 0
4 3 1 1 0

(c) 1 1 1 2 0
2 1 2 3 1
4 2 0 3 2

(d) 1 1 2 3 0
2 1 3 3 2
4 0 1 3 3

(e) 2 0 1 2 0
3 2 0 0 1

(f ) 2 1 4 0 2
3 0 2 1 0
4 0 2 3 4

Table 1

14. The following list shows the mapping between LANs and their designated
bridges.

B1 dead[B7]

B2 A,B,D

B3 E,F,G,H

B4 I

B5 idle

B6 J

B7 C

16. All bridges see the packet from D to C. Only B3, B2, and B4 see the packet
from C to D. Only B1, B2, and B3 see the packet from A to C.
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B1 A-interface : A B2-interface : D (not C)

B2 B1-interface : A B3-interface : C B4-interface : D

B3 C-interface : C B2-interface : A,D

B4 D-interface : D B2-interface : C (not A)

33. Since the I/O bus speed is less than the memory bandwidth, it is the bot-
tleneck. Effective bandwidth that the I/O bus can provide is 1,000/2 Mbps
because each packet crosses the I/O bus twice. Therefore, the number of in-
terfaces is �500/45� = 11.

Chapter 4
5. By definition, Path MTU is 512 bytes. Maximum IP payload size is 512 −

20 = 492 bytes. We need to transfer 2,048 + 20 = 2,068 bytes in the IP
payload. This would be fragmented into 4 fragments of size 492 bytes and 1
fragment of size 100 bytes. There are 5 packets in total if we use Path MTU.
In the previous setting we needed 7 packets.

16. (a) See Table 2.

(b) See Table 3.

Information Distance to Reach Node
Stored at Node A B C D E F

A 0 2 ∞ 5 ∞ ∞
B 2 0 2 ∞ 1 ∞
C ∞ 2 0 2 ∞ 3
D 5 ∞ 2 0 ∞ ∞
E ∞ 1 ∞ ∞ 0 3
F ∞ ∞ 3 ∞ 3 0

Table 2

Information Distance to Reach Node
Stored at Node A B C D E F

A 0 2 4 5 3 ∞
B 2 0 2 4 1 4
C 4 2 0 2 3 3
D 5 4 2 0 ∞ 5
E 3 1 3 ∞ 0 3
F ∞ 4 3 5 3 0

Table 3
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Information Distance to Reach Node
Stored at Node A B C D E F

A 0 2 4 5 3 6
B 2 0 2 4 1 4
C 4 2 0 2 3 3
D 5 4 2 0 5 5
E 3 1 3 5 0 3
F 6 4 3 5 3 0

Table 4

(c) See Table 4.

19. The following is an example network topology.

22. Apply each subnet mask and if the corresponding subnet number matches the
SubnetNumber column, then use the entry in Next-Hop.

(a) Applying the subnet mask 255.255.254.0, we get 128.96.170.0. Use
interface 0 as the next hop.

(b) Applying subnet mask 255.255.254.0, we get 128.96.166.0 (next hop is
Router 2). Applying subnet mask 255.255.252.0, we get 128.96.164.0
(next hop is Router 3). However, 255.255.254.0 is a longer prefix. Use
Router 2 as the next hop.

(c) None of the subnet number entries match, hence use default Router R4.

(d) Applying subnet mask 255.255.254.0, we get 128.96.168.0. Use inter-
face 1 as the next hop.

(e) Applying subnet mask 255.255.252.0, we get 128.96.164.0. Use Router 3
as the next hop.

29. See Table 5.

46. (a): F (b): B (c): E (d): A (e): D (f ): C

58. Figure 2 illustrate the multicast trees for sources D and E.
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Step Confirmed Tentative

1 (A,0,-)

2 (A,0,-) (B,1,B) (D,5,D)

3 (A,0,-) (B,1,B) (D,4,B) (C,7,B)

4 (A,0,-) (B,1,B) (D,4,B) (C,5,B) (E,7,B)

5 (A,0,-) (B,1,B) (D,4,B) (C,5,B) (E,6,B)

6 (A,0,-) (B,1,B) (D,4,B) (C,5,B) (E,6,B)

Table 5

Figure 2

Chapter 5
10. The advertised window should be large enough to keep the pipe full; delay

(RTT) × bandwidth here is 140 ms × 1 Gbps = 10 Mb = 17.5 MB of data.
This requires 25 bits (225 = 33,554,432) for the AdvertisedWindow field.
The sequence number field must not wrap around in the maximum segment
lifetime. In 60 seconds, 7.5 GB can be transmitted. 33 bits allows a sequence
space of 8.6 GB, and so will not wrap in 60 seconds.

13. (a) 232 B/(5 GB) = 859 ms.

(b) 1,000 ticks in 859 ms is once each 859 µs indicating wraparound in
3.7 Ms or approximately 43 days.

27. Using initial Deviation = 50 it took 20 iterations for TimeOut to fall below
300.0. See Table 6.
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Iteration SampleRTT EstRTT Dev diff TimeOut

0 200.0 90.0 50.0

1 200.0 103.7 57.5 110.0 333.7

2 200.0 115.7 62.3 96.3 364.9

3 200.0 126.2 65.0 84.3 386.2

4 200.0 135.4 66.1 73.8 399.8

5 200.0 143.4 66.0 64.6 407.4

6 200.0 150.4 64.9 56.6 410.0

7 200.0 156.6 63.0 49.6 408.6

8 200.0 162.0 60.6 43.4 404.4

9 200.0 166.7 57.8 38.0 397.9

10 200.0 170.8 54.8 33.3 390.0

11 200.0 174.4 51.6 29.2 380.8

12 200.0 177.6 48.4 25.6 371.2

13 200.0 180.4 45.2 22.4 361.2

14 200.0 182.8 42.0 19.6 350.8

15 200.0 184.9 38.9 17.2 340.5

16 200.0 186.7 36.0 15.1 330.7

17 200.0 188.3 33.2 13.3 321.1

18 200.0 189.7 30.6 11.7 312.1

19 200.0 190.9 28.1 10.3 303.3

20 200.0 192.0 25.8 9.1 295.2

Table 6

Chapter 6
11. (a) First we calculate the finishing times Fi . We don’t need to worry about

clock speed here since we may take Ai = 0 for all the packets. Fi thus
becomes just the cumulative per-flow size, that is, Fi = Fi−1 + Pi . See
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Packet Size Flow Fi

1 200 1 200

2 200 1 400

3 160 2 160

4 120 2 280

5 160 2 440

6 210 3 210

7 150 3 360

8 90 3 450

Table 7

Table 7. We now send in increasing order of Fi : Packet 3, Packet 1, Packet
6, Packet 4, Packet 7, Packet 2, Packet 5, Packet 8.

(b) To give flow 1 a weight of 2 we divide each of its Fi by 2, that is, Fi =
Fi−1 +Pi/2; To give flow 2 a weight of 4 we divide each of its Fi by 4, that
is, Fi = Fi−1 + Pi/4; To give flow 3 a weight of 3 we divide each of its Fi

by 3, that is, Fi = Fi−1 + Pi/3; again we are using the fact that there is no
waiting. See Table 8. Transmitting in increasing order of the weighted Fi

we send as follows: Packet 3, Packet 4, Packet 6, Packet 1, Packet 5, Packet
7, Packet 8, Packet 2.

Packet Size Flow Weighted Fi

1 200 1 100

2 200 1 200

3 160 2 40

4 120 2 70

5 160 2 110

6 210 3 70

7 150 3 120

8 90 3 150

Table 8
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15. (a) For the ith arriving packet on a given flow we calculate its estimated finish-
ing time Fi by the formula Fi = max{Ai,Fi−1} + 1, where the clock used
to measure the arrival times Ai runs slow by a factor equal to the number
of active queues. The Ai clock is global; the sequence of Fi ’s calculated as
above is local to each flow.

Table 9 lists all events by wallclock time. We identify packets by their
flow and arrival time; thus, packet A4 is the packet that arrives on flow A
at wallclock time 4, that is, the third packet. The last three columns are the
queues for each flow for the subsequent time interval, including the packet
currently being transmitted. The number of such active queues determines
the amount by which Ai is incremented on the subsequent line. Multiple
packets appear on the same line if their Fi values are all the same; the Fi

values are in italic when Fi = Fi−1 + 1 (versus Fi = Ai + 1).

Wallclock Ai Arrivals Fi Sent A’s Queue B’s Queue C’s Queue

1 1.0 A1,B1,C1 2.0 A1 A1 B1 C1

2 1.333 C2 3.0 B1 B1 C1,C2

3 1.833 A3 3.0 C1 A3 C1,C2

4 2.333 B4 3.333 A3 A3 B4 C2,C4

C4 4.0

5 2.666 A5 4.0 C2 A5 B4 C2,C4

6 3.0 A6 5.0 B4 A5,A6 B4 C4,C6

C6 5.0

7 3.333 B7 4.333 A5 A5,A6 B7 C4,C6,C7

C7 6.0

8 3.666 A8 6.0 C4 A6,A8 B7,B8 C4,C6,C7

B8 5.333

9 4 A9 7.0 B7 A6,A8,A9 B7,B8,B9 C6,C7

B9 6.333

10 4.333 A6 A6,A8,A9 B8,B9 C6,C7

Table 9
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Wallclock Ai Arrivals Fi Sent A’s Queue B’s Queue C’s Queue

11 4.666 A11 8.0 C6 A8,A9,A11 B8,B9 C7

12 5 C12 7.0 B8 A8,A9,A11 B8,B9 C7,C12

13 5.333 B13 7.333 A8 A8,A9,A11 B9,B13 C7,C12

14 5.666 C7 A9,A11 B9,B13 C7,C12

15 6.0 B15 8.333 B9 A9,A11 B9,B13,B15 C12

16 6.333 A9 A9,A11 B13,B15 C12

17 6.666 C12 A11 B13,B15 C12

18 7 B13 A11 B13,B15

19 7.5 A11 A11 B15

20 8 B15 B15

Table 9 (Continued).

(b) For weighted fair queuing we have, for flow B,

Fi = max{Ai,Fi−1} + 0.5

For flows A and C, Fi is as before. Table 10 corresponds to Table 9.

35. (a) We have

TempP = MaxP × AvgLen − MinThreshold
MaxThreshold − MinThreshold

AvgLen is halfway between MinThreshold and MaxThreshold,
which implies that the fraction here is 1/2 and so TempP = MaxP/2 =
p/2. We now have

Pcount = TempP/(1 − count × TempP) = 1/(x − count),

where x = 2/p. Therefore,

1 − Pcount = x − (count + 1)

x − count

Evaluating the product

(1 − P1) × · · · × (1 − Pn)
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Wallclock Ai Arrivals Fi Sent A’s Queue B’s Queue C’s Queue

1 1.0 A1,C1 2.0 B1 A1 B1 C1

B1 1.5

2 1.333 C2 3.0 A1 C1,C2

3 1.833 A3 3.0 C1 A1 C1,C2

4 2.333 B4 2.833 B4 A3 B4 C2,C4

C4 4.0

5 2.666 A5 4.0 A3 A3,A5 C2,C4

6 3.166 A6 5.0 C2 A5,A6 C2,C4,C6

C6 5.0

7 3.666 B7 4.167 A5 A5,A6 B7 C4,C6,C7

C7 6.0

8 4.0 A8 6.0 C4 A6,A8 B7,B8 C6,C7

B8 4.666

9 4.333 A9 7.0 B7 A6,A8,A9 B7,B8,B9 C6,C7

B9 5.166

10 4.666 B8 A6,A8,A9 B8,B9 C6,C7

11 5.0 A11 8.0 A6 A6,A8,A9,A11 B9 C6,C7

12 5.333 C12 7.0 C6 A8,A9,A11 B9 C6,C7,C12

13 5.666 B13 6.166 B9 A8,A9,A11 B9,B13 C7,C12

14 6.0 A8 A9,A11 B13 C7,C12

15 6.333 B15 6.833 C7 A9,A11 B13,B15 C12

16 6.666 B13 A9,A11 B13,B15 C12

17 7.0 B15 A11 B15 C12

18 7.333 A9 A11 C12

19 7.833 C12 A11 C12

20 8.333 A11 A11

Table 10
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gives

x − 2

x − 1
· x − 3

x − 2
· · · x − (n + 1)

x − n
= x − (n + 1)

x − 1

where x = 2/p.

