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FOREWORD

David D. Clark
Massachusetts Institute of Technology

t is now ten years since this classic book first appeared. Looking back, it is amazing
I what has happened in that time. We have seen the transformation of the Web from

a small experiment to a World Wide phenomenon. We have seen the emergence
of voice over IP and peer-to-peer content sharing. We have seen technology speed up
a hundred-fold, the emergence of broadband to the home, and the rise of botnets and
other horrid security problems. Many things have changed, technology has come and
gone, and (perhaps equally amazing) much of the basics of the Internet are still there.

This book, too, has changed much in ten years, with four editions to keep up. But
the basic value of the book remains the same as the first edition. This book gives you the
facts you need, and puts those facts into the larger context so that the knowledge you
gain will be of value even as the details change. Reading this book informs you about
today and prepares you for tomorrow. One new feature is a set of sidebars that illustrate
the context of ideas being presented in the text—the why of the ideas. Why did an idea
fail? Why did it succeed?

What has changed in the book? Some technologies have faded from sight, and get
less attention in this edition. We bid a fond farewell to FDDI and ATM LANs. Some
technologies have mutated and emerged in new forms. Remote Procedure Call is no
longer a LAN-based low-level invocation mechanism, but the foundation of Internet-
wide Web Services. We welcome gigabit Ethernet, an updated and expanded section on
wireless, and more on router implementation. The material on TCP is up to date, with
discussion of new acknowledgment schemes and extensions for high speed.

With the increasing concern with security, there is a completely revised chapter
with a new emphasis on a systems approach to security, and a discussion of threats and
how to counter them. And at the end, there is a chapter that helps you “put it all to-
gether,” using case studies at the application layer (VOIP, multimedia, and peer to peer)
to show how all the concepts from the previous chapters combine to provide the system
that supports these applications.
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The evolution of networks is not going to slow down. Soon we will be talking
about the impact of television over IB, the collision of the Internet and sensor networks,
and lots of other very new and exciting ideas. But relax—if you read this book today you
will have the insights you need for tomorrow.



FOREWORD TO THE FIRST EDITION

David Clark
Massachusetts Institute of Technology

scientists worship the god of modularity, since modularity brings many benefits,

including the all-powerful benefit of not having to understand all parts of a
problem at the same time in order to solve it. Modularity thus plays a role in presenting
ideas in a book, as well as in writing code. If a book’s material is organized effectively—
modularly—the reader can start at the beginning and actually make it to the end.

The field of network protocols is perhaps unique in that the “proper” modularity
has been handed down to us in the form of an international standard: the seven-layer
reference model of network protocols from the ISO. This model, which reflects a layered
approach to modularity, is almost universally used as a starting point for discussions of

T he term spaghetti code is universally understood as an insult. All good computer

protocol organization, whether the design in question conforms to the model or deviates
from it.

It seems obvious to organize a networking book around this layered model. How-
ever, there is a peril to doing so, because the OSI model is not really successful at organiz-
ing the core concepts of networking. Such basic requirements as reliability, flow control,
or security can be addressed at most, if not all, of the OSI layers. This fact has led to
great confusion in trying to understand the reference model. At times it even requires a
suspension of disbelief. Indeed, a book organized strictly according to a layered model
has some of the attributes of spaghetti code.

Which brings us to this book. Peterson and Davie follow the traditional layered
model, but they do not pretend that this model actually helps in the understanding
of the big issues in networking. Instead, the authors organize discussion of fundamen-
tal concepts in a way that is independent of layering. Thus, after reading the book,
readers will understand flow control, congestion control, reliability enhancement, data
representation, and synchronization, and will separately understand the implications of
addressing these issues in one or another of the traditional layers.

This is a timely book. It looks at the important protocols in use today—especially
the Internet protocols. Peterson and Davie have a long involvement in and much ex-
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perience with the Internet. Thus their book reflects not just the theoretical issues in
protocol design, but the real factors that matter in practice. The book looks at some of
the protocols that are just emerging now, so the reader can be assured of an up-to-date
perspective. But most importantly, the discussion of basic issues is presented in a way
that derives from the fundamental nature of the problem, not the constraints of the lay-
ered reference model or the details of today’s protocols. In this regard, what this book
presents is both timely and timeless. The combination of real-world relevance, current
examples, and careful explanation of fundamentals makes this book unique.



PREFACE

hen the first edition of this book was published in 1996, it was a novelty to

be able to order merchandise on the Internet, and a company that advertised

its domain name was considered cutting edge. Today, Internet commerce
is a fact of life, and “.com” stocks have gone through an entire boom and bust cycle.
A host of new technologies ranging from optical switches to wireless networks are now
becoming mainstream. It seems the only predictable thing about the Internet is constant
change.

Despite these changes the question we asked in the first edition is just as valid
today: What are the underlying concepts and technologies that make the Internet work?
The answer is that much of the TCP/IP architecture continues to function just as was
envisioned by its creators more than 30 years ago. This isn’t to say that the Internet
architecture is uninteresting; quite the contrary. Understanding the design principles that
underly an architecture that has not only survived but fostered the kind of growth and
change that the Internet has seen over the past three decades is precisely the right place
to start. Like the previous editions, the third edition makes the “why” of the Internet
architecture its cornerstone.

Audience

Our intent is that the book should serve as the text for a comprehensive networking
class, at either the graduate or upper-division undergraduate level. We also believe that
the book’s focus on core concepts should be appealing to industry professionals who are
retraining for network-related assignments, as well as current network practitioners who
want to understand the “whys” behind the protocols they work with every day and to see
the big picture of networking.

It is our experience that both students and professionals learning about networks
for the first time often have the impression that network protocols are some sort of edict
handed down from on high, and that their job is to learn as many TLAs (three-letter
acronyms) as possible. In fact, protocols are the building blocks of a complex system
developed through the application of engineering design principles. Moreover, they are
constantly being refined, extended, and replaced based on real-world experience. With
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this in mind, our goal with this book is to do more than survey the protocols in use
today. Instead, we explain the underlying principles of sound network design. We feel
that this grasp of underlying principles is the best tool for handling the rate of change in
the networking field.

Changes in the Fourth Edition

Even though our focus is on the underlying principles of networking, we illustrate these
principles using examples from today’s working Internet. Therefore, we added a signifi-
cant amount of new material to track many of the important recent advances in network-
ing. We also deleted, reorganized, and changed the focus of existing material to reflect
changes that have taken place over the past decade.

Perhaps the most significant change we have noticed since writing the first edition
is that almost every reader now has some familiarity with networked applications such as
the World Wide Web and email. For this reason, we have increased the focus on applica-
tions, starting in the first chapter. We use applications as the motivation for the study of
networking, and to derive a set of requirements that a useful network must meet if it is
to support both current and future applications on a global scale. However, we retain the
problem-solving approach of previous editions that starts with the problem of intercon-
necting hosts and works its way up the layers to conclude with a detailed examination
of application layer issues. We believe it is important to make the topics covered in the
book relevant by starting with applications and their needs. At the same time, we feel
that higher-layer issues, such as application layer and transport layer protocols, are best
understood after the basic problems of connecting hosts and switching packets have been
explained.

As we did in the second and third editions, we have added or increased coverage of
important new topics, and brought other topics up to date. Major new or substantially
updated topics in this edition are:

B Comprehensively revised and updated coverage of security, with a focus on
building secure systems, not just on cryptographic algorithms;

B Expanded and updated coverage of XML (extensible markup language);

B An updated section on overlay networks, including “peer-to-peer” networking
and “content distribution networks”;

B A new section on web services, including the SOAP and REST (Representa-
tional State Transfer) architectures;
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B Updated material on wireless technology, including the 802.11 (WiFi) and
802.16 (WiMAX) standards as well as cellular wireless technologies including
the 3G (third generation) standards;

B Expanded coverage of interdomain routing;

B Expanded coverage on protocols and quality of service for multimedia applica-
tions such as voiceover IP (VOIP) and video streaming;

B Updated coverage of congestion control mechanisms, particularly for high
bandwidth-delay product networks.

In addition, we have added a new feature to this edition: “Where are they now?”
sidebars. These short discussions focus on the success and failure of protocols in the real
world. Sometimes they describe a protocol that most people have written off but which
is actually enjoying unheralded success; other times they trace the fate of a protocol
that failed to thrive over the long run. The goal of these sidebars is to make the material
relevant by showing how technologies have fared in the competitive world of networking.