(b) From the result of previous question,

α = x − (n + 1)

x − 1

Therefore,

x = (n + 1) − α

1 − α
= 2/p

Accordingly,

p = 2(1 − α)

(n + 1) − α

46. At every second, the bucket volume must not be negative. For a given bucket
depth D, and token rate r, we can calculate the bucket volume v(t) at time t
seconds, and enforce v(t) to be nonnegative.

v(0) = D − 5 + r = D − (5 − r) ≥ 0

v(1) = D − 5 − 5 + 2r = D − 2(5 − r) ≥ 0

v(2) = D − 5 − 5 − 1 + 3r = D − (11 − 3r) ≥ 0

v(3) = D − 5 − 5 − 1 + 4r = D − (11 − 4r) ≥ 0

v(4) = D − 5 − 5 − 1 − 6 + 5r = D − (17 − 5r) ≥ 0

v(5) = D − 5 − 5 − 1 − 6 − 1 + 6r = D − 6(3 − r) ≥ 0

We define the functions f1(r), f2(r), . . . , f6(r) as follows.

f1(r) = 5 − r

f2(r) = 2(5 − r) = 2f1(r) ≥ f1(r) (for 1 ≤ r ≤ 5)

f3(r) = 11 − 3r ≤ f2(r) (for r ≥ 1)

f4(r) = 11 − 4r < f3(r) (for r ≥ 1)

f5(r) = 17 − 5r

f6(r) = 6(3 − r) ≤ f5(r) (for r ≥ 1)



742 Solutions to Select Exercises

First of all, for r ≥ 5, fi(r) ≤ 0 for all i. This means if the token rate is faster
than 5 packets per second any positive bucket depth will suffice (i.e., D ≥ 0).
For 1 ≤ r ≤ 5, we only need to consider f2(r) and f5(r), since other func-
tions are less than these functions. One can easily find f2(r) − f5(r) = 3r − 7.
Therefore, the bucket depth D is enforced by the following formula:

D ≥
{ f5(r) = 17 − 5r (r = 1,2)

f2(r) = 2(5 − r) (r = 3,4,5)
0 (r ≥ 5)

Chapter 7

2. 4 M A R Y 4377 7 J A N U A R Y 7 2002 2 90000 150000 1

8.

INT 4 15

INT 4 29496729

INT 4 58993458

10. 15 be 00000000 00000000 00000000 00001111

15 le 00001111 00000000 00000000 00000000

29496729 be 00000001 11000010 00010101 10011001

29496729 le 10011001 00010101 11000010 00000001

58993458 be 00000011 10000100 00101011 00110010

58993458 le 00110010 00101011 10000100 00000011
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3DES: Triple DES, a version of DES that uses three keys, effectively increasing the key
size and robustness of the encryption.

3G: Third-generation mobile wireless, a class of cellular wireless technologies based on
CDMA.

4B/5B: A type of bit-encoding scheme used in FDDI, in which every 4 bits of data are
transmitted as a 5-bit sequence.

802.3: IEEE Ethernet standard.

802.5: IEEE token ring standard.

802.11: IEEE wireless network standard.

802.17 IEEE resilient packet ring standard.

822: Refers to RFC 822, which defines the format of Internet email messages. See SMTP.

AAL: ATM Adaptation Layer. A protocol layer, configured over ATM. Two AALs are
defined for data communications, AAL3/4 and AAL5. Each protocol layer provides a
mechanism to segment large packets into cells at the sender and to reassemble the cells
back together at the receiver.

ABR: (1) Available bit rate. A rate-based congestion-control scheme being developed for
use on ATM networks. ABR is intended to allow a source to increase or decrease its
allotted rate, based on feedback from switches within the network. Contrast with CBR,
UBR, and VBR. (2) Area border router. Router at the edge of an area in a link-state
protocol.

ACK: An abbreviation for acknowledgment. An acknowledgment is sent by a receiver of
data to indicate to the sender that the data transmission was successful.

additive increase/multiplicative decrease: Congestion window strategy used by TCP.
TCP opens the congestion window at a linear rate, but halves it when losses are experi-
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enced due to congestion. It has been shown that additive increase/multiplicative decrease
is a necessary condition for a congestion-control mechanism to be stable.

AES: Advanced Encryption Standard. A cryptographic cipher that has been proposed to
supersede DES.

AF: Assured forwarding. One of the per-hop behaviors proposed for Differentiated
Services.

ALF: Application Level Framing. A protocol design principle that says that application
programs better understand their communication needs than do general-purpose trans-
port protocols.

AMPS: Advanced mobile phone system. Analog-based cell phone system. Currently be-
ing replaced by digital system, known as PCS.

ANSI: American National Standards Institute. Private U.S. standardization body that
commonly participates in the ISO standardization process. Responsible for SONET.

API: Application programming interface. Interface that application programs use to ac-
cess the network subsystem (usually the transport protocol). Usually OS-specific. The
socket API from Berkeley Unix is a widely used example.

area: In the context of link-state routing, a collection of adjacent routers that share full
routing information with each other. A routing domain is divided into areas to improve
scalability.

ARP: Address Resolution Protocol. Protocol of the Internet architecture, used to translate
high-level protocol addresses into physical hardware addresses. Commonly used on the
Internet to map IP addresses into Ethernet addresses.

ARPA: Advanced Research Projects Agency. One of the research and development orga-
nizations within the Department of Defense. Responsible for funding the ARPANET as
well as the research that led to the development of the TCP/IP Internet. Also known as
DARPA, the D standing for Defense.

ARPANET: An experimental wide-area packet-switched network funded by ARPA and
begun in the late 1960s, which became the backbone of the developing Internet.

ARQ: Automatic repeat request. General strategy for reliably sending packets over an
unreliable link. If the sender does not receive an ACK for a packet after a certain time
period, it assumes that the packet did not arrive (or was delivered with bit errors) and
retransmits it. Stop-and-wait and sliding window are two example ARQ protocols. Con-
trast with FEC.
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ASN.1: Abstract Syntax Notation One. In conjunction with BER, a presentation-
formatting standard devised by the ISO as part of the OSI architecture.

ATM: Asynchronous transfer mode. A connection-oriented network technology that uses
small, fixed-size packets (called cells) to carry data.

ATMARP: Address Resolution Protocol as enhanced for ATM networks.

ATM Forum: A key ATM standards-setting body.

authentication: Security protocol by which two suspicious parties prove to each other
that they are who they claim to be.

autonomous system (AS): A group of networks and routers, subject to a common au-
thority and using the same intradomain routing protocol.

bandwidth: A measure of the capacity of a link or connection, usually given in units of
bits per second.

Bellman-Ford: A name for the distance-vector routing algorithm, from the names of the
inventors.

BER: Basic encoding rules. Rules for encoding data types defined by ASN.1.

best-effort delivery: The service model of the current Internet architecture. Delivery of
a message is attempted but is not guaranteed.

BGP: Border Gateway Protocol. An interdomain routing protocol by which autonomous
systems exchange reachability information. The most recent version is BGP-4.

BISYNC: Binary Synchronous Communication. A byte-oriented link-level protocol de-
veloped in the late 1960s by IBM.

bit stuffing: A technique used to distinguish control sequences and data on the bit level.
Used by the HDLC protocol.

block: An OS term used to describe a situation in which a process suspends execution
while awaiting some event, such as a change in the state of a semaphore.

Bluetooth: A short-range wireless standard used to connect computers, mobile phones,
and peripheral devices, among other things.

bridge: A device that forwards link-level frames from one physical network to another,
sometimes called a LAN switch. Contrast with repeater and router.
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broadcast: A method of delivering a packet to every host on a particular network or in-
ternet. May be implemented in hardware (e.g., Ethernet) or software (e.g., IP broadcast).

CA: Certification authority (also known as certificate authority). An entity that signs
security certificates, thereby promising that the public key contained in the certificate
belongs to the entity named in the certificate.

CBC: Cipher block chaining. A cryptographic mode in which each plaintext block is
XORed with the previous block of ciphertext before encryption.

CBR: Constant bit rate. A class of service in ATM that guarantees transmission of data
at a constant bit rate, thus emulating a dedicated transmission link. Contrast with ABR,
UBR, and VBR.

CCITT: The now defunct Comité Consultif International de Telegraphique et Telephonique,
a unit of the International Telecommunications Union (ITU) of the United Nations.
Now replaced by ITU-T.

CDMA: Code Division Multiple Access, a form of multiplexing used in wireless
networks.

CDN: Content distribution network. A collection of surrogate web servers, distributed
across the Internet, that respond to web HTTP requests in place of the server. The goal of
widely distributing the surrogate servers is to have a surrogate close to the client, making
it possible to respond to requests more quickly.

cell: A 53-byte ATM packet, capable of carrying up to 48 bytes of data.

certificate: A document digitally signed by one entity that contains the name and public
key of another entity. Used to distribute public keys. Also see CA.

channel: A generic communication term used in this book to denote a logical process-
to-process connection.

checksum: Typically a ones complement sum over some or all of the bytes of a packet,
computed and appended to the packet by the sender. The receiver recomputes the check-
sum and compares it to the one carried in the message. Checksums are used to detect
errors in a packet and may also be used to verify that the packet has been delivered to the
correct host. The term checksum is also sometimes (imprecisely) used to refer generically
to error-detecting codes.

chipping code: Random sequence of bits that is XORed with the data stream to imple-
ment the direct sequence technique of spread spectrum.
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CIDR: Classless interdomain routing. A method of aggregating routes that treats a block
of contiguous Class C IP addresses as a single network.

circuit switching: A general strategy for switching data through a network. It involves
establishing a dedicated path (circuit) between the source and destination. Contrast with
packet switching.

client: The requester of a service in a distributed system.

CLNP: Connectionless Network Protocol. The ISO counterpart to the Internet’s IP.

clock recovery: The process of deriving a valid clock from a serially transmitted digital
signal.

concurrent logical channels: Multiplexing several stop-and-wait logical channels onto a
single point-to-point link. No delivery order is enforced. This mechanism was used by
the IMP-IMP protocol of the ARPANET.

congestion: A state resulting from too many packets contending for limited resources
(e.g., link bandwidth and buffer space on routers or switches), which may force the
router (switch) to discard packets.

congestion control: Any network resource management strategy that has, as its goal, the
alleviation or avoidance of congestion. A congestion-control mechanism may be imple-
mented on the routers (switches) inside the network, by the hosts at the edges of the
network, or by a combination of both.

connection: In general, a channel that must be established prior to use (e.g., by the trans-
mission of some setup information). For example, TCP provides a connection abstrac-
tion that offers reliable, ordered delivery of a byte stream. Connection-oriented networks,
such as ATM, are often said to provide a virtual circuit abstraction.

connectionless protocol: A protocol in which data may be sent without any advance
setup. IP is an example of such a protocol.

context switch: An operation in which an operating system suspends the execution of
one process and begins the execution of another. A context switch involves saving the
state of the former process (e.g., the contents of all registers) and loading the state of the
latter process.

controlled load: One of the service classes available in the Internet’s Integrated Services
architecture.
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CRC: Cyclic redundancy check. An error-detecting code computed over the bytes com-
posing a packet and then appended to the packet by the network hardware (e.g., Ethernet
adaptor). CRC provides stronger error detection than a simple checksum.

crossbar switch: A simple switch design in which every input is directly connected to
every output and the output port is responsible for resolving contention.

CSMA/CD: Carrier Sense Multiple Access with Collision Detect. CSMA/CD is a func-
tionality of network hardware. “Carrier sense multiple access” means that multiple sta-
tions can listen to the link and detect when it is in use or idle; “collision detect” in-
dicates that if two or more stations are transmitting on the link simultaneously, they
will detect the collision of their signals. Ethernet is the best-known technology that uses
CSMA/CD.

cut-through: A form of switching or forwarding in which a packet starts to be transferred
to an output before it has been completely received by the switching node, thus reducing
latency through the node.

datagram: The basic transmission unit in the Internet architecture. A datagram contains
all of the information needed to deliver it to its destination, analogous to a letter in the
U.S. postal system. Datagram networks are connectionless.

DCE: Distributed Computing Environment. An RPC-based suite of protocols and stan-
dards that support distributed computing. Defined by OSF.

DDCMP: Digital Data Communication Message Protocol. A byte-oriented link-level pro-
tocol used in Digital Equipment Corporation’s DECNET.

DDoS: Distributed denial of service. A DoS attack in which the attack originates at a set
of nodes. Each attacking node may put only a marginal load on the target machine, but
the aggregate load from all the attacking nodes swamps the target machine.

DECbit: A congestion-control scheme in which routers notify the endpoints of imminent
congestion by setting a bit in the header of routed packets. The endpoints decrease their
sending rates when a certain percentage of received packets have the bit set.

decryption: The act of reversing an encryption process to recover the data from an en-
crypted message.

delay bandwidth product: The product of a network’s RTT and bandwidth. Gives a
measure of how much data can be in transit on the network.

demultiplexing: Using information contained in a packet header to direct it upward
through a protocol stack. For example, IP uses the ProtNum field in the IP header to



Glossary 749

decide which higher protocol (i.e., TCP, UDP) a packet belongs to, and TCP uses the
port number to demultiplex a TCP packet to the correct application process. Contrast
with multiplexing.

demultiplexing key: A field in a packet header that enables demultiplexing to take place
(e.g., the ProtNum field of IP).

dense mode multicast: PIM mode used when most routers or hosts need to receive mul-
ticast packets.

DES: Data Encryption Standard. An algorithm for data encryption based on a 64-bit
secret key.

DHCP: Dynamic Host Configuration Protocol. A protocol used by a host as it boots or
when it is connected to a network, to learn various network information, such as its IP
address.

DHT: Distributed hash table. A technique by which a message is routed toward a machine
that supports a particular object, based on the object’s name. The object is hashed to a
unique identifier, with each intermediate node along the route forwarding the message
to a node that is able to interpret a larger prefix of this ID. DHTs are often used in
peer-to-peer networks.

Differentiated Services: A new architecture for providing better than best-effort service
on the Internet. It has been proposed as an alternative to Integrated Services.

direct sequence: A spread spectrum technique that involves XORing the data stream
with a random bit sequence known as a chipping code.

distance vector: A lowest-cost-path algorithm used in routing. Each node advertises
reachability information and associated costs to its immediate neighbors, and uses the
updates it receives to construct its forwarding table. The routing protocol RIP uses a
distance-vector algorithm. Contrast with link state.

DMA: Direct memory access. An approach to connecting hosts to I/O devices, in which
the device directly reads data from and writes data to the host’s memory. Also see PIO.

DNA/DECNET: Digital Network Architecture. An OSI-based architecture that supports
a connectionless network model and a connection-oriented transport protocol.

DNS: Domain name system. The distributed naming system of the Internet, used
to resolve host names (e.g., cicada.cs.princeton.edu) into IP addresses (e.g.,
192.12.69.35). The DNS is implemented by a hierarchy of name servers.



750 Glossary

domain: Can refer either to a context in the hierarchical DNS namespace (e.g., the “edu”
domain) or to a region of the Internet that is treated as a single entity for the purpose of
hierarchical routing. The latter is equivalent to autonomous system.

DoS: Denial of service. A situation in which an attacking node floods a target node with
so much work (so many packets) that it effectively keeps legitimate users from accessing
the node, hence, they are denied service.

DS3: A 44.7-Mbps transmission link service offered by the phone company. Also
called T3.

DSL: Digital subscriber line. A family of standards for transmitting data over twisted pair
telephone lines at multimegabit-per-second speeds.

duplicate ACK: A retransmission of a TCP acknowledgment. The duplicate ACK does
not acknowledge any new data. The receipt of multiple duplicate ACKs triggers the TCP
fast retransmit mechanism.

DVMRP: Distance Vector Multicast Routing Protocol. Multicast routing protocol origi-
nally used in the MBone.

DWDM: Dense wavelength division multiplexing. Multiplexing multiple light waves
(colors) onto a single physical fiber. The technique is “dense” in the sense that a large
number of optical wavelengths can be supported.

ECN: Explicit congestion notification. A technique by which routers inform end hosts
about congestion by setting a flag in packets they are forwarding. Used in conjunction
with active queue management algorithms like RED.

EF: Expedited forwarding. One of the per-hop behaviors proposed for Differentiated
Services.

EGP: Exterior Gateway Protocol. An early interdomain routing protocol of the Inter-
net, which was used by exterior gateways (routers) of autonomous systems to exchange
routing information with other ASs. Replaced by BGP.

encapsulation: The operation, performed by a lower-level protocol, of attaching a
protocol-specific header and/or trailer to a message passed down by a higher-level pro-
tocol. As a message travels down the protocol stack, it gathers a sequence of headers, of
which the outermost corresponds to the protocol at the bottom of the stack.

encryption: The act of applying a transforming function to data, with the intention that
only the receiver of the data will be able to read it (after applying the inverse function,
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decryption). Encryption generally depends on either a secret shared by the sender and
receiver or on a public/private key pair.

Ethernet: A popular local area network technology that uses CSMA/CD and has a band-
width of 10 Mbps. An Ethernet itself is just a passive wire; all aspects of Ethernet trans-
mission are completely implemented by the host adaptors.

exponential backoff: A retransmission strategy that doubles the timeout value each time
a packet is retransmitted.

exposed node problem: Situation that occurs on a wireless network where two nodes
receive signals from a common source, but each is able to reach other nodes that do not
receive this signal.

extended LAN: A collection of LANs connected by bridges.

fabric: The part of a switch that actually does the switching, that is, moves packets from
input to output. Contrast with port.

fair queuing (FQ): A round-robin-based queuing algorithm that prevents a badly be-
haved process from capturing an arbitrarily large portion of the network capacity.

fast retransmit: A strategy used by TCP that attempts to avoid timeouts in the presence
of lost packets. TCP retransmits a segment after receiving three consecutive duplicate
ACKs, acknowledging the data up to (but not including) that segment.

FDDI: Fiber Distributed Data Interface. A token ring networking technology designed
to run over optical fiber.

FEC: 1 Forward error correction. A general strategy for recovering from bit errors in-
troduced into data packets without having to retransmit the packet. Redundant
information is included with each packet that can be used by the receiver to
determine which bits in a packet are incorrect. Contrast with ARQ.

2 Forwarding equivalence class. A set of packets that are to receive the same for-
warding treatment at a router. MPLS labels are normally associated with FECs.

Fibre Channel: A bidirectional link protocol commonly used to connect computers, pe-
ripherals, and storage devices. Originally had a bandwidth of 100 MBps but since en-
hanced to GBps speeds.

firewall: A router that has been configured to filter (not forward) packets from certain
sources. Used to enforce a security policy.
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flow control: A mechanism by which the receiver of data throttles the transmission rate
of the sender, so that data will not arrive too quickly to be processed. Contrast with
congestion control.

flowspec: Specification of a flow’s bandwidth and delay requirements presented to the
network to establish a reservation. Used with RSVP.

forwarding: The operation performed by a router on every packet: receiving it on an
input, deciding what output to send it to, and sending it there.

forwarding table: The table maintained in a router that lets it make decisions on how to
forward packets. The process of building up the forwarding table is called routing, and
thus the forwarding table is sometimes called a routing table. In some implementations,
the routing and forwarding tables are separate data structures.

fragmentation/reassembly: A method for transmission of messages larger than the net-
work’s MTU. Messages are fragmented into small pieces by the sender and reassembled
by the receiver.

frame: Another name for a packet, typically used in reference to packets sent over a single
link rather than a whole network. An important problem is how the receiver detects the
beginning and ending of a frame, a problem known as framing.

Frame Relay: A connection-oriented public packet-switched service offered by the phone
company.

frequency hopping: A spread spectrum technique that involves transmitting data over a
random sequence of frequencies.

FTP: File Transfer Protocol. The standard protocol of the Internet architecture for trans-
ferring files between hosts. Built on top of TCP.

GMPLS: Generalized MPLS. Allows IP to run natively over optically-switched networks.

GPRS: General Packet Radio Service. A packet transmission service provided by cellular
wireless networks.

GSM: Global System for Mobile communication. Digital cellular phone system being
deployed throughout the world (less so in the United States and Canada). Similar to
PCS, which is being deployed throughout the United States and Canada.

gopher: An Internet information service.

H.323: Session control protocol often used for Internet telephony.
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handle: In programming, an identifier or pointer that is used to access an object.

hardware address: The link-level address used to identify the host adaptor on the local
network.

HDLC: High-Level Data Link Control protocol. An ISO-standard link-level protocol. It
uses bit stuffing to solve the framing problem.

hidden node problem: Situation that occurs on a wireless network where two nodes are
sending to a common destination, but are unaware that the other exists.

hierarchical routing: A multilevel routing scheme that uses the hierarchical structure of
the address space as the basis for making forwarding decisions. For example, packets
might first be routed to a destination network and then to a specific host on that network.

HiPPI: High Performance Parallel Interface. An ANSI-standard network technology ca-
pable of Gbps transmission rates, typically used to connect supercomputers to peripheral
devices. Used in same way as Fibre Channel.

host: A computer attached to one or more networks that supports users and runs appli-
cation programs.

HTML: HyperText Markup Language. A language used to construct World Wide Web
pages.

HTTP: HyperText Transport Protocol. An application-level protocol based on a re-
quest/reply paradigm and used in the World Wide Web. HTTP uses TCP connections
to transfer data.

IAB: Internet Architecture Board. The main body that oversees the development of the
Internet architecture.

IBGP: Interior BGP. The protocol used to exchange interdomain routing information
among routers in the same domain.

ICMP: Internet Control Message Protocol. This protocol is an integral part of IP. It allows
a router or destination host to communicate with the source, typically to report an error
in IP datagram processing.

IEEE: Institute for Electrical and Electronics Engineers. A professional society for engi-
neers that also defines network standards, including the 802 series of LAN standards.

IETF: Internet Engineering Task Force. The body responsible for the specification of
standards and protocols related to the Internet.
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IMAP: Internet Message Access Protocol. An application layer protocol that allows a user
to retrieve her email from a mail server.

IMP-IMP: A byte-oriented link-level protocol used in the original ARPANET.

Integrated Services: Usually taken to mean a packet-switched network that can effec-
tively support both conventional computer data and real-time audio and video. Also, a
name given to a proposed Internet service model that was designed to supplement the
current best-effort service model.

integrity: In the context of network security, a service that ensures that a received message
is the same one that was sent.

interdomain routing: The process of exchanging routing among different routing do-
mains. BGP is an example of an interdomain protocol.

internet: A collection of (possibly heterogeneous) packet-switching networks intercon-
nected by routers. Also called an internetwork.

Internet: The global internet based on the Internet (TCP/IP) architecture, connecting
millions of hosts worldwide.

interoperability: The ability of heterogeneous hardware and multivendor software to
communicate by correctly exchanging messages.

interrupt: An event (typically generated by a hardware device) that tells the operating
system to stop its current activity and take some action. For example, an interrupt is
used to notify the OS that a packet has arrived from the network.

intradomain routing: The exchange of routing information within a single domain or
autonomous system. RIP and OSPF are example intradomain protocols.

IP: Internet Protocol (also known as IPv4). A protocol that provides a connectionless,
best-effort delivery service of datagrams across the Internet.

IPng: Internet Protocol—Next Generation (also known as IPv6). Proposed version of IP
that provides a larger, more hierarchical address space and other new features.

IPSEC: IP Security. An architecture for authentication, privacy, and message integrity,
among other security services to the Internet architecture.

IRTF: Internet Research Task Force. A sibling body to the IETF, responsible for charting
direction in research and development for the Internet.

IS-IS: A link-state routing protocol, similar to OSPF.
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ISDN: Integrated Services Digital Network. A digital communication service offered by
telephone carriers and standardized by ITU-T. ISDN combines voice connection and
digital data services in a single physical medium.

ISO: International Standards Organization. The international body that drafted the
seven-layer OSI architecture and a suite of protocols that has not enjoyed commercial
success.

ITU-T: A subcommittee of the International Telecommunications Union, a global body
that drafts technical standards for all areas of international analog and digital communi-
cation. ITU-T deals with standards for telecommunications, notably ATM.

jitter: Variation in network latency. Large jitter has a negative impact on the quality of
video and audio applications.

JPEG: Joint Photographic Experts Group. Typically used to refer to a widely used algo-
rithm for compressing still images that was developed by the JPEG.

Kerberos: A TCP/IP-based authentication system developed at MIT, in which two hosts
use a trusted third party to authenticate each other.

key distribution: Mechanism by which users learn each others’ public keys through the
exchange of digitally signed certificates.

LAN: Local area network. A network based on any physical network technology that is
designed to span distances of up to a few thousand meters (e.g., Ethernet or FDDI).
Contrast with SAN, MAN, and WAN.

LANE: Local area network emulation. Adding functionality to ATM to make it behave
like a shared-media (i.e., Ethernet-like) LAN.

LAN switch: Another term for a bridge, usually applied to a bridge with many ports. Also
called an Ethernet switch if the link technology it supports is Ethernet.

latency: A measure of how long it takes a single bit to propagate from one end of a link
or channel to the other. Latency is measured strictly in terms of time.

LDAP: Lightweight Directory Access Protocol. A subset of the X.500 directory service
that has recently become a popular directory service for information about users.

LER: Label edge router. A router at the edge of an MPLS cloud. Performs a complete IP
lookup on arriving IP packets, and then applies labels to them as a result of the lookup.

link: A physical connection between two nodes of a network. It may be implemented
over copper or fiber-optic cable or it may be a wireless link (e.g., a satellite).
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link-level protocol: A protocol that is responsible for delivering frames over a directly
connected network (e.g., an Ethernet, token ring, or point-to-point link). Also called
link-layer protocol.

link state: A lowest-cost-path algorithm used in routing. Information on directly con-
nected neighbors and current link costs are flooded to all routers; each router uses this
information to build a view of the network on which to base forwarding decisions. The
OSPF routing protocol uses a link-state algorithm. Contrast with distance vector.

LSR: Label-switching router. A router that runs IP control protocols, but uses the label
switching forwarding algorithm of MPLS.

MAC: Media access control. Algorithms used to control access to shared-media networks
like Ethernet and FDDI.

MACA: Multiple access with collision avoidance. Distributed algorithm used to mediate
access to a shared media.

MACAW: Multiple access with collision avoidance for wireless. Enhancement of the gen-
eral MACA algorithm to better support wireless networks. Used by 802.11.

MAN: Metropolitan area network. A network based on any of several new network tech-
nologies that operate at high speeds (up to several Gbps) and across distances wide
enough to span a metropolitan area. Contrast with SAN, LAN, and WAN.

Manchester: A bit-encoding scheme that transmits the exclusive-OR of the clock and
the NRZ-encoded data. Used on the Ethernet.

MBone: Multicast backbone. A logical network imposed over the top of the Internet, in
which multicast-enhanced routers use tunneling to forward multicast datagrams across
the Internet.

MD5: Message Digest version 5. An efficient cryptographic checksum algorithm com-
monly used to verify that the contents of a message are unaltered.

MIB: Management information base. Defines the set of network-related variables that
may be read or written on a network node. The MIB is used in conjunction with SNMP.