Approach

For an area that’s as dynamic and changing as computer networks, the most important
thing a textbook can offer is perspective—to distinguish between what’s important and
what’s not, and between what's lasting and what’s superficial. Based on our experience
over the past 20-plus years doing research that has led to new networking technology,
teaching undergraduate and graduate students about the latest trends in networking, and
delivering advanced networking products to market, we have developed a perspective—
which we call the systems approach—that forms the soul of this book. The systems ap-
proach has several implications:

B Rather than accept existing artifacts as gospel, we start first with principles and
walk you through the thought process that led to today’s networks. This allows
us to explain why networks look like they do. It is our experience that once you
understand the underlying concepts, any new protocol that you are confronted
with will be relatively easy to digest.

B Although the material is loosely organized around the traditional network lay-
ers, starting at the bottom and moving up the protocol stack, we do not adopt
a rigidly layerist approach. Many topics—congestion control and security are
good examples—have implications up and down the hierarchy, and so we dis-
cuss them outside the traditional layered model. In short, we believe layering
makes a good servant but a poor master; it's more often useful to take an end-
to-end perspective.
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B Rather than explain how protocols work in the abstract, we use the most im-
portant protocols in use today—many of them from the TCP/IP Internet—to
illustrate how networks work in practice. This allows us to include real-world
experiences in the discussion.

B Although at the lowest levels networks are constructed from commodity hard-
ware that can be bought from computer vendors and communication services
that can be leased from the phone company;, it is the software that allows net-
works to provide new services and adapt quickly to changing circumstances. It is
for this reason that we emphasize how network software is implemented, rather
than stopping with a description of the abstract algorithms involved. We also
include code segments taken from a working protocol stack to illustrate how
you might implement certain protocols and algorithms.

B Networks are constructed from many building-block pieces, and while it is nec-
essary to be able to abstract away uninteresting elements when solving a particu-
lar problem, it is essential to understand how all the pieces fit together to form a
functioning network. We therefore spend considerable time explaining the over-
all end-to-end behavior of networks, not just the individual components, so that
it is possible to understand how a complete network operates, all the way from
the application to the hardware.

B The systems approach implies doing experimental performance studies, and
then using the data you gather both to quantitatively analyze various design
options and to guide you in optimizing the implementation. This emphasis on
empirical analysis pervades the book.

B Networks are like other computer systems—for example, operating systems,
processor architectures, distributed and parallel systems, and so on. They are all
large and complex. To help manage this complexity, system builders often draw
on a collection of design principles. We highlight these design principles as they
are introduced throughout the book, illustrated, of course, with examples from
computer networks.

Pedagogy and Features

The fourth edition retains several features from prior editions, and adds one more, that
we encourage you to take advantage of:

B Problem statements. At the start of each chapter, we describe a problem that
identifies the next set of issues that must be addressed in the design of a network.
This statement introduces and motivates the issues to be explored in the chapter.
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B Shaded sidebars. Throughout the text, shaded sidebars elaborate on the topic be-
ing discussed or introduce a related advanced topic. In many cases, these sidebars
relate real-world anecdotes about networking.

B “Where are they now?” sidebars. These new elements trace the success and failure
of protocols in real-world deployment.

W Highlighted paragraphs. These paragraphs summarize an important nugget of
information that we want you to take away from the discussion, such as a widely
applicable system design principle.

B Real protocols. Even though the book’s focus is on core concepts rather than ex-
isting protocol specifications, real protocols are used to illustrate most of the
important ideas. As a result, the book can be used as a source of reference for
many protocols. To help you find the descriptions of the protocols, each ap-
plicable section heading parenthetically identifies the protocols described in that
section. For example, Section 5.2, which describes the principles of reliable end-
to-end protocols, provides a detailed description of TCP, the canonical example
of such a protocol.

B Open issues. We conclude the main body of each chapter with an important
issue that is currently being debated in the research community, the commercial
world, or society as a whole. We have found that discussing these issues helps to
make the subject of networking more relevant and exciting.

B Recommended reading. These highly selective lists appear at the end of each chap-
ter. Each list generally contains the seminal papers on the topics just discussed.
We strongly recommend that advanced readers (e.g., graduate students) study
the papers in this reading list to supplement the material covered in the chapter.

Road Map and Course Use

The book is organized as follows:

B Chapter 1 introduces the set of core ideas that are used throughout the rest of the
text. Motivated by widespread applications, it discusses what goes into a network
architecture, provides an introduction to protocol implementation issues, and
defines the quantitative performance metrics that often drive network design.

B Chapter 2 surveys a wide range of low-level network technologies, ranging from
Ethernet to token ring to wireless. It also describes many of the issues that
all data link protocols must address, including encoding, framing, and error
detection.
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Chapter 3 introduces the basic models of switched networks (datagrams versus
virtual circuits) and describes two prevalent switching technologies—switched
Ethernet and ATM—in some detail. It also discusses the design of hardware-
based switches.

Chapter 4 introduces internetworking and describes the key elements of the
Internet Protocol (IP). A central question addressed in this chapter is how net-
works that scale to the size of the Internet are able to route packets. Unicast,
multicast, and interdomain routing are covered.

Chapter 5 moves up to the transport level, describing both the Internet’s Trans-
mission Control Protocol (TCP) and Remote Procedure Call (RPC) used to
build client-server applications in detail. The Real-time Transport Protocol
(RTP), which supports multimedia applications, is also described.

Chapter 6 discusses congestion control and resource allocation. The issues in
this chapter cut across both the network level (Chapters 3 and 4) and the trans-
port level (Chapter 5). Of particular note, this chapter describes how congestion
control works in TCP, and it introduces the mechanisms used to provide quality
of service in IP.

Chapter 7 considers the data sent through a network. This includes both the
problems of presentation formatting and data compression. XML is covered
here, and the compression section includes explanations of how MPEG video
compression and MP3 audio compression work.

Chapter 8 discusses network security, beginning with an overview of crypto-
graphic tools, the problems of key distribution, and a discussion of several
authentication techniques using both public and private keys. The main fo-
cus of this chapter is the building of secure systems, using examples including
Pretty Good Privacy (PGP), Secure Shell (SSH), and the IP Security architecture
(IPSEC). Firewalls are also covered here.

Chapter 9 describes a representative sample of network applications and the
protocols they use, including traditional applications like email and the Web,
multimedia applications such as IP telephony and video streaming, and overlay
networks like peer-to-peer file sharing and content distribution networks. The
Web Services architectures for developing new application protocols are also
presented here.

For an undergraduate course, extra class time will most likely be needed to help

students digest the introductory material in the first chapter, probably at the expense
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of the more advanced topics covered in Chapters 6 through 8. Chapter 9 then returns
to the popular topic of network applications. In contrast, the instructor for a graduate
course should be able to cover the first chapter in only a lecture or two—with students
studying the material more carefully on their own—thereby freeing up additional class
time to cover the last four chapters in depth. Both graduate and undergraduate classes
will want to cover the core material contained in the middle four chapters (Chapters
2-5), although an undergraduate class might choose to skim the more advanced sections
(e.g., Sections 2.2, 4.4, and 4.5).

For those of you using the book in self-study, we believe that the topics we have
selected cover the core of computer networking, and so we recommend that the book
be read sequentially, from front to back. In addition, we have included a liberal supply
of references to help you locate supplementary material that is relevant to your specific
areas of interest, and we have included solutions to select exercises.

The book takes a unique approach to the topic of congestion control by pulling all
topics related to congestion control and resource allocation together in a single place—
Chapter 6. We do this because the problem of congestion control cannot be solved at
any one level, and we want you to consider the various design options at the same time.
(This is consistent with our view that strict layering often obscures important design
trade-offs.) A more traditional treatment of congestion control is possible, however, by
studying Section 6.2 in the context of Chapter 3 and Section 6.4 in the context of
Chapter 5.

Exercises

Significant effort has gone into improving the exercises with each new edition. In the
second edition we greatly increased the number of problems and, based on class testing,
dramatically improved their quality. In the third edition we made two other important
changes, which we retained here:

B For those exercises that we felt are particularly challenging or require special
knowledge not provided in the book (e.g., probability expertise), we have added
an icon X to indicate the extra level of difficulty.

B In each chapter we added some extra representative exercises for which worked
solutions are provided at the back of the book. These exercises, marked v/, are
intended to provide some help in tackling the other exercises in the book.