MIME: Multipurpose Internet Mail Extensions. Specifications for converting binary data
(such as image files) to ASCII text, which allows it to be sent via email.

Mosaic: A once-popular and free graphical World Wide Web browser developed at the
National Center for Supercomputing Applications at the University of Illinois.

MP3: MPEG Layer 3. Audio compression standard used with MPEG.
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MPEG: Moving Picture Experts Group. Typically used to refer to an algorithm for com-
pressing video streams developed by the MPEG.

MPLS: Multiprotocol Label Switching. A collection of techniques used to effectively im-
plement IP routers on top of level 2 (e.g., ATM) switches.

MSAU: Multistation access unit. A device used in token ring networks to connect several
stations to the ring and remove them in the event of failure.

MSDP: Multicast Source Discovery Protocol. A protocol used to facilitate interdomain
multicast.

MTU: Maximum transmission unit. The size of the largest packet that can be sent over a
physical network.

multicast: A special form of broadcast in which packets are delivered to a specified sub-
group of network hosts.

multiplexing: Combining distinct channels into a single, lower-level channel. For ex-
ample, separate TCP and UDP channels are multiplexed into a single host-to-host IP
channel. The inverse operation, demultiplexing, takes place on the receiving host.

name resolution: The action of resolving host names (which are easy for humans to read)
into their corresponding addresses (which machines can read). See DNS.

NAT: Network address translation. A technique for extending the IP address space that
involves translating between globally understood IP addresses and local-only addresses at
the edge of a network or site.

NDR: Network Data Representation. The data-encoding standard used in the Distrib-
uted Computing Environment (DCE), as defined by the Open Software Foundation.
NDR uses a receiver-makes-right strategy and inserts an architecture tag at the front of
each message.

network-level protocol: A protocol that runs over switched networks, directly above the
link level.

NFS: Network File System. A popular distributed file system developed by Sun Microsys-
tems. NFS is based on SunRPC, an RPC protocol developed by Sun.

NIST: National Institute for Standards and Technology. The official U.S. standardization
body.

node: A generic term used for individual computers that make up a network. Nodes
include general-purpose computers, switches, and routers.
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NRZ: Nonreturn to zero. A bit-encoding scheme that encodes a 1 as the high signal and
a 0 as the low signal.

NRZI: Nonreturn to zero inverted. A bit-encoding scheme that makes a transition from
the current signal to encode a 1 and stays at the current signal to encode a 0.

NSF: National Science Foundation. An agency of the U.S. government that funds sci-
entific research in the United States, including research on networks and on the Internet
infrastructure.

nv: Network video. A videoconferencing application.

OC: Optical carrier. The prefix for various rates of SONET optical transmission. For
example, OC-1 refers to the SONET standard for 51.84-Mbps transmission over fiber.
An OC-n signal differs from an STS-n signal only in that the OC-n signal is scrambled
for optical transmission.

ONC: Open Network Computing. A version of SunRPC that is being standardized for
the Internet.

optical switch: A switching device that forwards optical lightwaves from input port to
output port without converting to electrical format.

OSF: Open Software Foundation. A consortium of computer vendors that have defined
standards for distributed computing, including the NDR presentation format.

OSI: Open Systems Interconnection. The seven-layer network reference model devel-
oped by the ISO. Guides the design of ISO and ITU-T protocol standards.

OSPF: Open Shortest Path First. A routing protocol developed by the IETF for the Inter-
net architecture. OSPF is based on a link-state algorithm, in which every node constructs
a topography of the Internet and uses it to make forwarding decisions. Today known as
Open Group.

overlay: A virtual (logical) network running on top of an existing physical network.
Overlay nodes communicate with each other through tunnels rather than over physical
links. Overlays are often used to deploy new network services since they do not require
the cooperation of the existing network infrastructure.

packet: A data unit sent over a packet-switched network. Also see frame and segment.

packet switching: A general strategy for switching data through a network. Packet
switching uses store-and-forward switching of discrete data units called packets, and im-
plies statistical multiplexing.
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participants: A generic term used to denote the processes, protocols, or hosts that are
sending messages to each other.

PAWS: Protection against wrapped sequence numbers. Engineering transport protocol
with a large enough sequence number space to protect against the numbers wrapping
around on a network where packets can be delayed for a long period of time.

PCS: Personal Communication Services. New digital cellular phone system being de-
ployed throughout the United States and Canada. Similar to GSM, which is being de-
ployed throughout the rest of the world.

PDU: Protocol data unit. Another name for a packet or frame.

peer: A counterpart on another machine that a protocol module interoperates with to
implement some communication service.

peer-to-peer networks: A general class of applications that integrate application logic
(e.g., file storage) with routing. Popular examples include Napster and Gnutella. Re-
search prototypes often use distributed hash tables.

PEM: Privacy Enhanced Mail. Extensions to Internet email that support privacy and
integrity protection. See also PGP.

PGP: Pretty Good Privacy. A collection of public domain software that provides privacy
and authentication capabilities using RSA and that uses a mesh of trust for public key
distribution.

PHB: Per-hop behavior. Behavior of individual routers in the Differentiated Services ar-
chitecture. AF and EF are two proposed PHBs.

physical-level protocol: The lowest layer of the OSI protocol stack. Its main function
is to encode bits onto the signals that are propagated across the physical transmission
media.

piconet: Wireless network spanning short distances (e.g., 10m). Used to connect office
computers (laptops, printers, PDAs, workstations, etc.) without cables.

PIM: Protocol Independent Multicast. A multicast routing protocol that can be built on
top of different unicast routing protocols.

Ping: A Unix utility used to test the RTT to various hosts over the Internet. Ping
sends an ICMP ECHO_REQUEST message, and the remote host sends an ECHO_
RESPONSE message back.
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PIO: Programmed input/output. An approach to connecting hosts to I/O devices, in
which the CPU reads data from and writes data to the I/O device. Also see DMA.

poison reverse: Used in conjunction with split horizon. A heuristic technique to avoid
routing loops in distance-vector routing protocols.

port: A generic term usually used to mean the point at which a network user attaches
to the network. On a switch, a port denotes the input or output on which packets are
received and sent.

POTS: Plain old telephone service. Used to specify the existing phone service, in contrast
to ISDN, ATM, or other technologies that the telephone companies offer now or may
offer in the future.

PPP: Point-to-Point Protocol. Data link protocol typically used to connect computers
over a dial-up line.

process: An abstraction provided by an operating system to enable different operations
to take place concurrently. For example, each user application usually runs inside its own
process, while various operating system functions take place in other processes.

promiscuous mode: A mode of operation for a network adaptor in which it receives all
frames transmitted on the network, not just those addressed to it.

protocol: A specification of an interface between modules running on different ma-
chines, as well as the communication service that those modules implement. The term is
also used to refer to an implementation of the module that meets this specification. To
distinguish between these two uses, the interface is often called a protocol specification.

proxy: An agent sitting between a client and server that intercepts messages and provides
some service. For example, a proxy can “stand in” for a server by responding to client
requests, perhaps using data it has cached, without contacting the server.

pseudoheader: A subset of fields from the IP header that are passed up to transport pro-
tocols TCP and UDP for use in their checksum calculation. The pseudoheader contains
source and destination IP addresses and IP datagram length, thus enabling detection of
corruption of these fields or delivery of a packet to an incorrect address.

public key encryption: Any of several encryption algorithms (e.g., RSA) in which each
participant has a private key (shared with no one else) and a public key (available to
everyone). A secure message is sent to a user by encrypting the data with that user’s
public key; possession of the private key is required to decrypt the message, and so only
the receiver can read it.
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QoS: Quality of service. Packet delivery guarantees provided by a network architecture.
Usually related to performance guarantees, such as bandwidth and delay. The Internet
offers a best-effort delivery service, meaning that every effort is made to deliver a packet
but delivery is not guaranteed.

RED: Random early detection. A queuing discipline for routers in which, when conges-
tion is anticipated, packets are randomly dropped to alert the senders to slow down.

rendezvous point: A router used by PIM to allow receivers to learn about senders.

repeater: A device that propagates electrical signals from one Ethernet cable to another.
There can be a maximum of two repeaters between any two hosts in an Ethernet. Re-
peaters forward signals, whereas bridges forward frames, and routers and switches forward
packets.

REST: Representational State Transfer. An approach to building web services that uses
HTTP as the generic application protocol.

reverse-path broadcast (RPB): A technique used to eliminate duplicate broadcast
packets.

RFC: Request for Comments. Internet reports that contain, among other things, specifi-
cations for protocols like TCP and IP.

RIO: RED with In and Out. A packet drop policy based on RED, but involving two drop
curves: one for packets that have been marked as being “in” profile and one for packets
that have been marked “out” of profile. Designed to be used to implement differentiated
services.

RIP: Routing Information Protocol. An intradomain routing protocol supplied with
Berkeley Unix. Each router running RIP dynamically builds its forwarding table based
on a distance-vector algorithm.

router: A network node connected to two or more networks that forwards packets from
one network to another. Contrast with bridge, repeater, and switch.

routing: The process by which nodes exchange topological information to build correct
forwarding tables. See forwarding, link state, and distance vector.

routing table: See forwarding table.

RPC: Remote Procedure Call. Synchronous request/reply transport protocol used in
many client/server interactions.
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RPR: Resilient Packet Ring. A type of ring network that is mostly used in metropolitan
area networks. See 802.17.

RSA: A public-key encryption algorithm named after its inventors: Rivest, Shamir, and
Adleman.

RSVP: Resource Reservation Protocol. A protocol for reserving resources in the network.
RSVP uses the concept of soft state in routers and puts responsibility for making reserva-
tions on receivers instead of on senders.

RTCP: Real-time Transport Control Protocol. Control protocol associated with RTP.

RTP: Real-time Transport Protocol. An end-to-end protocol used by multimedia appli-
cations that have real-time constraints.

RTT: Round-trip time. The time it takes for a bit of information to propagate from one
end of a link or channel to the other and back again; in other words, double the latency
of the channel.

SAN: Storage area network. A network that spans the components of a computer system
(e.g., display, camera, disk). Includes interfaces like HiPPI and Fibre Channel. Contrast
with LAN, MAN, and WAN.

schema: A specification of how to structure and interpret a set of data. Schema are
defined for XML documents.

scrambling: The process of XORing a signal with a pseudorandom bitstream before
transmission to cause enough signal transitions to allow clock recovery. Scrambling is
used in SONET.

SDP: Session Description Protocol. An application layer protocol used to learn about
the available audio/video channels. It reports the name and purpose of the session, start
and end times for the session, the media types (e.g., audio, video) that comprise the ses-
sion, and detailed information needed to receive the session (e.g., the multicast address,
transport protocol, and port numbers to be used).

segment: A TCP packet. A segment contains a portion of the byte stream that is being
sent by means of TCP.

semaphore: A variable used to support synchronization between processes. Typically
a process blocks on a semaphore while it waits for some other process to signal the
semaphore.

server: The provider of a service in a client/server distributed system.
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SHA: Secure Hash Algorithm. A family of cryptographic hash algorithms.

signalling: At the physical level, denotes the transmission of a signal over some physical
medium. In ATM, signalling refers to the process of establishing a virtual circuit.

silly window syndrome: A condition occurring in TCP that may arise if each time the
receiver opens its receive window a small amount, the sender sends a small segment to
fill the window. The result is many small segments and an inefficient use of bandwidth.

SIP: Session Initiation Protocol. An application layer protocol used in multimedia appli-
cations. It determines the correct device with which to communicate to reach a particular
user, determines if the user is willing or able to take part in a particular communication,
determines the choice of media and coding scheme to use, and establishes session para-
meters (e.g., port numbers).

sliding window: An algorithm that allows the sender to transmit multiple packets (up
to the size of the window) before receiving an acknowledgment. As acknowledgments
are returned for those packets in the window that were sent first, the window “slides”
and more packets may be sent. The sliding window algorithm combines reliable delivery
with a high throughput. See ARQ.

slow start: A congestion-avoidance algorithm for TCP that attempts to pace outgoing
segments. For each ACK that is returned, two additional packets are sent, resulting in an
exponential increase in the number of outstanding segments.

SMDS: Switched Multimegabit Data Service. A service supporting LAN-to-WAN con-
nectivity, offered by some telephone companies.

SMTP: Simple Mail Transfer Protocol. The electronic mail protocol of the Internet.
See 822.

SNA: System Network Architecture. The proprietary network architecture of IBM.

SNMP: Simple Network Management Protocol. An Internet protocol that allows the
monitoring of hosts, networks, and routers.

SOAP: A component of the web services framework for specifying and implementing
application protocols.

socket: The abstraction provided by Unix that provides the application programming
interface (API) to TCP/IP.

soft state: Connection-related information contained in a router that is cached for a
limited period of time rather than being explicitly established (and requiring explicit
teardown) through a connection setup.
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SONET: Synchronous Optical Network. A clock-based framing standard for digital trans-
mission over optical fiber. It defines how telephone companies transmit data over optical
networks.

source routing: Routing decisions performed at the source before the packet is sent. The
route consists of the list of nodes that the packet should traverse on the way to the
destination.

source-specific multicast: A mode of multicast in which a group may have only a single
sender.

sparse mode multicast: A mode used in PIM when relatively few hosts or routers need
to receive multicast data for a certain group.

split horizon: A method of breaking routing loops in a distance-vector routing algo-
rithm. When a node sends a routing update to its neighbors, it does not send those
routes it learned from each neighbor back to that neighbor. Split horizon is used with
poison reverse.

spread spectrum: Encoding technique that involves spreading a signal over a wider fre-
quency than necessary, so as to minimize the impact of interference.

SSL: Secure Socket Layer. A protocol layer that runs over TCP to provide authentication
and encryption of connections. Also known as Transport Layer Security (TLS).

statistical multiplexing: Demand-based multiplexing of multiple data sources over a
shared link or channel.

stop-and-wait: A reliable transmission algorithm in which the sender transmits a packet
and waits for an acknowledgment before sending the next packet. Compare with sliding
window and concurrent logical channels. See also ARQ.

STS: Synchronous Transport Signal. The prefix for various rates of SONET transmis-
sion. For example, STS-1 refers to the SONET standard for 51.84-Mbps transmission.

subnetting: The use of a single IP network address to denote multiple physical networks.
Routers within the subnetwork use a subnet mask to discover the physical network to
which a packet should be forwarded. Subnetting effectively introduces a third level to
the two-level hierarchical IP address.

SunRPC: Remote procedure call protocol developed by Sun Microsystems. SunRPC is
used to support NFS. See also ONC.
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switch: A network node that forwards packets from inputs to outputs based on header
information in each packet. Differs from a router mainly in that it typically does not
interconnect networks of different types.

switching fabric: The component of a switch that directs packets from their inputs to
the correct outputs.

T1: A standard telephone carrier service equal to 24 ISDN circuits, or 1.544 Mbps. Also
called DS1.

T3: A standard telephone carrier service equal to 24 T1 circuits, or 44.736 Mbps. Also
called DS3.

TCP: Transmission Control Protocol. Connection-oriented transport protocol of the In-
ternet architecture. TCP provides a reliable, byte-stream delivery service.

TDMA: Time Division Multiple Access. A form of multiplexing used in cellular wireless
networks. Also the name of a particular wireless standard.

Telnet: Remote terminal protocol of the Internet architecture. Telnet allows you to in-
teract with a remote system as if your terminal is directly connected to that machine.

throughput: The observed rate at which data is sent through a channel. The term is
often used interchangeably with bandwidth.

TLS: Transport Layer Security. Security services that can be layered on top of a transport
protocol like TCP. It is often used by HTTP to perform secure transactions on the World
Wide Web. Derived from SSL.

token bucket: A way to characterize or police the bandwidth used by a flow. Conceptu-
ally, processes accumulate tokens over time, and they must spend a token to transmit a
byte of data and then must stop sending when they have no tokens left. Thus, overall
bandwidth is limited, with the accommodation of some burstiness.

token ring: A physical network technology in which hosts are connected in a ring. A to-
ken (bit pattern) circulates around the ring. A given node must possess the token before
it is allowed to transmit. 802.5 and FDDI are examples of token ring networks.

TP4: OSI Transport Protocol Class 4. The most powerful OSI transport protocol. TP4
is the ISO equivalent of TCP.

transport protocol: An end-to-end protocol that enables processes on different hosts to
communicate. TCP is the canonical example.
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TTL: Time to live. Usually a measure of the number of hops (routers) an IP datagram
can visit before it is discarded.

tunneling: Encapsulating a packet using a protocol that operates at the same layer as the
packet. For example, multicast IP packets are encapsulated inside unicast IP packets to
tunnel across the Internet to implement the MBone. Tunneling will also be used during
the transition from IPv4 to IPv6.

two-dimensional parity: A parity scheme in which bytes are conceptually stacked as a
matrix, and parity is calculated for both rows and columns.

Tymnet: An early network in which a virtual circuit abstraction was maintained across a
set of routers.

UBR: Unspecified bit rate. The “no frills” service class in ATM, offering best-effort cell
delivery. Contrast with ABR, CBR, and VBR.

UDP: User Datagram Protocol. Transport protocol of the Internet architecture that pro-
vides a connectionless datagram service to application-level processes.

UMTS: Universal Mobile Telecommunications System. Cellular wireless standard based
on wideband CDMA that offers relatively high data rates.

unicast: Sending a packet to a single destination host. Contrast with broadcast and
multicast.

URI: Uniform Resource Identifier. A generalization of the URL. Used for example, in
conjunction with SIP to set up audio/visual sessions.

URL: Uniform Resource Locator. A text string used to identify the location of Internet
resources. A typical URL looks like http://www.cisco.com. In this URL, http is the
protocol to use to access the resource located on host www.cisco.com.

vat: Audioconferencing tool used on the Internet that runs over RTP.

VBR: Variable bit rate. One of the classes of service in ATM, intended for applications
with bandwidth requirements that vary with time, such as compressed video. Contrast
with ABR, CBR, and UBR.

VCI: Virtual circuit identifier. An identifier in the header of a packet that is used for
virtual circuit switching. In the case of ATM, the VPI and VCI together identify the
end-to-end connection.

vic: Unix-based videoconferencing tool that uses RTP.
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virtual circuit: The abstraction provided by connection-oriented networks such as ATM.
Messages must usually be exchanged between participants to establish a virtual circuit
(and perhaps to allocate resources to the circuit) before data can be sent. Contrast with
datagram.

virtual clock: A service model that allows the source to reserve resources on routers using
a rate-based description of its needs. Virtual clock goes beyond the best-effort delivery
service of the current Internet.

VPI: Virtual path identifier. An 8-bit or 12-bit field in the ATM header. VPI can be used
to hide multiple virtual connections across a network inside a single virtual “path,” thus
decreasing the amount of connection state that the switches must maintain. See also VCI.

VPN: Virtual private network. A logical network overlaid on top of some existing net-
work. For example, a company with sites around the world may build a virtual network
on top of the Internet rather than lease lines between each site.

WAN: Wide area network. Any physical network technology that is capable of spanning
long distances (e.g., cross-country). Compare with SAN, LAN, and MAN.

weighted fair queuing (WFQ): A variation of fair queuing in which each flow can be
given a different proportion of the network capacity.

well-known port: A port number that is, by convention, dedicated for use by a particular
server. For instance, the Domain Name Server receives messages at well-known UDP and
TCP port 53 on every host.

WSDL: Web Services Description Language. A component of the web services frame-
work for specifying and implementing application protocols.

WWW: World Wide Web. A hypermedia information service on the Internet.

X.25: The ITU packet-switching protocol standard.

X.400: The ITU electronic mail standard. The counterpart to SMTP in the Internet
architecture.

X.500: The ITU directory services standard, which defines an attribute-based naming
service.

X.509: An ITU standard for digital certificates.

XDR: External Data Representation. Sun Microsystems’ standard for machine-independ-
ent data structures. Contrast with ASN.1 and NDR.



768 Glossary

XML: Extensible Markup Language. Defines a syntax for describing data that may be
passed between Internet applications.

XSD: XML Schema Definition. A schema language for defining the format and inter-
pretation of XML objects.

zone: A partition of the domain name hierarchy, corresponding to an administrative
authority that is responsible for that portion of the hierarchy. Each zone must have at
least two name servers to field DNS requests for the zone.
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end-to-end data, 579–85
end-to-end protocols, 443–55
foundation, 55–63
internetworking, 360–79
network security, 634–38
packet switching, 221–31
resource allocation and

congestion control, 527–40
solutions, 729–42

Expedited forwarding (EF) PHB,
517

Explicit congestion notification
(ECN), 488–89

Explicit feedback, 463
Explicit routing, 350–51

network resiliency and, 351
networks requiring, 350
See also Routing

Exponential backoff, 123
Exposed node problem, 139
Extended LANs, 184, 187

with loops, 188
scalability, extending, 193
See also Local area networks

(LANs)
Extensible Authentication

Protocol (EAP), 625
Extensible HyperText Markup

Language (XHTML), 554
Extensible Markup Language. See

XML
Extension headers, 325, 326
Exterior BGP (eBGP), 314, 315
Exterior Gateway Protocol

(EGP), 308
External Data Representation

(XDR), 549–51
defined, 549
example coding, 550
functions, 549–50
integers, 550
performance, 551

F

Fabrics, 210, 214–18
banyan, 216, 217
crossbar, 215
function, 211
scalable, 214
self-routing, 215–17
shared bus, 214–15
shared memory, 215

Fair queuing (FQ), 469–74
bit-by-bit round-robin, 471
defined, 470
example illustration, 472
fairness, 470
implementation, 472
weighted (WFQ), 473–74

work-conserving, 472
See also Queuing

Fair resource allocation, 466–67
Fast Fourier transform (FFT),

562
Fast recovery, 485
Fast retransmit, 483–84

defined, 483
duplicate ACKs, 484, 485
function, 483–84
trace of TCP with, 485
See also Congestion control

FDDI token ring, 124, 130–31
802.5 versus, 130
token rotation time (TRT), 130
See also Token rings

Feedback
explicit, 463
implicit, 463
resource allocation, 462–63

Fiber Distributed Data Interface
(FDDI) protocols, 28–29,
65, 124, 240

packets, 240
packet size, 195
See also FDDI token ring

File Transfer Protocol (FTP), 26,
27

Fine-grained QoS, 505
Firefox web browser, 651
Firewalls, 626–30

defined, 626
demilitarized zone (DMZ),

627–28
filtering, 628
level 4 switches, 628
stateful, 629
stateless, 629
strengths and weaknesses,

629–30
zones of trust, 627

First-in-first-out (FIFO), 13, 467,
468–69

defined, 468
illustrated, 468
priority queuing, 469
problem, 469
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First-in-first-out (FIFO)
(continued)

RED thresholds, 490
as scheduling discipline, 468
tail drop, 468, 469
See also Queuing

Fish networks, 350
Fixed Diffie-Hellman, 612
Flash crowd, 715
FLASH format, 570
Flat data types, 545–46
Flood-and-prune protocols, 332
Flow control

congestion control versus, 458
defined, 385
support, 114

Flows
connectionless, 460–61
defined, 460, 507
with equal average rates, 509
multiple, passing through

router, 461
one-hop, 466
quantitative guarantees of QoS,

462
Flowspecs, 507–9

defined, 507
RSpec, 507
TSpec, 507–8

Foreign agent, 291
Forking, 684
Forward error correction (FEC),

101
Forwarding, 169

assured, 518–22
centralized, 296
datagram, 170–72
destination-based, 344–50
distributed, 296
expedited, 517
routing versus, 266

Forwarding equivalence class
(FEC), 347

Forwarding tables, 170, 252–53
example rows, 267
routing tables versus, 266–67
with subnetting, 302

Forward search algorithm, 281
Fragmentation and reassembly,

200
DCE-RPC support, 424
IP, 239–42

Frame Relay, 179
Frames

CTS, 140
defined, 64
Ethernet, 119–20
multicast, 192
RTS, 140
runt, 122
SONET, 207
WiMAX, 144

Frames (video)
B, 566, 567
combination, 574
defined, 566
I, 566, 567
macroblocks, 567, 568
P, 566, 567
types, 566–69

Framing, 84–91
byte-counting approaches,

86–87
clock-based, 89–91
HDLC, 87–88
PPP, 84–87
problem, 64, 84
sentinel-based approaches,

84–86
SONET, 89–91, 182

Frequency division duplexing
(FDD), 144

Frequency-division multiplexing
(FDM), 12

Frequency hopping, 78
Full-duplex links, 72

G

Gateways, 9
Generalized MPLS (GMPLS),

350
General Packet Radio Service

(GPRS), 146

Global addresses, 248–50
Global Internet, 297–329
Globally unique identifiers, 170
Global unicast addresses, 321–24
Gnutella, 703–5

defined, 703
example topology, 704
QUERY message, 703, 704
software, 703
See also Peer-to-peer networks

Graphical interchange format
(GIF), 542, 560–61

8-bit color images, 560–61
compression ratios, 561

Guaranteed service, 506

H

H.323, 687–88
defined, 687
H.245 protocol, 688
network devices, 687
terminals, 688

Half-duplex links, 72
Handoff, 145
Handshake protocol, 619–21
Hashed message authentication

code (HMAC), 598
Hashing

consistent, 706, 718
modulo, 718

Hash tables, 705
Headers

blocks, 673
defined, 24
prediction, 494

Head-of-line blocking, 213, 214
Heterogeneity, 232, 254, 356
Hidden node problem, 139
Hierarchical aggregation, 254
High-Level Data Link Control

(HDLC), 87–88
bit stuffing, 88
defined, 87–88
frame format, 88

High Performance Parallel
Interface (HiPPI), 15
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High-speed networks, 46–48
HIPERMAN, 144
Home address, 291
Home agent, 291
Hop-by-hop flow control, 178
Host-centric design, 462
Hubs, 118
Huffman codes, 557
HyperText Markup Language

(HTML), 553–54, 643
HyperText Transfer Protocol

(HTTP), 4, 29, 642, 643,
650–56

caching, 656
request messages, 652–53
request operations, 653
response messages, 653–54
result codes, 654
TCP connections, 655–56
URLs, 654–55

I

I frames, 566, 567, 574
Image compression, 561–66
Implicit feedback, 463
Indirect providers, 322
Infrared Data Association (IrDA),