In this edition we have added new exercises to reflect the updated content. The
current set of exercises are of several different styles:
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B Analytical exercises that ask the student to do simple algebraic calculations that
demonstrate their understanding of fundamental relationships.

B Design questions that ask the student to propose and evaluate protocols for
various circumstances.

B Hands-on questions that ask the student to write a few lines of code to test an
idea or to experiment with an existing network utility.

B Library research questions that ask the student to learn more about a particular
toplic.

Also, as described in more detail below, socket-based programming assignments, as
well as simulation labs, are available online.

Supplemental Materials and Online Resources

To assist instructors, we have prepared an instructor’s manual that contains solutions to
selected exercises. The manual is available from the publisher.

Additional support materials, including lecture slides, figures from the text, socket-
based programming assignments, and sample exams and programming assignments are
available through the Morgan Kaufmann website at http://www.mkp.com/pd4e.
We suggest that you visit the page for this book every few weeks, as we will be adding
support materials and establishing links to networking-related sites on a regular basis.

And finally, as with the third edition, a set of laboratory experiments supplement
the book. These labs, developed by Professor Emad Aboelela from the University of
Massachusetts Dartmouth, use simulation to explore the behavior, scalability, and per-
formance of protocols covered in the book. Sections that discuss material covered by the
laboratory exercises are marked with the icon shown in the margin. The simulations use
the OPNET simulation toolset, which is available for free to any one using Computer
Networks in their course.
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Foundation

I must Create a System, or be enslavd by another Man’s; I will not
Reason and Compare: my business is to Create.

—William Blake

uppose you want to build a computer network, one that has the potential to

grow to global proportions and to support applications as diverse as telecon-

ferencing, video-on-demand, electronic commerce, distributed computing, and
digital libraries. What available technologies would serve as the underlying building
blocks, and what kind of software architecture would you design to integrate these
building blocks into an effective com-
PROBLEM munication service? Answering this
question is the overriding goal of
Building a Network this book—to describe the available
building materials and then to show
how they can be used to construct

a network from the ground up.

Before we can understand how to design a computer network, we should
first agree on exactly what a computer network is. At one time, the term nerwork
meant the set of serial lines used to attach dumb terminals to mainframe com-
puters. To some, the term implies the voice telephone network. To others, the
only interesting network is the cable network used to disseminate video signals.
The main thing these networks have in common is that they are specialized to
handle one particular kind of data (keystrokes, voice, or video) and they typically
connect to special-purpose devices (terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks? Prob-
ably the most important characteristic of a computer network is its generality. Com-
puter networks are built primarily from general-purpose programmable hardware, and
they are not optimized for a particular application like making phone calls or deliv-
ering television signals. Instead, they are able to carry many different types of data,
and they support a wide, and ever-growing, range of applications. This chapter looks



at some typical applications of computer networks and discusses
the requirements that a network designer who wishes to support
such applications must be aware of.

Once we understand the requirements, how do we pro-
ceed? Fortunately, we will not be building the first network.
Others, most notably the community of researchers responsible
for the Internet, have gone before us. We will use the wealth
of experience generated from the Internet to guide our design.
This experience is embodied in a nerwork architecture that iden-
tifies the available hardware and software components and shows
how they can be arranged to form a complete network system.

To start us on the road toward understanding how to build
a network, this chapter does four things. First, it explores the re-
quirements that different applications and different communities
of people (such as network users and network operators) place
on the network. Second, it introduces the idea of a network ar-
chitecture, which lays the foundation for the rest of the book.
Third, it introduces some of the key elements in the implemen-
tation of computer networks. Finally, it identifies the key metrics
that are used to evaluate the performance of computer networks.




4 1 Foundation

1.1 Applications

Most people know the Internet through its applications: the World Wide Web, email,
streaming audio and video, chat rooms, and music (file) sharing. The Web, for example,
presents an intuitively simple interface. Users view pages full of textual and graphical
objects, click on objects that they want to learn more about, and a corresponding new
page appears. Most people are also aware that just under the covers, each selectable object
on a page is bound to an identifier for the next page to be viewed. This identifier, called a
Uniform Resource Locator (URL), is used to provide a way of identifying all the possible
pages that can be viewed from your web browser. For example,

http://www.cs.princeton.edu/~llp/index.html

is the URL for a page providing information about one of this book’s authors: the string
http indicates that the HyperText Transfer Protocol (HTTP) should be used to down-
load the page, www.cs.princeton.edu is the name of the machine that serves the
page, and

/~llp/index.html

uniquely identifies Larry’s home page at this site.

What most Web users are not aware of, however, is that by clicking on just one such
URL, as many as 17 messages may be exchanged over the Internet, and this assumes
the page itself is small enough to fit in a single message. This number includes up to
six messages to translate the server name (Www.cs.princeton.edu) into its Internet
address (128.112.136.35), three messages to set up a Transmission Control Protocol
(TCP) connection between your browser and this server, four messages for your browser
to send the HTTP “get” request and the server to respond with the requested page (and
for each side to acknowledge receipt of that message), and four messages to tear down the
TCP connection. Of course, this does not include the millions of messages exchanged
by Internet nodes throughout the day, just to let each other know that they exist and
are ready to serve web pages, translate names to addresses, and forward messages toward
their ultimate destination.

Another widespread application of the Internet is the delivery of “streaming” audio
and video. While an entire video file could first be fetched from a remote machine and
then played on the local machine, similar to the process of downloading and displaying
a web page, this would entail waiting for the last second of the video file to be delivered
before starting to look at it. Streaming video implies that the sender and the receiver
are, respectively, the source and the sink for the video stream. That is, the source gener-
ates a video stream (perhaps using a video capture card), sends it across the Internet in
messages, and the sink displays the stream as it arrives.
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There are a variety of different classes of video applications. One class of video ap-
plication is video-on-demand, which reads a preexisting movie from disk and transmits
it over the network. Another kind of application is videoconferencing, which is in some
ways the more challenging (and, for networking people, interesting) case because it has
very tight timing constraints. Just as when using the telephone, the interactions among
the participants must be timely. When a person at one end gestures, then that action
must be displayed at the other end as quickly as possible. Too much delay makes the
system unusable. Contrast this with video-on-demand where, if it takes several seconds
from the time the user starts the video until the first image is displayed, the service is still
deemed satisfactory. Also, interactive video usually implies that video is flowing in both
directions, while a video-on-demand application is most likely sending video in only one
direction.

One pioneering example of a videoconferencing tool, developed in the early and
mid-1990s, is vic. Figure 1.1 shows the control panel for a Vic session. Vic is actually

bercZchocolale padec. com
182:6.28.26/ipeg
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Figure 1.1 The vic video application. This shot is from a 1995 release of the tool.
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one of a suite of conferencing tools designed at Lawrence Berkeley Laboratory and UC
Berkeley. The others include a whiteboard application (wb) that allows users to send
sketches and slides to each other, a visual audio tool called vat, and a session directory
(sdr) that is used to create and advertise videoconferences. All these tools run on Unix—
hence their lowercase names—and are freely available on the Internet. Many similar tools
are available for other operating systems. It is interesting to note that while video over the
Internet is still considered to be in its relative infancy at the time of this writing (2006),
that the tools to support video over IP have existed for well over a decade.

Although they are just two examples, downloading pages from the Web and partic-
ipating in a videoconference demonstrate the diversity of applications that can be built
on top of the Internet, and hint at the complexity of the Internet’s design. Starting from
the beginning, and addressing one problem at time, the rest of this book explains how
to build a network that supports such a wide range of applications. Chapter 9 concludes
the book by revisiting these two specific applications, as well as several others that have
become popular on today’s Internet.

1.2 Requirements

We have just established an ambitious goal for ourselves: to understand how to build a
computer network from the ground up. Our approach to accomplishing this goal will
be to start from first principles, and then ask the kinds of questions we would naturally
ask if building an actual network. At each step, we will use today’s protocols to illustrate
various design choices available to us, but we will not accept these existing artifacts as
gospel. Instead, we will be asking (and answering) the question of why networks are
designed the way they are. While it is tempting to settle for just understanding the way
it’s done today, it is important to recognize the underlying concepts because networks are
constantly changing as the technology evolves and new applications are invented. It is
our experience that once you understand the fundamental ideas, any new protocol that
you are confronted with will be relatively easy to digest.