79
Initialization vectors, 591
Input ports, 210, 212
Integrated services, 506–16

admission control, 507, 509–10
best-effort service, 507
controlled load service, 506
deployment, 514–15
flowspecs, 507–9
guaranteed service, 506
mechanisms, 506–7
packet classifying, 513–15
packet scheduling, 507, 513–15
resource reservation, 507
scalability issues, 515–16
service classes, 506
See also Quality of service (QoS)

Integrated Services Digital
Network (ISDN), 75

Interactive applications, 426
Interactive video, 5
Interdomain multicast, 338–39
Interdomain routing, 306–15

challenges, 310
intradomain routing

integration, 313–15
policies, 307
See also Routing

Interfaces
peer, 21, 22
protocol-to-protocol, 37
service, 21, 22
socket, 31, 32
user-network, 199

Interior BGP (iBGP), 314, 315
Interior gateway protocols (IGPs),

267
Internal buffering, 213
Internet, 297–329

applications, 4–5
Border Gateway Protocol

(BGP), 308–15
classless interdomain routing

(CIDR), 303–6
“end user” sites, 297
interdomain routing, 306–15
IPv6, 318–29
multibackbone, 309
routing areas, 316–18
subnetting, 299–303
tree structure (1990), 298

Internet architecture, 28–30
defined, 28
hourglass design philosophy, 30
illustrated, 28
layers, 28–29
working implementations, 30

Internet checksum, 94–95
Internet Control Message

Protocol (ICMP), 262
Internet Corporation for Assigned

Names and Numbers
(ICANN), 659

Internet Group Management
Protocol (IGMP), 331

Internet Message Access Protocol
(IMAP), 649

defined, 649
state transition diagram, 650

Internet Protocol (IP), 29, 219,
232–66

addresses, 248–49
ARP, 254–58
datagram delivery, 236–37
datagram forwarding, 250–54
DHCP, 259–62
error reporting, 262
experimental versions, 696
fragmentation and reassembly,

239–42
global addresses, 248–50
header, 237, 238
header fields, 242
hierarchical addresses, 248
host configuration, 259–62
ICMP, 262
implementation, 242–48
as key tool, 235
logical subnet (LIS), 257
mobile, 291–94
multicast, 329–43
multicast address, 330
normal communication, 330
packet format, 237–39
QoS, 518
“run over anything” ability, 237
scalability, 515
service model, 236–48
version 4 (IPv4), 318, 319
version 6 (IPv6), 232, 318–29
virtual networks and tunnels,

262–66
Internets, 9
Internet Security Association and

Key Management Protocol
(ISAKMP), 623

Internetworking, 232–379
defined, 234–35
global addresses, 248–50
heterogeneity, 232
heterogeneous, 233
Internet, 297–329
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Internetworking (continued)
MPLS, 343–56
multicast, 329–43
routing, 266–97
service model, 236–48
simple, 232–66

Internetworks
defined, 234
illustrated, 235, 236
as network of networks, 234
tunnels through, 264

Interpacket gap, 50
Intradomain routing, 267

defined, 267
integration, 313–15
See also Routing

I/O bus, 69, 209
IP addresses

anycast, 328
global unicast, 321–24
IPv6, 319–24
multicast, 330
notation, 321
not specifying, 35
space exhaustion, 304
variable-length prefix match,

306
See also Addresses

IP Security (IPsec), 622–25
ESP format, 624
transport mode, 623
tunnel mode, 623
See also Security

IP tunnels, 263–366
contacting routers with, 265
defined, 263
downside, 266
illustrated, 264

IPv6, 318–29
128-bit address space, 319
address assignment, 323
address notation, 321
address prefix assignment, 320
address space allocation,

320–21
advanced routing capabilities,

328–29

autoconfiguration, 326–28
deployment, 358
fragmentation extension header,

326
global unicast addresses,

321–24
historical perspective, 318–19
IPv4 transition to, 322–23
MLD, 331
NAT, 327–29
packet format, 324–26
packet header, 325
provider-based unicast address,

324
routing, 319–20
stateless autoconfiguration, 327
See also Internet Protocol (IP)

J

Jacobson/Karels algorithm, 405–6
clock and, 406
introduction, 405
new approach, 405–6
problem, 405

JavaScript Object Notation
(JSON), 677

Jitter, 50
Joint Photographic Experts

Group. See JPEG
compression

JPEG compression, 542, 561–66
block diagram, 561
color images, 565–66
control, 566
DCT phase, 562–63
defined, 561–62
encoding phase, 564–65
phases, 561–62
quantization phase, 563–64
See also Compression

K

Karn/Partridge algorithm, 404–5
Kerberos, 608–11

authentication illustration, 610

authentication server (AS), 610
clients, 609
defined, 608

Key predistribution, 599–604
public keys, 599–601
symmetric keys, 604

Kilo (K), 45
Known plaintext attack, 590

L

Label switching routers (LSRs),
347

ATM switches functioning as,
348

defined, 347
edge routers and, 349

LAN emulation (LANE), 207
LAN emulation configuration

server (LECS), 209
Last-mile links, 74–77

ADSL, 75–76, 77
CATV, 76–77
ISDN, 75
POTS, 74
VDSL, 76, 77
See also Links

Latency, 40–44
bandwidth relationship, 47, 48
components, 42
defined, 40
measurement, 41–42
memory, 70
perceived, 43
pipe length and, 44
propagation delay, 42
queuing delays, 42
speed-of-light, 42
TCP, 438
UDP, 438
unit transmission time, 42

Layering
examples, 20
features, 20–21

Learning bridges, 184–87
illustrated, 184
implementation, 185–87
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Leased lines, 73–74
Lempel-Ziv (LZ) compression,

560–61
Length tags, 548
Lightweight Directory Access

Protocol (LDAP), 663
Link Control Protocol (LCP), 86
Links, 7–10, 71–79

attributes, 71–72
baud rate, 80–81, 82
cable, 72–73
defined, 7
efficient utilization, 198
full-duplex, 72
half-duplex, 72
implementation, 71
last-mile, 74–77
leased line, 73–74
media, 71
multiple-access, 7
network adaptors, 67
point-to-point, 7
SONET, 89, 91
wireless, 77–79

Link-state packets (LSPs), 277–78
defined, 277
flooding of, 279
generation avoidance, 279
information, 277–78
sequence numbers, 279
time to live, 280

Link-state routing, 269, 277–86
defined, 277
example network, 282
LSPs, 277–78
OSPF, 283–86
reliable flooding, 277–80
route calculation, 280–83
routing table, 282
See also Routing

Listen operation, 33
Little-endian form

defined, 544
illustrated, 545

Load balancing, 284
Local area networks (LANs), 14

ATM in, 206–9

designated bridges, 189
extended, 184, 188
shared-media, 183
switches, 183–94
switching, 167

Localization, 149
Local loop, 75
Local traffic, 309
Logical IP subnet (LIS), 257
Lossless compression

algorithms, 559–61
defined, 558
delta encoding, 560
dictionary-based methods,

560–61
differential pulse code

modulation (DPCM),
559–60

Lempel-Ziv (LZ), 560–61
run length encoding (RLE),

559
See also Compression

Lossy compression
algorithms, 557–58
defined, 557
See also Compression

M

Macroblocks, 567, 568
Mail readers, 646, 649
Main profile MPEG-2 stream,

571, 572
Management information base

(MIB), 643
defined, 667
groups, 667
variables, 668

Manchester encoding, 82
Man-in-the-middle attack, 612
Many-to-many communication,

330
Markup languages, 553–57
Master key, 607
Maximum transmission unit

(MTU), 240
MBone, 265

Measured performance, 41
Media access control (MAC), 119

address, 253
token ring, 127–28

Media gateway (MG), 577
Mega (M), 45
Memory bandwidth, 69
Memory latency, 70
MEMS (Microelectromechanical

Systems), 183
Mesh networks, 135
Message authentication code

(MAC), 597–98
Message buffers, 39
Message digest, 596
Message Digest 5 (MD5), 597
Message exchange patterns

(MEPs), 671
Messages

ciphertext, 589
defined, 69
DHCP, 260
example data structure, 40
incoming/outgoing, copying,

39
SDP, 682, 693
SIP session, 685
tagged, 547–48

Message stream channels, 17
Message Stream Protocol (MSP),

22
Metropolitan area networks

(MANs), 14
RPR in, 132
WiMAX, 143

Middleware, 657
MIME, 643–45

image types, 644
messages, 645
pieces, 644

Mobile IP, 289–94
foreign agent, 291
home agent, 291
route optimization, 293–94
security challenges, 294

Mobile networks, 294
Mobility agents, 291
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Modulation, 71
Modulo hashing scheme, 718
Motes, 149
Motion compression, 575–76
Motion estimation, 569
Motion-JPEG, 575
Moving Picture Experts Group.

See MPEG
MP3, 575–76

compression ratios, 576
quantization tables, 576

MPEG, 566–75
computation expense, 570
defined, 566
effectiveness, 569–70
encoding, 569
frame types, 566–69
groups of pictures (GOP),

572–73
main profile, 571, 572
motion estimation, 569
performance, 569–70
stream, packetizing, 574
stream decoding, 567
transmitting over a network,

571–75
video stream format, 571

MPEG-4, 570
Multicast, 329–43

addresses, 120, 330, 331–32
any source (ASM), 331
backbone, 265
defined, 10
distribution trees, 332
end-system, 697–700
frames, 192
implementation, 192
interdomain, 338–39
protocol fate, 341–43
protocol-independent (PIM),

334–38
receiver-driven layered (RLM),

574
routing, 332–43
source-specific (SSM), 331, 340
using, 330

Multicast backbone (MBone),
696

Multicast Listener Discovery
(MLD), 331

Multicast Open Shortest Path
First (MOSPF), 341–42

Multicast Source Discovery
Protocol (MSDP), 338–39

defined, 338
information broadcast, 338–39
operation, 339
peer RP, 339

Multihomed AS, 309
Multimedia applications, 426,

678–93
call control, 687–88
H.323, 687–88
resource allocation, 688–93
SDP, 680–82
session control, 679–86
SIP, 682–86
See also Applications

Multiparty conferencing tool, 426
Multiple-access links, 7
Multiple access with collision

avoidance (MACA), 140
Multiplexing, 25–26

defined, 11
DWDM, 180–81
FDM, 12
multiple logical flows, 11
SONET support, 90
statistical, 12
STDM, 12

Multiprotocol label switching
(MPLS), 233, 343–56

applications, 354
defined, 343–44
deployment, 354–55
destination-based forwarding,

344–50
exact match algorithm, 346
explicit routing, 350–51
forwarding equivalence class

(FEC), 347
generalized (GMPLS), 350
header, 353

label forwarding mechanism,
346

labels, 347, 355
label swapping, 351
label switching routers (LSRs),

347
layer, 348
routers, 344
tunnels, 352–56
VPNs, 352–56

Multistation access unit (MSAU),
126

N

Nagle’s algorithm, 402–3
Name resolution, 663–66

client query, 664
example illustration, 665
See also Domain name system

(DNS)
Name servers, 659–63

hierarchy illustration, 660
levels, 661–62
resource records, 661, 662
zones, 659, 660
See also Domain name system

(DNS)
Namespace, 657
Naming conventions, 663–64
Napster, 702, 703
N-bit chipping code, 78
Needham-Schroeder

authentication protocol,
608, 609

Negative acknowledgments
(NAK), 107

Nethostbyname utility, 33–34
Network adaptors, 67

block diagram, 68
design issues, 68
frames, 68–69
links, 67

Network address translation
(NAT), 327–29, 358

anycast address, 328
boxes, 328, 329
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defined, 327
popularity, 329

Network architectures, 3, 19–30
defined, 19
encapsulation, 24–25
Internet, 28–30
layering, 20–24
multiplexing/demultiplexing,

25–26
OSI, 26–28
protocols, 20–24

Network Data Representation
(NDR), 553

Network designers, 6
Network-induced jitter, 50
Network model, 458–62
Network provider, 7
Networks

applications, 4–6
backbone, 322
building blocks, 2
connectionless, 171–72
connectivity, 7–10
CSMA, 64
defined, 2
direct link, 64–165
Ethernet, 116–24
FDDI, 240
fish, 350
generality, 2
as graphs, 268–69
growth, 50–51
high-speed, 46–48
interconnection, 10
mobile, 294
overlay, 693–719
packet-switched, 459
performance, 40–50
as pipes, 45
requirements, 6–19
resource sharing, 11–14
ring, 124–33
security, 586–638
sensor, 148–49
support for common services,

14–19
switched, 8

virtual circuit, 172–79
wireless, 133–47

Network software
example application, 33–36
implementing, 30–40
sockets, 31–33

Next Generation IP (IPng), 357
Next hop router, 251
NFS (Network File System), 16
Nodes, 7–10, 66–71

addresses, 9
aggregation points, 149
cluster head, 149
defined, 7
exposed, problem, 139
failure, 149
hidden, problem, 139
illustrated, 8
leaf set, 708
mobility, 142
source, 10

Nonforgeability, 588
Nonrepudiation, 587
Nonreturn to zero inverted

(NRZI) encoding, 81–82
Nonreturn to zero (NRZ)

encoding, 80–81
baseline wander, 80
clock recovery, 80–81
defined, 80
illustrated, 81