The first step is to identify the set of constraints and requirements that influence
network design. Before getting started, however, it is important to understand that the
expectations you have of a network depend on your perspective:

B An application programmer would list the services that his application needs, for
example, a guarantee that each message the application sends will be delivered
without error within a certain amount of time.

B A network designer would list the properties of a cost-effective design, for exam-
ple, that network resources are efficiently utilized and fairly allocated to different
users.
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B A network provider would list the characteristics of a system that is easy to ad-
minister and manage, for example, in which faults can be easily isolated and
where it is easy to account for usage.

This section attempts to distill these different perspectives into a high-level intro-
duction to the major considerations that drive network design, and in doing so, identifies
the challenges addressed throughout the rest of this book.

1.2.1 Connectivity

Starting with the obvious, a network must provide connectivity among a set of comput-
ers. Sometimes it is enough to build a limited network that connects only a few select
machines. In fact, for reasons of privacy and security, many private (corporate) networks
have the explicit goal of limiting the set of machines that are connected. In contrast,
other networks (of which the Internet is the prime example) are designed to grow in a
way that allows them the potential to connect all the computers in the world. A system
that is designed to support growth to an arbitrarily large size is said to scale. Using the
Internet as a model, this book addresses the challenge of scalability.

Links, Nodes, and Clouds

Network connectivity occurs at many different levels. At the lowest level, a network can
consist of two or more computers directly connected by some physical medium, such as
a coaxial cable or an optical fiber. We call such a physical medium a /ink, and we often
refer to the computers it connects as 7zodes. (Sometimes a node is a more specialized piece
of hardware rather than a computer, but we overlook that distinction for the purposes
of this discussion.) As illustrated in Figure 1.2, physical links are sometimes limited to a
pair of nodes (such a link is said to be point-to-point), while in other cases, more than two
nodes may share a single physical link (such a link is said to be multiple-access). Whether

] -

(a) | ]

Figure 1.2 Direct links: (a) point-to-point; (b) multiple-access.
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a given link supports point-to-point or multiple-access connectivity depends on how the
node is attached to the link. It is also the case that multiple-access links are often limited
in size, in terms of both the geographical distance they can cover and the number of
nodes they can connect.

If computer networks were limited to situations in which all nodes are directly
connected to each other over a common physical medium, then networks would either
be very limited in the number of computers they could connect, or the number of wires
coming out of the back of each node would quickly become both unmanageable and
very expensive. Fortunately, connectivity between two nodes does not necessarily imply a
direct physical connection between them—indirect connectivity may be achieved among
a set of cooperating nodes. Consider the following two examples of how a collection of
computers can be indirectly connected.

Figure 1.3 shows a set of nodes, each of which is attached to one or more point-
to-point links. Those nodes that are attached to at least two links run software that
forwards data received on one link out on another. If organized in a systematic way,
these forwarding nodes form a switched network. There are numerous types of switched
networks, of which the two most common are circuit-switched and packet-switched. The
former is most notably employed by the telephone system, while the latter is used for the
overwhelming majority of computer networks and will be the focus of this book. The
important feature of packet-switched networks is that the nodes in such a network send

22 2

Figure 1.3 Switched network.



1.2 Requirements 9

discrete blocks of data to each other. Think of these blocks of data as corresponding to
some piece of application data such as a file, a piece of email, or an image. We call each
block of data either a packet or a message, and for now we use these terms interchangeably;
we discuss the reason they are not always the same in Section 1.2.2.

Packet-switched networks typically use a strategy called store-and-forward. As the
name suggests, each node in a store-and-forward network first receives a complete packet
over some link, stores the packet in its internal memory, and then forwards the com-
plete packet to the next node. In contrast, a circuit-switched network first establishes a
dedicated circuit across a sequence of links and then allows the source node to send a
stream of bits across this circuit to a destination node. The major reason for using packet
switching rather than circuit switching in a computer network is efficiency, discussed in
the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that imple-
ment the network (they are commonly called switches, and their primary function is to
store and forward packets) and the nodes on the outside of the cloud that use the network
(they are commonly called hosts, and they support users and run application programs).
Also note that the cloud in Figure 1.3 is one of the most important icons of computer
networking. In general, we use a cloud to denote any type of network, whether it is a
single point-to-point link, a multiple-access link, or a switched network. Thus, when-
ever you see a cloud used in a figure, you can think of it as a placeholder for any of the
networking technologies covered in this book.

A second way in which a set of computers can be indirectly connected is shown in
Figure 1.4. In this situation, a set of independent networks (clouds) are interconnected
to form an internetwork, or internet for short. We adopt the Internet’s convention of
referring to a generic internetwork of networks as a lowercase 7 internet, and the currently
operational TCP/IP Internet as the capital / Internet. A node that is connected to two or
more networks is commonly called a router or gateway, and it plays much the same role
as a switch—it forwards messages from one network to another. Note that an internet
can itself be viewed as another kind of network, which means that an internet can be
built from an interconnection of internets. Thus, we can recursively build arbitrarily
large networks by interconnecting clouds to form larger clouds.

Just because a set of hosts are directly or indirectly connected to each other does not
mean that we have succeeded in providing host-to-host connectivity. The final require-
ment is that each node must be able to state which of the other nodes on the network
it wants to communicate with. This is done by assigning an address to each node. An
address is a byte string that identifies a node; that is, the network can use a node’s ad-
dress to distinguish it from the other nodes connected to the network. When a source
node wants the network to deliver a message to a certain destination node, it specifies
the address of the destination node. If the sending and receiving nodes are not directly
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Figure 1.4 Interconnection of networks.

connected, then the switches and routers of the network use this address to decide how
to forward the message toward the destination. The process of determining systemati-
cally how to forward messages toward the destination node based on its address is called
routing.

This brief introduction to addressing and routing has presumed that the source
node wants to send a message to a single destination node (unicast). While this is the
most common scenario, it is also possible that the source node might want to broadcast a
message to all the nodes on the network. Or a source node might want to send a message
to some subset of the other nodes, but not all of them, a situation called multicast.
Thus, in addition to node-specific addresses, another requirement of a network is that it
supports multicast and broadcast addresses.

The main idea to take away from this discussion is that we can define a network
recursively as consisting of two or more nodes connected by a physical link, or as two
or more networks connected by a node. In other words, a network can be constructed
from a nesting of networks, where at the bottom level, the network is implemented by
some physical medium. One of the key challenges in providing network connectivity is
to define an address for each node that is reachable on the network (including support
for broadcast and multicast connectivity), and to be able to use this address to route
messages toward the appropriate destination node(s).
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1.2.2 Cost-Effective Resource Sharing

As stated above, this book focuses on packet-switched networks. This section explains the
key requirement of computer networks—efficiency—that leads us to packet switching as
the strategy of choice.

Given a collection of nodes indirectly connected by a nesting of networks, it is
possible for any pair of hosts to send messages to each other across a sequence of links
and nodes. Of course, we want to do more than support just one pair of communicating
hosts—we want to provide all pairs of hosts with the ability to exchange messages. The
question, then, is how do all the hosts that want to communicate share the network,
especially if they want to use it at the same time? And, as if that problem isnt hard
enough, how do several hosts share the same /ink when they all want to use it at the same
time?

To understand how hosts share a network, we need to introduce a fundamental
concept, multiplexing, which means that a system resource is shared among multiple
users. At an intuitive level, multiplexing can be explained by analogy to a timesharing
computer system, where a single physical CPU is shared (multiplexed) among multiple
jobs, each of which believes it has its own private processor. Similarly, data being sent by
multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5,
where the three hosts on the left side of the network (senders S1-S3) are sending data to
the three hosts on the right (receivers R1-R3) by sharing a switched network that con-
tains only one physical link. (For simplicity, assume that host S1 is sending data to host
R1, and so on.) In this situation, three flows of data—corresponding to the three pairs
of hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed
back into separate flows by switch 2. Note that we are being intentionally vague about

R1

)
"

\
|

> R2
Switch 2 IE]

R3

Figure 1.5 Multiplexing multiple logical flows over a single physical link.
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exactly what a “flow of data” corresponds to. For the purposes of this discussion, assume
that each host on the left has a large supply of data that it wants to send to its counterpart
on the right.

There are several different methods for multiplexing multiple flows onto one phys-
ical link. One common method is synchronous time-division multiplexing (STDM). The
idea of STDM is to divide time into equal-sized quanta and, in a round-robin fashion,
give each flow a chance to send its data over the physical link. In other words, during
time quantum 1, data from S1 to R1 is transmitted; during time quantum 2, data from
S2 to R2 is transmitted; in quantum 3, S3 sends data to R3. At this point, the first flow
(81 to R1) gets to go again, and the process repeats. Another method is frequency-division
multiplexing (FDM). The idea of FDM is to transmit each flow over the physical link at
a different frequency, much the same way that the signals for different TV stations are
transmitted at a different frequency on a physical cable TV link.

Although simple to understand, both STDM and FDM are limited in two ways.
First, if one of the flows (host pairs) does not have any data to send, its share of the phys-
ical link—that is, its time quantum or its frequency—remains idle, even if one of the
other flows has data to transmit. For example, S3 had to wait its turn behind S1 and S2
in the previous paragraph, even if S1 and S2 had nothing to send. For computer commu-
nication, the amount of time that a link is idle can be very large—for example, consider
the amount of time you spend reading a web page (leaving the link idle) compared to
the time you spend fetching the page. Second, both STDM and FDM are limited to
situations in which the maximum number of flows is fixed and known ahead of time. It
is not practical to resize the quantum or to add additional quanta in the case of STDM
or to add new frequencies in the case of FDM.

The form of multiplexing that we make most use of in this book is called statistical
multiplexing. Although the name is not all that helpful for understanding the concept,
statistical multiplexing is really quite simple, with two key ideas. First, it is like STDM
in that the physical link is shared over time—first data from one flow is transmitted
over the physical link, then data from another flow is transmitted, and so on. Unlike
STDM, however, data is transmitted from each flow on demand rather than during a
predetermined time slot. Thus, if only one flow has data to send, it gets to transmit that
data without waiting for its quantum to come around and thus without having to watch
the quanta assigned to the other flows go by unused. It is this avoidance of idle time that
gives packet switching its efficiency.

As defined so far, however, statistical multiplexing has no mechanism to ensure that
all the flows eventually get their turn to transmit over the physical link. That is, once a
flow begins sending data, we need some way to limit the transmission, so that the other
flows can have a turn. To account for this need, statistical multiplexing defines an upper
bound on the size of the block of data that each flow is permitted to transmit at a given
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time. This limited-size block of data is typically referred to as a packet, to distinguish it
from the arbitrarily large message that an application program might want to transmit.
Because a packet-switched network limits the maximum size of packets, a host may not
be able to send a complete message in one packet. The source may need to fragment
the message into several packets, with the receiver reassembling the packets back into the
original message.

In other words, each flow sends a sequence of packets over the physical link, with
a decision made on a packet-by-packet basis as to which flow’s packet to send next.
Notice that if only one flow has data to send, then it can send a sequence of packets
back-to-back. However, should more than one of the flows have data to send, then their
packets are interleaved on the link. Figure 1.6 depicts a switch multiplexing packets from
multiple sources onto a single shared link.

The decision as to which packet to send next on a shared link can be made in a
number of different ways. For example, in a network consisting of switches intercon-
nected by links such as the one in Figure 1.5, the decision would be made by the switch
that transmits packets onto the shared link. (As we will see later, not all packet-switched
networks actually involve switches, and they may use other mechanisms to determine
whose packet goes onto the link next.) Each switch in a packet-switched network makes
this decision independently, on a packet-by-packet basis. One of the issues that faces a
network designer is how to make this decision in a fair manner. For example, a switch
could be designed to service packets on a first-in-first-out (FIFO) basis. Another ap-
proach would be to transmit the packets from each of the different flows that are cur-
rently sending data through the switch in a round-robin manner. This might be done to

Figure 1.6 A switch multiplexing packets from multiple sources onto one shared link.
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ensure that certain flows receive a particular share of the link’s bandwidth, or that they
never have their packets delayed in the switch for more than a certain length of time.
A network that attempts to allocate bandwidth to particular flows is sometimes said to
support guality of service (QoS), a topic that we return to in Chapter 6.

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming
packet streams onto one outgoing link, it is possible that the switch will receive packets
faster than the shared link can accommodate. In this case, the switch is forced to buffer
these packets in its memory. Should a switch receive packets faster than it can send them
for an extended period of time, then the switch will eventually run out of buffer space,
and some packets will have to be dropped. When a switch is operating in this state, it is
said to be congested.

The bottom line is that statistical multiplexing defines a cost-effective way for mul-
tiple users (e.g., host-to-host flows of data) to share network resources (links and nodes)
in a fine-grained manner. It defines the packet as the granularity with which the links of
the network are allocated to different flows, with each switch able to schedule the use of
the physical links it is connected to on a per-packet basis. Fairly allocating link capacity
to different flows and dealing with congestion when it occurs are the key challenges of
statistical multiplexing.

1.2.3 Support for Common Services

While the previous section outlined the

SANSs, LANs, MANs, and WANs

challenges involved in providing cost-

effective connectivity among a group of
hosts, it is overly simplistic to view a com-
puter network as simply delivering pack-
ets among a collection of computers. It
is more accurate to think of a network
as providing the means for a set of appli-
cation processes that are distributed over
those computers to communicate. In other
words, the next requirement of a computer
network is that the application programs
running on the hosts connected to the net-
work must be able to communicate in a
meaningful way.

When two application programs
need to communicate with each other,

One way to characterize networks
is according to their size. Two well-
known examples are local area net-
works (LANSs) and wide area networks
(WANs); the former typically extend
less than 1 km, while the latter can be
worldwide. Other networks are clas-
sified as metropolitan area networks
(MANs), which usually span tens of
kilometers. The reason such classifi-
cations are interesting is that the size
of a network often has implications
for the underlying technology that can
be used, with a key factor being the
amount of time it takes for data to



propagate from one end of the net-
work to the other; we discuss this is-
sue more in later chapters.

An interesting historical note
is that the term “wide area network”
was not applied to the first WANs
because there was no other sort of
network to differentiate them from.
When computers were incredibly rare
and expensive, there was no point in
thinking about how to connect all
the computers in the local area—there
was only one computer in that area.
Only as computers began to prolifer-
ate did LANs become necessary, and
the term “WAN” was then introduced
to describe the larger networks that
interconnected geographically distant
computers.

Another kind of network that
we need to be aware of is a storage
area network (SAN). SANs are usually
confined to a single room and con-
nect the various components of a large
computing system, such as disk arrays
and servers. For example, High Per-
formance Parallel Interface (HiPPI)
and Fiber Channel are two common
SAN technologies used to connect
massively parallel processors to scal-
able storage servers and data vaults.
Although this book does not describe
such networks in detail, they are
worth knowing about because they
are often at the leading edge in terms
of performance, and because it is in-
creasingly common to connect such

networks into LANs and WANS.
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there are a lot of complicated things that
need to happen beyond simply sending a
message from one host to another. One
option would be for application design-
ers to build all that complicated func-
tionality into each application program.
However, since many applications need
common services, it is much more logical
to implement those common services once
and then to let the application designer
build the application using those services.
The challenge for a network designer is to
identify the right set of common services.
The goal is to hide the complexity of
the network from the application with-
out overly constraining the application
designer.

Intuitively, we view the network
as providing logical channels over which
application-level processes can communi-
cate with each other; each channel pro-
vides the set of services required by that
application. In other words, just as we use
a cloud to abstractly represent connectivity
among a set of computers, we now think
of a channel as connecting one process
to another. Figure 1.7 shows a pair of
application-level processes communicating
over a logical channel that is, in turn, im-
plemented on top of a cloud that connects
a set of hosts. We can think of the channel
as being like a pipe connecting two appli-
cations, so that a sending application can
put data in one end and expect that data
to be delivered by the network to the ap-
plication at the other end of the pipe.

The challenge is to recognize what
functionality the channels should pro-
vide to application programs. For example,
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Figure 1.7 Processes communicating over an abstract channel.

does the application require a guarantee that messages sent over the channel are delivered,
or is it acceptable if some messages fail to arrive? Is it necessary that messages arrive at the
recipient process in the same order in which they are sent, or does the recipient not care
about the order in which messages arrive? Does the network need to ensure that no third
parties are able to eavesdrop on the channel, or is privacy not a concern? In general, a
network provides a variety of different types of channels, with each application selecting
the type that best meets its needs. The rest of this section illustrates the thinking involved
in defining useful channels.