NSFNET backbone, 298

O

One-to-many communication,
330

Online Certificate Status Protocol
(OCSP), 603

Open issues
application-specific protocols,

441–42
computer networks meet

consumer electronics,
577–78

denial-of-service, 632–33
deployment of IPv6, 358

future of switching, 219
inside versus outside the

network, 525
new network architecture,

720–21
sensor networks, 148–49
ubiquitous networking, 51–52

Open Network Computing RPC
(ONC RPC), 419

Open Shortest Path First Protocol
(OSPF), 283–86

additional hierarchy, 283
authentication of routing

messages, 283
defined, 283
features, 283–84
header format, 284
link-state advertisement, 285
load balancing, 284
message types, 284
routers running, 284
type of service (TOS)

information, 285, 286
See also Link-state routing

Open Systems Interconnection
(OSI) architecture, 26–28,
86

application layer, 27
data link layer, 26
defined, 26
illustrated, 27
network layer, 26
physical layer, 26
presentation layer, 27
transport layer, 27
See also Network architectures

Optical amplifiers, 181
Optical switches, 181–82
Optical switching, 180–83
Organization for the

Advancement of Structured
Information Standards
(OASIS), 676

Orthogonal frequency division
multiplexing (OFDM), 138

Out-of-band data, 407
Output ports, 210
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Overlay nodes, programming,
696

Overlays, 693–719
content distribution, 714–19
end system multicast, 697–700
layered on physical networks,

694
multicast tree embedded in, 699
multiple, 693
ossification and, 695–96
peer-to-peer, 702–14
resilient, 701–2
RON, 701–2
routing, 695–702
routing overlays, 695–702
structured, 705–10
See also Applications

P

Packet exchange diagrams, 103–4
Packets

classifying, 513–15
contention, 167
defined, 13
failures at, 18
FDDI, 240
FIFO, 13
fixed-length, 197
forwarding, 19
fragmented, 242
IP format, 237–39
link-state (LSPs), 277–78
RTCP, 434
RTP, padding, 432
size, 212, 295
unfragmented, 242
variable-length, 196
in virtual circuit networks, 175

Packet scheduling
algorithms, 515
defined, 507, 513
details specification, 514

Packets per second (PPS) rate,
212

Packet-switched networks, 459
defined, 8

store-and-forward, 9
Packet switches. See Switches
Packet switching, 166–231

forwarding and, 168–83
implementation, 208–18
performance, 208–18
source routing, 179–83
virtual circuit, 172–79

Peer interfaces, 21–22
defined, 21
illustrated, 22

Peer-to-peer networks, 702–14
BitTorrent, 710–14
decentralized, 703
Gnutella, 703–5
objects, locating, 710
self-organizing, 703
structured overlays, 705–10
See also Overlays

Performance, 40–50
application needs, 48–50
bandwidth, 40–44
delay × bandwidth product,

44–46
high-speed networks, 46–48
latency, 40–44
measured, 41
mobile networks, 294
MPEG, 569–70
switch, 211–14

Per-hop behaviors (PHBs), 517
assured forwarding (AF),

518–22
expedited forwarding (EF), 517

Periodic updates, 271–72
Permanent virtual circuits

(PVCs), 173
P frames, 566, 567, 574
Piconet, 136, 137
Playback buffer, 428

illustrated, 502
operation, 502

Playback point, 502, 505
Playback time, 501
Point-to-point links, 7
Point-to-Point Protocol (PPP),

84–87

Policies, 717–19
Policing, 510
Polynomial arithmetic modulo 2,

97
Port Mapper, 421
Ports

buffering function, 213
communication, 211
input, 210, 212
output, 210
switch, 210–14

Post Office Protocol (POP), 649
P-persistent algorithm, 121
Presentation format, 542, 544–57

ASN.1, 551–52
conversion strategy, 546–47
data types, 545–46
encoding/decoding, 544
examples, 549–53
NDR, 553
stubs, 548–49
tags, 547–48
taxonomy, 545–49
XDR, 549–51
XML, 553–57
See also Data

Pre-shared key (PSK) mode, 625
Pretty Good Privacy (PGP),

602–3, 613–15
confidentiality, 613
defined, 602
key signing parties, 603
message preparation steps, 614
sender authentication, 613
See also Secure systems

Priority queuing, 469
Private key, 593
Processes, 37
Process models, 37–39

process-per-message, 37–38
process-per-protocol, 37, 38

Profiles, 675–76
Programmed I/O (PIO), 68
Propagation delay

defined, 44
speed-of-light, 42

Protocol graphs
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defined, 22
illustrated example, 23
running switches, 169
SunRPC on UDP, 420

Protocol-independent multicast
(PIM), 334–38

bidirectional (BIDIR-PIM),
341–43

defined, 334
dense mode (PIM-DM), 334
designated router (DR), 335
operation, 336
sender-specific state, 337
shared trees, 335, 337
source-specific multicast

(PIM-SSM), 340
source-specific trees, 335, 338
sparse mode (PIM-SM), 334

Protocols
application-specific, 441–42
asynchronous, 419
defined, 21
family, 32
implementation issues, 37–39
interoperation, 23
services, 31
specifications, 23
synchronous, 419
See also specific protocols

Protocol stacks, 23
Protocol-to-protocol interface, 37
Proxy ARP, 292
Pseudoheader, 383
Pseudowire emulation, 352
Public-key authentication

protocols, 606–7
Public-key certificates, 600
Public-key ciphers, 593–95

ElGamal, 595
RSA, 594–95
speed, 595

Public key infrastructure (PKI),
600

Public keys, 593
authentication with, 595
predistribution, 599–601

Q

Q.2931, 195
Quality of service (QoS),

499–524
application requirements,

500–505
ATM, 521–23
coarse-grained, 505
defined, 14, 500
differentiated services, 516–22
emerging approaches, 524–25
equation-based congestion

control, 522–24
fine-grained, 505
integrated services, 506–16
multiple, 462
quantitative guarantees, 462
RPR support, 132
RSVP, 505, 510–13
virtual circuit network, 178

Quantization
equation, 563–64
phase, 563–64
table, 564

Queuing
DiffServ, 690
disciplines, 467–74
fair (FQ), 469–74
FIFO, 467, 468–69
priority, 469
weighted fair (WFQ), 473–74,

521–22
Quick start, 482, 483

R

Random early detection (RED),
487–93

average queue length
computation, 488–89, 490

DECbit versus, 488
deployment in Internet, 492
drop probability function, 491
early random drop, 488
with explicit feedback scheme,

488

implementation, 487
queue length thresholds, 489,

492
random nature, 492
weighted (WRED), 520–21
See also Congestion avoidance

Rate-based design, 411, 463
Real-time applications, 500

adaptability, 504–5
audio example, 501–3
distinguishing characteristic,

500
intolerant, 503–4
loss tolerance, 503
QoS requirements, 500–505
taxonomy, 503–5
tolerant, 503–4

Real-time Transport Control
Protocol (RTCP), 430,
433–37

in best-effort networks, 688
block statistics, 435–36
canonical name (CNAME)

concept, 434, 436, 437
defined, 433
functions, 433–34
packet contents, 434–35
packet types, 434
reporting frequency, 435
reports, 435
sender report, 435
source description packet, 436
traffic, 435

Real-time Transport Protocol
(RTP), 381, 426–37

Application Level Framing
(ALF), 430

contributing source (CSRC),
433

details, 429–33
formats, 430
header format, 430–33
header format illustration, 431
packets, padding, 432
payload, 430, 431
playback buffer, 428
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Real-time Transport Protocol
(RTP) continued

profiles, 430, 432
protocol stack using, 427
requirements, 428–29
standard protocols, 430
synchronization source (SSRC),

433
Reassembly, IP, 248
Receiver-driven layered multicast

(RLM), 574
Receiver-makes-right, 546, 547
Redirectors, 715–16
RED with In and Out (RIO),

518–20
defined, 518
drop possibilities, 518
effectiveness, 520
packet marking, 519
packet order, 520

Relays, 126
Reliability, 18–19
Reliable byte stream, 384–411
Reliable flooding, 277–80

defined, 277
design goals, 279
illustrated, 279
See also Link-state routing

Remote method invocation
(RMI), 412

Remote Procedure Call (RPC),
381, 411–26

acknowledgments, 416
at-most-once semantics, 418
channel abstraction, 417
components, 413
DCE-RPC, 422–26
functions, 414
fundamentals, 412–19
identifiers, 414–16
implementations, 419–26
layer, 414–15
mechanism illustration, 413
Open Network Computing

(ONC), 419
recurrent challenges, 415
reliability, 418

reliable, timeline, 416, 417
SunRPC, 420–22
as synchronous protocols, 419
timeline, 412
timeouts, 416
zero-or-more semantics, 418
See also End-to-end protocols

Reno algorithm, 494, 495
Repeaters, 181

defined, 117
illustrated, 118

Replay attack, 587, 604
Request/reply channels, 17
Request/Reply Protocol (RRP),

22
communication with peers, 22
demultiplexing key, 26

Request to Send (RTS) frame,
140

Reservation-based design, 462–63
Resilient Overlay Network

(RON), 701–2
defined, 702
scaling, 702

Resilient Packet Ring (RPR),
131–33

buffer insertion, 132
counterrotating optical fiber

rings, 132
in MANs, 132
QoS support, 132

Resource allocation
defined, 458
effective, 464–66
elements, 457
evaluation criteria, 464–67
fair, 466–67
feedback-based, 462–63
host-centric, 462
issues, 458–67
for multimedia applications,

688–93
problem, 456
rate-based, 463
reservation-based, 462–63
router-centric, 462
taxonomy, 462–64

window-based, 463
Resource records, 661, 662
Resource reservation, 507
Resource Reservation Protocol

(RSVP), 505, 510–13
defined, 510
integrated services deployment

and, 514–15
key assumptions, 510
messages, 511, 512
receiver-oriented approach, 511
reservation styles, 513
soft state, 510

Resource sharing, 11–14
REST architecture, 670, 676–78

defined, 676
state representation, 678
states, 678
See also Web Services

Reverse path, 511
Reverse path broadcast (RPB),

333, 334
Reverse path forwarding (RPF),

333
RFC 822, 643–44
Rings, 124–33

defined, 124
dual-fiber, 131
early forms, 125
FDDI, 124, 130–31
features, 124–25
future, 132
IBM Token Ring, 124
illustrated, 125
node failure, 125
RPR, 131–33

RIPQoS, 518
Round-trip time (RTT), 42, 44,

524
channel, 45
defined, 42

Route aggregation, 304, 305
Router-centric design, 462
Routers

area border (ABRs), 316, 317
block diagram, 295
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bottleneck, 459
contacting with tunnels, 265
defined, 9
designated (DR), 335
edge, 349
implementation, 294–97
label switching (LSRs), 347
MPLS-enabled, 344
multiple flows passing through,

461
next hop, 251
PIM-SM, 334
running OSPF, 284
running RIP, 277
sender-specific state, 337
soft state, 510
switches versus, 253

Routing, 266–97
behavior, monitoring, 289–90
congestion control versus, 459
defined, 9, 171
distance vector, 269–77
distributed nature, 269
domains, 267, 307
forwarding versus, 266
interdomain, 306–15
intradomain, 267
IPv6, 319–20
link state, 269–86
metrics, 286–89
for mobile hosts, 289–94
multicast, 332–43
network as graph, 268–69
optimality, 318
OSPF, 283–86
policies, 307
RIP, 275–77
source, 179–83
through banyan network, 217
triangle, 293

Routing areas, 316–18
defined, 316
illustrated, 316

Routing Information Protocol
(RIP), 275–77

defined, 275
example network running, 276

packet format, 276
router running, 277
See also Distance-vector routing

Routing overlays, 695–702
Routing tables, 170

BGP, 315
distance-vector routing, 270,

271
example rows, 267
forwarding tables versus,

266–67
link-state routing, 282
unicast, 333

RSA (Rivest, Shamir, and
Adleman), 594–95

Run length encoding (RLE), 559
Runt frames, 122

S

Satellite communication, 147
Satphones, 147
Scalability, 515–16
Scanning, 141
Schemas, XML, 555
Sdr defined, 6
Secure Hash Algorithm (SHA-1),

597
Secure HTTP (SHTTP), 618–19
Secure Shell (SSH), 615–17

defined, 615
port forwarding, 617
protocols, 616
SSH-CONN, 616, 617
SSH-TRANS, 616

Secure Socket Layer (SSL), 618,
619

Secure systems, 613–26
802.11, 625–26
IPsec, 622–25
PGP, 613–15
SSH, 615–17
transport layer, 618–22

Security, 586–638
authentication protocols,

604–13
authenticators, 595–98
cryptographic tools, 589–98

firewalls, 626–30
key predistribution, 599–604
mobile networks, 294
transport layer, 618–22
wireless, 625–26

Security parameter index (SPI),
623

Segmentation and reassembly
(SAR), 200–205, 295

Segments, 388, 398
Selective acknowledgments, 107,

409
Self-certifying certificates, 601
Self-clocking solution, 402
Self-routing fabrics, 215–16

defined, 215–16
illustrated, 217
scalability, 216–17
See also Fabrics

Semantic gap, 19
Sender-specific state, 337
Sensor networks, 148–49
Separation of concerns, 115
Server-nonce, 620
Servers, 32