Identifying Common Communication Patterns

Designing abstract channels involves first understanding the communication needs of a
representative collection of applications, then extracting their common communication
requirements, and finally incorporating the functionality that meets these requirements
in the network.

One of the earliest applications supported on any network is a file access program
like FTP (File Transfer Protocol) or NFS (Network File System). Although many details
vary—for example, whether whole files are transferred across the network or only single
blocks of the file are read/written at a given time—the communication component of
remote file access is characterized by a pair of processes, one that requests that a file be
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read or written and a second process that honors this request. The process that requests
access to the file is called the c/ient, and the process that supports access to the file is
called the server.

Reading a file involves the client sending a small request message to a server and the
server responding with a large message that contains the data in the file. Writing works
in the opposite way—the client sends a large message containing the data to be written
to the server, and the server responds with a small message confirming that the write to
disk has taken place. A digital library, as exemplified by the World Wide Web, is another
application that behaves in a similar way: a client process makes a request, and a server
process responds by returning the requested data.

Using file access, a digital library, and the two video applications described in the
Preface (videoconferencing and video-on-demand) as a representative sample, we might
decide to provide the following two types of channels: request/reply channels and message
stream channels. The request/reply channel would be used by the file transfer and digital
library applications. It would guarantee that every message sent by one side is received
by the other side and that only one copy of each message is delivered. The request/reply
channel might also protect the privacy and integrity of the data that flows over it, so that
unauthorized parties cannot read or modify the data being exchanged between the client
and server processes.

The message stream channel could be used by both the video-on-demand and
videoconferencing applications, provided it is parameterized to support both one-way
and two-way traffic and to support different delay properties. The message stream chan-
nel might not need to guarantee that all messages are delivered, since a video application
can operate adequately even if some video frames are not received. It would, however,
need to ensure that those messages that are delivered arrive in the same order in which
they were sent, to avoid displaying frames out of sequence. Like the request/reply chan-
nel, the message stream channel might want to ensure the privacy and integrity of the
video data. Finally, the message stream channel might need to support multicast, so that
multiple parties can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest number of
abstract channel types that can serve the largest number of applications, there is a danger
in trying to get away with too few channel abstractions. Simply stated, if you have a
hammer, then everything looks like a nail. For example, if all you have are message stream
and request/reply channels, then it is tempting to use them for the next application
that comes along, even if neither type provides exactly the semantics needed by the
application. Thus, network designers will probably be inventing new types of channels—
and adding options to existing channels—for as long as application programmers are
inventing new applications.
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Also note that independent of exactly what functionality a given channel provides,
there is the question of where that functionality is implemented. In many cases, it is eas-
iest to view the host-to-host connectivity of the underlying network as simply providing
a bit pipe, with any high-level communication semantics provided at the end hosts. The
advantage of this approach is it keeps the switches in the middle of the network as simple
as possible—they simply forward packets—but it requires the end hosts to take on much
of the burden of supporting semantically rich process-to-process channels. The alterna-
tive is to push additional functionality onto the switches, thereby allowing the end hosts
to be “dumb” devices (e.g., telephone handsets). We will see this question of how various
network services are partitioned between the packet switches and the end hosts (devices)
as a recurring issue in network design.

Reliability

As suggested by the examples just considered, reliable message delivery is one of the
most important functions that a network can provide. It is difficult to determine how
to provide this reliability, however, without first understanding how networks can fail.
The first thing to recognize is that computer networks do not exist in a perfect world.
Machines crash and later are rebooted, fibers are cut, electrical interference corrupts bits
in the data being transmitted, switches run out of buffer space, and if these sorts of
physical problems aren’t enough to worry about, the software that manages the hardware
sometimes forwards packets into oblivion. Thus, a major requirement of a network is
to recover from certain kinds of failures, so that application programs don’t have to deal
with them, or even be aware of them.

There are three general classes of failure that network designers have to worry
about. First, as a packet is transmitted over a physical link, i errors may be introduced
into the data; that is, a 1 is turned into a 0 or vice versa. Sometimes single bits are
corrupted, but more often than not, a burst error occurs—several consecutive bits are
corrupted. Bit errors typically occur because outside forces, such as lightning strikes,
power surges, and microwave ovens, interfere with the transmission of data. The good
news is that such bit errors are fairly rare, affecting on average only one out of every 10°
to 107 bits on a typical copper-based cable and one out of every 10'? to 10'# bits on a
typical optical fiber. As we will see, there are techniques that detect these bit errors with
high probability. Once detected, it is sometimes possible to correct for such errors—if
we know which bit or bits are corrupted, we can simply flip them—while in other cases
the damage is so bad that it is necessary to discard the entire packet. In such a case, the
sender may be expected to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level; that is, a
complete packet is lost by the network. One reason this can happen is that the packet
contains an uncorrectable bit error and therefore has to be discarded. A more likely
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reason, however, is that one of the nodes that has to handle the packet—for example,
a switch that is forwarding it from one link to another—is so overloaded that it has
no place to store the packet, and therefore is forced to drop it. This is the problem of
congestion mentioned in Section 1.2.2. Less commonly, the software running on one
of the nodes that handles the packet makes a mistake. For example, it might incorrectly
forward a packet out on the wrong link, so that the packet never finds its way to the
ultimate destination. As we will see, one of the main difficulties in dealing with lost
packets is distinguishing between a packet that is indeed lost and one that is merely late
in arriving at the destination.

The third class of failure is at the node and link level; that is, a physical link is cut,
or the computer it is connected to crashes. This can be caused by software that crashes,
a power failure, or a reckless backhoe operator. Failures due to misconfiguration of a
network device are also common. While any of these failures can eventually be corrected,
they can have a dramatic effect on the network for an extended period of time. However,
they need not totally disable the network. In a packet-switched network, for example,
it is sometimes possible to route around a failed node or link. One of the difficulties in
dealing with this third class of failure is distinguishing between a failed computer and
one that is merely slow, or in the case of a link, between one that has been cut and one
that is very flaky and therefore introducing a high number of bit errors.

The key idea to take away from this discussion is that defining useful channels
involves both understanding the applications’ requirements and recognizing the limita-
tions of the underlying technology. The challenge is to fill in the gap between what the
application expects and what the underlying technology can provide. This is sometimes
called the semantic gap.

1.3 Network Architecture

In case you hadn’t noticed, the previous section established a pretty substantial set of
requirements for network design—a computer network must provide general, cost-
effective, fair, and robust connectivity among a large number of computers. As if this
weren't enough, networks do not remain fixed at any single point in time, but must
evolve to accommodate changes in both the underlying technologies upon which they
are based as well as changes in the demands placed on them by application programs.
Designing a network to meet these requirements is no small task.

To help deal with this complexity, network designers have developed general
blueprints—usually called nezwork architectures—that guide the design and implemen-
tation of networks. This section defines more carefully what we mean by a network ar-
chitecture by introducing the central ideas that are common to all network architectures.
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It also introduces two of the most widely referenced architectures—the OSI architecture
and the Internet architecture.

1.3.1 Layering and Protocols

When a system gets complex, the system designer introduces another level of abstraction.
The idea of an abstraction is to define a unifying model that can capture some important
aspect of the system, encapsulate this model in an object that provides an interface that
can be manipulated by other components of the system, and hide the details of how
the object is implemented from the users of the object. The challenge is to identify
abstractions that simultaneously provide a service that proves useful in a large number
of situations and that can be efficiently implemented in the underlying system. This is
exactly what we were doing when we introduced the idea of a channel in the previous
section: We were providing an abstraction for applications that hides the complexity of
the network from application writers.

Abstractions naturally lead to layering, especially in network systems. The general
idea is that you start with the services offered by the underlying hardware, and then
add a sequence of layers, each providing a higher (more abstract) level of service. The
services provided at the high layers are implemented in terms of the services provided by
the low layers. Drawing on the discussion of requirements given in the previous section,
for example, we might imagine a simple network as having two layers of abstraction
sandwiched between the application program and the underlying hardware, as illustrated
in Figure 1.8. The layer immediately above the hardware in this case might provide host-
to-host connectivity, abstracting away the fact that there may be an arbitrarily complex
network topology between any two hosts. The next layer up builds on the available host-
to-host communication service and provides support for process-to-process channels,
abstracting away the fact that the network occasionally loses messages, for example.

Layering provides two nice features. First, it decomposes the problem of building
a network into more manageable components. Rather than implementing a monolithic
piece of software that does everything you will ever want, you can implement several

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Figure 1.8 Example of a layered network system.
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Figure 1.9 Layered system with alternative abstractions available at a given layer.

layers, each of which solves one part of the problem. Second, it provides a more modular
design. If you decide that you want to add some new service, you may only need to
modify the functionality at one layer, reusing the functions provided at all the other
layers.

Thinking of a system as a linear sequence of layers is an oversimplification, however.
Many times there are multiple abstractions provided at any given level of the system,
each providing a different service to the higher layers but building on the same low-level
abstractions. To see this, consider the two types of channels discussed in Section 1.2.3:
One provides a request/reply service and one supports a message stream service. These
two channels might be alternative offerings at some level of a multilevel networking
system, as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready to discuss the
architecture of a network more precisely. For starters, the abstract objects that make up
the layers of a network system are called protocols. That is, a protocol provides a com-
munication service that higher-level objects (such as application processes, or perhaps
higher-level protocols) use to exchange messages. For example, we could imagine a net-
work that supports a request/reply protocol and a message stream protocol, correspond-
ing to the request/reply and message stream channels discussed above.

Each protocol defines two different interfaces. First, it defines a service interface to
the other objects on the same computer that want to use its communication services. This
service interface defines the operations that local objects can perform on the protocol.
For example, a request/reply protocol would support operations by which an application
can send and receive messages. An implementation of the HT'TP protocol could support
an operation to fetch a page of hypertext from a remote server. An application such as
a web browser would invoke such an operation whenever the browser needs to obtain a
new page, for example, when the user clicks on a link in the currently displayed page.

Second, a protocol defines a peer interface to its counterpart (peer) on another
machine. This second interface defines the form and meaning of messages exchanged
between protocol peers to implement the communication service. This would determine
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Figure 1.10 Service and peer interfaces.

the way in which a request/reply protocol on one machine communicates with its peer on
another machine. In the case of HTTD, for example, the protocol specification defines
in detail how a “GET” command is formatted, what arguments can be used with the
command, and how a web server should respond when it receives such a command. (We
will look more closely at this particular protocol in Section 9.1.2.)

To summarize, a protocol defines a communication service that it exports locally
(the service interface), along with a set of rules governing the messages that the protocol
exchanges with its peer(s) to implement this service (the peer interface). This situation is
illustrated in Figure 1.10.

Except at the hardware level where peers directly communicate with each other
over a link, peer-to-peer communication is indirect—each protocol communicates with
its peer by passing messages to some lower-level protocol, which in turn delivers the
message to izs peer. In addition, there are potentially multiple protocols at any given
level, each providing a different communication service. We therefore represent the suite
of protocols that make up a network system with a prorocol graph. The nodes of the graph
correspond to protocols, and the edges represent a depends on relation. For example,
Figure 1.11 illustrates a protocol graph for the hypothetical layered system we have been
discussing—the protocols Request/Reply Protocol (RRP) and Message Stream Protocol
(MSP) implement two different types of process-to-process channels, and both depend
on Host-to-Host Protocol (HHP), which provides a host-to-host connectivity service.

In this example, suppose that the file access program on host 1 wants to send a
message to its peer on host 2 using the communication service offered by protocol RRP.
In this case, the file application asks RRP to send the message on its behalf. To commu-
nicate with its peer, RRP then invokes the services of HHE which in turn transmits the
message to its peer on the other machine. Once the message has arrived at protocol HHP
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Figure 1.11 Example of a protocol graph.

on host 2, HHP passes the message up to RRP, which in turn delivers the message to the
file application. In this particular case, the application is said to employ the services of
the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it refers to
the abstract interfaces—that is, the operations defined by the service interface and the
form and meaning of messages exchanged between peers—and sometimes it refers to
the module that actually implements these two interfaces. To distinguish between the
interfaces and the module that implements these interfaces, we generally refer to the for-
mer as a protocol specification. Specifications are generally expressed using a combination
of prose, pseudocode, state transition diagrams, pictures of packet formats, and other
abstract notations. It should be the case that a given protocol can be implemented in
different ways by different programmers, as long as each adheres to the specification.
The challenge is ensuring that two different implementations of the same specification
can successfully exchange messages. Two or more protocol modules that do accurately
implement a protocol specification are said to interoperate with each other.
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We can imagine many different protocols and protocol graphs that satisfy the com-
munication requirements of a collection of applications. Fortunately, there exist stan-
dardization bodies, such as the International Standards Organization (ISO) and the In-
ternet Engineering Task Force (IETF), that establish policies for a particular protocol
graph. We call the set of rules governing the form and content of a protocol graph a
network architecture. Although beyond the scope of this book, standardization bodies
such as the ISO and the IETF have established well-defined procedures for introducing,
validating, and finally approving protocols in their respective architectures. We briefly
describe the architectures defined by the ISO and the IETF shortly, but first there are
two additional things we need to explain about the mechanics of a protocol graph.

Encapsulation

Consider what happens in Figure 1.11 when one of the application programs sends a
message to its peer by passing the message to protocol RRP. From RRP’s perspective, the
message it is given by the application is an uninterpreted string of bytes. RRP does not
care that these bytes represent an array of integers, an email message, a digital image, or
whatever; it is simply charged with sending them to its peer. However, RRP must com-
municate control information to its peer, instructing it how to handle the message when
it is received. RRP does this by attaching a header to the message. Generally speaking,
a header is a small data structure—from a few bytes to a few dozen bytes—that is used
among peers to communicate with each other. As the name suggests, headers are usu-
ally attached to the front of a message. In some cases, however, this peer-to-peer control
information is sent at the end of the message, in which case it is called a #railer. The
exact format for the header attached by RRP is defined by its protocol specification. The
rest of the message—that is, the data being transmitted on behalf of the application—is
called the message’s body or payload. We say that the application’s data is encapsulated in
the new message created by protocol RRP.

This process of encapsulation is then repeated at each level of the protocol graph;
for example, HHP encapsulates RRP’s message by attaching a header of its own. If we
now assume that HHP sends the message to its peer over some network, then when
the message arrives at the destination host, it is processed in the opposite order: HHP
first interprets the HHP header at the front of the message (i.e., takes whatever action
is appropriate given the contents of the header), and passes the body of the message
(but not the HHP header) up to RRD, which takes whatever action is indicated by the
RRP header that its peer attached, and passes the body of the message (but not the
RRP header) up to the application program. The message passed up from RRP to the
application on host 2 is exactly the same message as the application passed down to RRP
on host 1; the application does not see any of the headers that have been attached to it to
implement the lower-level communication services. This whole process is illustrated in
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Figure 1.12 High-level messages are encapsulated inside of low-level messages.

Figure 1.12. Note that in this example, nodes in the network (e.g., switches and routers)
may inspect the HHP header at the front of the message.

Note that when we say a low-level protocol does not interpret the message it is
given by some high-level protocol, we mean that it does not know how to extract any
meaning from the data contained in the message. It is sometimes the case, however, that
the low-level protocol applies some simple transformation to the data it is given, such as
to compress or encrypt it. In this case, the protocol is transforming the entire body of
the message, including both the original application’s data and all the headers attached
to that data by higher-level protocols.

Multiplexing and Demultiplexing

Recall from Section 1.2.2 that a fundamental idea of packet switching is to multiplex
multiple flows of data over a single physical link. This same idea applies up and down
the protocol graph, not just to switching nodes. In Figure 1.11, for example, we can
think of RRP as implementing a logical communication channel, with messages from
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two different applications multiplexed over this channel at the source host and then
demultiplexed back to the appropriate application at the destination host.

Practically speaking, all this means is that the header that RRP attaches to its mes-
sages contains an identifier that records the application to which the message belongs.
We call this identifier RRP’s demultiplexing key, or demux key for short. At the source
host, RRP includes the appropriate demux key in its header. When the message is deliv-
ered to RRP on the destination host, it strips its header, examines the demux key, and
demultiplexes the message to the correct application.

RRP is not unique in its support for multiplexing; nearly every protocol imple-
ments this mechanism. For example, HHP has its own demux key to determine which
messages to pass up to RRP and which to pass up to MSP. However, there is no uniform
agreement among protocols—even those within a single network architecture—on ex-
actly what constitutes a demux key. Some protocols use an 8-bit field (meaning they can
support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some
protocols have a single demultiplexing field in their header, while others have a pair of
demultiplexing fields. In the former case, the same demux key is used on both sides of
the communication, while in the latter case, each side uses a different key to identify the
high-level protocol (or application program) to which the message is to be delivered.