ARP, 258
authentication, 626
backend, 714
defined, 17
DHCP, 259, 260
name, 659–63
in network software

implementation, 35–36
surrogates, 714
See also Clients

Service classes, 506
Service interfaces

defined, 21
illustrated, 22

Service model, 236–48, 461–62
best effort, 236, 237
datagram delivery, 236–37
fragmentation and reassembly,

239–42
implementation, 242–48
packet format, 237–39
See also Internet Protocol (IP)
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Session Description Protocol
(SDP), 680–82

defined, 680
information extraction, 681
messages, 682, 693

Session Initiation Protocol (SIP),
682–86

capabilities, 682–83
defined, 682
operation support, 686
proxies, 683–84
registration capabilities, 686
session messages, 685
signaling coordination, 692
URI, 684

Session keys, 599, 631
Shannon’s theorem, 75–76
Shared bus switch, 214–15
Shared memory switch, 215
Shared trees, 335, 337
Signaling, 195

defined, 507
SIP, coordination, 692

Signals
attenuation, 78
defined, 71
encoded, 71

Silly window syndrome, 401, 402
Simple Internet Protocol Plus

(SIPP), 319
Simple Mail Transfer Protocol

(SMTP), 29, 642, 646–48
client, 648
example, 647–48
server, 648
sessions, 647

Simple Network Management
Protocol (SNMP), 289,
642, 666–68

client, 668
defined, 666
MIB, 667

Single probability calculations,
96–97

Sliding window, 105–15
algorithm, 105–8
defined, 105

finite sequence numbers, 108–9
implementation of, 109–14
largest acceptable frame, 106
last acknowledgment received,

105
last frame received, 106, 110
last frame sent, 105
negative acknowledgment, 107
next frame expected, 110
on receiver, 106
receive window size, 106
selective acknowledgments, 107
on sender, 106
send window size, 105

Sliding Window Protocol (SWP),
109

header, 112
protocol-specific

implementation, 111–12
receive side, 111

Slow start, 477–83
defined, 477
packets in transit, 478
phase, 480
run situations, 479
See also Congestion control

Smart dust, 149
SOAP

defined, 670, 672–73
faults, 675
feature abstraction, 673
feature specification, 673
header blocks, 673
intermediary nodes, 674–75
message structure, 674
modules, 674
as standard, 675
use, 673
See also Web Services

Sockets, 31–33
creating, 32
interface, 31, 32

Soft state
defined, 460
of routers, 510

Source-based congestion
avoidance, 493–99

algorithms, 493–94
congestion window versus

observed throughput rate,
496

TCP Vegas, 494–99
See also Congestion avoidance

Source routing, 179–83
in datagram networks, 182
defined, 179
headers, 182
strict/loose, 183
in switched network, 180
in virtual circuit networks, 182

Source-specific multicast (SSM),
340

defined, 331
PIM-SSM, 340

Source-specific trees, 335, 338
Spanning tree

algorithm, 187–92
defined, 188–89
with ports not selected, 190

Spatial reuse, 132
Speed-of-light latency, 42
Split horizon, 273
Spread spectrum techniques,

78–79
Spyware, 630
Star topology, 168
Stateful firewalls, 628
Stateless autoconfiguration, 327
Stateless firewalls, 629
State Transition Diagram (TCP),

391–94
CLOSE state, 393, 394
defined, 392
ESTABLISHED state, 393
illustrated, 392
LISTEN state, 392, 393
semantics, 392
state transition events, 392
syntax, 392–93

Statistical multiplexing, 12–14
defined, 12
upper bound, 12
See also Multiplexing
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Steering, 132
Stop-and-wait algorithm, 102–5

defined, 102
shortcoming, 104
timeline, 104

Storage area networks (SANs), 15
Store-and-forward, 9
Streaming

applications, 426
audio, 4
video, 4

Structured overlays, 705–10
consistent hashing, 706
defined, 705
distributed hash tables (DHTs),

707, 710
nodes, 707–9
objects, locating, 710
probabilistic bound, 710
See also Overlays; Peer-to-peer

networks
Stub AS, 309
Stubs, 548–49
Subnet mask, 300
Subnet number, 300
Subnetting, 299–303

defined, 299
example, 301
forwarding table, 302
multiple subnets, 303
scalability solution, 303

Subscriber stations, 143
SunRPC, 419, 420–22

defined, 420
header formats, 421
implementation, 420
protocol graph, 420
semantics, 422
two-tier identifiers, 420
See also Remote Procedure Call

(RPC)
Suppress-replay attack, 604–5
Swarms, 711
Switched networks

circuit-switched, 8
illustrated, 8
packet-switched, 8, 9

Switched virtual circuits (SVCs),
173

Switches
ATM, 205, 218, 347–48
bridges versus, 252
buffers as delay source, 214
congested, 14, 167
contention problem, 167
crossbar, 215
defined, 9
Ethernet, 207
fabrics, 210, 211, 214–18
implementation, 208–18
input port, 210, 212
LAN, 183–94
link connection, 169
optical, 181–82
packet, 166
performance, 208–18
ports, 210–14
protocol graph running, 169
queues, 196
router versus, 253
shared bus, 214–15
shared memory, 215
star topology, 168
with three input/output ports,

169
throughput, 211–14
workstation as, 210

Symmetric-key authentication,
607–11

Kerberos, 608–11
master key, 607
Needham-Schroeder, 608, 609

Symmetric-key ciphers, 591–93
3DES, 592–93
AES, 593
DES, 591–92

Symmetric keys
encryption/decryption, 589
predistribution, 604

Synchronous Optical Network
(SONET), 89–91

defined, 89
frames, 207
frames out of phase, 91

framing, 182
links, 89, 91
multiplexers, 350
multiplexing support, 90
STS-1 frame, 90, 91

Synchronous protocols, 419
Synchronous time-division

multiplexing (STDM), 12
Systems approach, 640
System throughput, 716

T

Tags, 547–48
architecture, 548
defined, 547
length, 548
type, 548

Tahoe algorithm, 495
TCP-friendly congestion control,

523, 524
TCP/IP architecture. See also

Internet architecture
TCP Vegas, 494–99

calculations, 496–97
congestion avoidance, 496
congestion window decrease,

499
current sending rate, 497
intuition behind, 495
multiplicative decrease, 499
race of congestion-avoidance

mechanism, 499
Thick-net, 117
Thin-net, 117
Threads, 37
Three-way handshake, 390–91

defined, 390
timeline, 391
See also Transmission Control

Protocol (TCP)
Throughput. See Bandwidth
Ticket-granting server (TGS),

610
Time division duplexing (TDD),

144
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Time division multiple access
(TDMA), 146

Timelines, 103–4
reliable RPC, 416, 417
RPC, 412
for sliding window algorithm,

105
for stop-and-wait, 104
three-way handshake, 391

Timeouts, 102
Timestamp, 408
Time to live (TTL), 280, 386
Token holding time (THT), 127
Token Ring, IBM, 124
Token rings

FDDI, 124, 130–31
frame format, 130
IBM, 124
MAC, 127–29
maintenance, 129–30
relay, 126

Token rotation time (TRT), 130
Traceroute tool, 290
Traditional applications, 642–68
Traffic

confidentiality, 586
local, 309
modeling, 213
RTCP, 435
transit, 308, 309

Trailers, 24
Transit AS, 309
Transit traffic, 308, 309
Transmission Control Protocol

(TCP), 4, 29, 384–411
adaptive retransmission, 403–7
advertised window, 394, 397,

409
alternative design choices,

410–11
as byte-oriented protocol,

387–90
byte stream management, 388,

407
byte stream support, 384
congestion control, 385,

477–85

connection establishment/
termination, 390–94

connections, 385, 389, 407
defined, 384
effective window, 397
end-to-end issues, 385–87
explicit connection

establishment phase, 385
explicit setup/teardown phases,

411
extensions, 408–9
faster, 481–83
flow control, 385, 396–99
header format, 388
header length, 441
push operation, 408
receiver buffer, 395
record boundaries, 407–8
reliability through

retransmission, 442
reliable and ordered delivery,

395–96
Reno, 494, 495
for request/reply applications,

410
round-trip latencies, 438
sawtooth pattern, 477
segment format, 387–90
segments, 388, 398
selective acknowledgments, 409
send buffer, 395
state-transition diagram,

391–94
Tahoe, 494, 495
three-way handshake, 390–91
throughput, 482
timeout mechanism, 408
timestamp, 408
transmission trigger, 400–403
Vegas, 494–99
as window-based protocol, 411
window size requirement, 400
wraparound protection,

399–400
Transport Layer Security (TLS),

618–22
defined, 618

handshake protocol, 619–21
premaster secret, 621
record protocol, 619, 621–22

Transport selectors, 421
Triangle routing, 293
Triggered updates, 272
Triple DES (3DES), 592–93
Trivial File Transport Protocol

(TFTP), 29
Tunneling, 322, 323
Tunnels

forwarding ATM cells along,
353

MPLS, 352–56
router contracting with, 265
through internetworks, 264

Two-dimensional parity, 93–94
Type of service (TOS)

information, 285, 286
Type tags, 548

U

Ubiquitous networking, 51
Unicast

addresses, 120, 321–24
defined, 10
routing table, 333
See also Multicast

Uniform resource identifiers
(URIs), 654–55, 684

Uniform Resource Locators
(URLs), 4, 654–55, 716

Universal Mobile
Telecommunications System
(UMTS),
146–47

Unmarshalling, 544
Unreliable service, 237
Unspecified bit rate (UBR), 521,

522
User Datagram Protocol (UDP),

29, 260, 382–84
checksum, 383
defined, 382
header format, 382
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length field, 383
message queue, 384
pseudoheader, 383
round-trip latencies, 438
throughput, 439
See also End-to-end protocols

User-network interface (UNI),
199

V

Variable bit rate – nonreal-time
(VBR-nrt), 521, 522

Variable bit rate – real-time
(VBR-rt), 521, 522

Vat tool, 426
defined, 6
newer versions, 427
user interface, 427

Vegas algorithm, 494–99
calculations, 496–97
congestion avoidance, 496
congestion window decrease,

499
current sending rate, 497
intuition behind, 495
multiplicative decrease, 499
race of congestion-avoidance

mechanism, 499
Very high rate digital subscriber

line (VDSL), 76, 77
Vic, 5–6
Video

application classes, 5
compression, 566–70
interactive, 5
streaming, 4

Videoconferencing, 5
Video-on-demand, 5
Virtual circuit identifiers (VCIs),

173, 205
Virtual circuit networks

ATM, 179
packets in, 175
QoS, 178
source routing in, 182

Virtual circuits (VC), 172

permanent, 173
switched, 173
table entries, 174

Virtual circuit switching, 170,
172–79

buffer allocation, 177
characteristics, 177
connection setup, 172, 173
data transfer, 172
use of, 218

Virtualization, 702
Virtual LANs (VLANs), 193

backbone, 193
header, 194

Virtual paths, 205–6
example, 206
identifier (VPI), 205, 206

Virtual private networks (VPNs),
179, 262–63

defined, 262–63
illustrated, 264
implementation, 694
MPLS, 352–56

Viruses, 630
Voice over IP (VOIP), 52, 426,

689

W

Wavelengths, 71
Wb, 6
Web Services, 668–78

defined, 670
REST, 676–78
SOAP, 670–76
See also Applications

Web Services Description
Language (WSDL)

defined, 670
documents, 672
message exchange patterns

(MEPs), 671
multiple bindings, 672
operation model, 671
parts, 671–72
as standard, 675
use, 671

Weighted fair queuing (WFQ),
473–74, 521–22

Weighted RED (WRED),
520–21

Wide area networks (WANs), 14,
15

Wi-Fi, 79, 137–44
access points (AP), 140, 141
collision avoidance, 138–40
defined, 137–38
distribution system, 140–42
frame format, 142–43
node mobility, 142
physical properties, 138
See also Wireless technologies

Wi-Fi Protected Access 2
(WPA2), 625

WiMAX, 79, 143–44
base stations, 143–44
connections, 144
defined, 143
frames, 144
as MAN, 143
physical layer protocols, 143
subscriber stations, 143
See also Wireless technologies

Window-based design, 463
Wireless links, 1, 77–79

defined, 77
signal attenuation, 78
spread spectrum, 78–79
See also Links

Wireless networks, 133–47
ad hoc, 135
base stations, 133, 134
illustrated, 134
mesh, 135

Wireless security, 625–26
Wireless technologies

Bluetooth, 136–37
cell phone, 145–47
overview, 134
types of, 133
Wi-Fi, 137–43
WiMAX, 143–44
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Withdrawn routes, 312
Work-conserving queuing, 472
Workstations

architecture, 67
as packet switches, 210

Worldwide Interoperability for
Microwave Access. See
WiMAX

Worms, 630

Wrapping, 132
WS-I Basic Profile, 676
WS-I Basic Security Profile, 676

X

XML, 553–57
defined, 554
namespaces, 556–57

Schema Definition (XSD), 555,
556

schemas, 555
syntax, 554

Z

Zero-or-more semantics, 418
Zones, 659, 660
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