1.3.2 OSI Architecture

The ISO was one of the first organizations to formally define a common way to connect
computers. Their architecture, called the Open Systems Interconnection (OSI) architecture
and illustrated in Figure 1.13, defines a partitioning of network functionality into seven
layers, where one or more protocols implement the functionality assigned to a given
layer. In this sense, the schematic given in Figure 1.13 is not a protocol graph, per se,
but rather a reference model for a protocol graph. The ISO, usually in conjunction with
a second standards organization known as the International Telecommunications Union
(ITU),! publishes a series of protocol specifications based on the OSI architecture. This
series is sometimes called the “X dot” series since the protocols are given names like X.25,
X.400, X.500, and so on.

Starting at the bottom and working up, the physical layer handles the transmission
of raw bits over a communications link. The data link layer then collects a stream of bits
into a larger aggregate called a frame. Network adaptors, along with device drivers run-
ning in the node’s OS, typically implement the data link level. This means that frames,
not raw bits, are actually delivered to hosts. The network layer handles routing among
nodes within a packet-switched network. At this layer, the unit of data exchanged among
nodes is typically called a packer rather than a frame, although they are fundamentally

1 A subcommittee of the ITU on telecommunications (ITU-T) replaces an earlier subcommittee of the ITU, which was

known by its French name, Comité Consultatif International de Télégraphique et Téléphonique (CCITT).



1.3 Network Architecture 27

y 4 A
End host End host

One or more nodes
within the network

Figure 1.13 OSI network architecture.

the same thing. The lower three layers are implemented on all network nodes, including
switches within the network and hosts connected along the exterior of the network. The
transport layer then implements what we have up to this point been calling a process-to-
process channel. Here, the unit of data exchanged is commonly called a message rather
than a packet or a frame. The transport layer and higher layers typically run only on the
end hosts and not on the intermediate switches or routers.

There is less agreement about the definition of the top three layers. Skipping ahead
to the top (seventh) layer, we find the application layer. Application layer protocols in-
clude things like the File Transfer Protocol (FTP), which defines a protocol by which
file transfer applications can interoperate. Below that, the presentation layer is concerned
with the format of data exchanged between peers, for example, whether an integer is 16,
32, or 64 bits long and whether the most significant byte is transmitted first or last, or
how a video stream is formatted. Finally, the session layer provides a name space that is
used to tie together the potentially different transport streams that are part of a single
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application. For example, it might manage an audio stream and a video stream that are
being combined in a teleconferencing application.

1.3.3 Internet Architecture

The Internet architecture, which is also sometimes called the TCP/IP architecture af-
ter its two main protocols, is depicted in Figure 1.14. An alternative representation is
given in Figure 1.15. The Internet architecture evolved out of experiences with an earlier
packet-switched network called the ARPANET. Both the Internet and the ARPANET
were funded by the Advanced Research Projects Agency (ARPA), one of the R&D fund-
ing agencies of the U.S. Department of Defense. The Internet and ARPANET were
around before the OSI architecture, and the experience gained from building them was
a major influence on the OSI reference model.

While the seven-layer OSI model can, with some imagination, be applied to the
Internet, a four-layer model is often used instead. At the lowest level are a wide variety
of network protocols, denoted NET, NET), and so on. In practice, these protocols are
implemented by a combination of hardware (e.g., a network adaptor) and software (e.g.,
a network device driver). For example, you might find Ethernet or Fiber Distributed

NET, NET, ~~  NET,

Figure 1.14 Internet protocol graph.

Application

TCP [UDP

1P |
Network

Figure 1.15 Alternative view of the Internet architecture. The “Network” layer shown
here is sometimes referred to as the “subnetwork” or “link” layer.
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Data Interface (FDDI) protocols at this layer. (These protocols in turn may actually in-
volve several sublayers, but the Internet architecture does not presume anything about
them.) The second layer consists of a single protocol—the Internet Protocol (IP). This
is the protocol that supports the interconnection of multiple networking technologies
into a single, logical internetwork. The third layer contains two main protocols—the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP and
UDP provide alternative logical channels to application programs: TCP provides a re-
liable byte-stream channel, and UDP provides an unreliable datagram delivery channel
(datagram may be thought of as a synonym for message). In the language of the Internet,
TCP and UDP are sometimes called end-to-end protocols, although it is equally correct
to refer to them as transport protocols.

Running above the transport layer are a range of application protocols, such as
FTP, TFTP (Trivial File Transport Protocol), Telnet (remote login), and SMTP (Sim-
ple Mail Transfer Protocol, or electronic mail), that enable the interoperation of popular
applications. To understand the difference between an application layer protocol and
an application, think of all the different World Wide Web browsers that are available
(Firefox, Safari, Internet Explorer, Lynx, etc.). There is a similarly large number of dif-
ferent implementations of web servers. The reason that you can use any one of these
application programs to access a particular site on the Web is because they all conform
to the same application layer protocol: HTTP (HyperText Transport Protocol). Confus-
ingly, the same word sometimes applies to both an application and the application layer
protocol that it uses (e.g., FTP).

The Internet architecture has three features that are worth highlighting. First, as
best illustrated by Figure 1.15, the Internet architecture does not imply strict layering.
The application is free to bypass the defined transport layers and to directly use IP or
one of the underlying networks. In fact, programmers are free to define new channel
abstractions or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will notice an
hourglass shape—wide at the top, narrow in the middle, and wide at the bottom. This
shape actually reflects the central philosophy of the architecture. That is, IP serves as
the focal point for the architecture—it defines a common method for exchanging pack-
ets among a wide collection of networks. Above IP can be arbitrarily many transport
protocols, each offering a different channel abstraction to application programs. Thus,
the issue of delivering messages from host to host is completely separated from the issue
of providing a useful process-to-process communication service. Below IP, the architec-
ture allows for arbitrarily many different network technologies, ranging from Ethernet
to wireless to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the IETF cul-
ture) is that in order for a new protocol to be officially included in the architecture, there
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needs to be both a protocol specification and at least one (and preferably two) represen-
tative implementations of the specification. The existence of working implementations
is required for standards to be adopted by the IETE This cultural assumption of the
design community helps to ensure that the architecture’s protocols can be efficiently im-
plemented. Perhaps the value the Internet culture places on working software is best
exemplified by a quote on T-shirts commonly worn at IETF meetings:

We reject kings, presidents, and voting. We believe in rough consensus and running code.

(Dave Clark)

Of these three attributes of the Internet architecture, the hourglass design philos-
ophy is important enough to bear repeating. The hourglass’s narrow waist represents
a minimal and carefully chosen set of global capabilities that allows both higher-level
applications and lower-level communication technologies to coexist, share capabilities,
and evolve rapidly. The narrow-waisted model is critical to the Internet’s ability to adapt
rapidly to new user demands and changing technologies.

1.4 Implementing Network Software

Network architectures and protocol specifications are essential things, but a good blue-
print is not enough to explain the phenomenal success of the Internet: The number of
computers connected to the Internet has roughly doubled every 12 to 18 months since
1981, and is now estimated at 350 million; the number of people that use the Internet
is estimated at 1 billion; and it is believed that the number of bits transmitted over the
Internet, which has also grown exponentially, surpassed the corresponding figure for the
voice phone system sometime in 2001.

What explains the success of the Internet? There are certainly many contributing
factors (including a good architecture), but one thing that has made the Internet such
a runaway success is the fact that so much of its functionality is provided by software
running in general-purpose computers. The significance of this is that new functionality
can be added readily with “just a small matter of programming.” As a result, new appli-
cations and services—electronic commerce, videoconferencing, and packet telephony, to
name a few—have been showing up at a phenomenal pace.

A related factor is the massive increase in computing power available in commodity
machines. Although computer networks have always been capable in principle of trans-
porting any kind of information, such as digital voice samples, digitized images, and so
on, this potential was not particularly interesting if the computers sending and receiving
that data were too slow to do anything useful with the information. Virtually all of to-
day’s computers are capable of playing back digitized voice at full speed and can display
video at a speed and resolution that is useful for some (but by no means all) applications.
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Thus, today’s networks have begun to support multimedia, and their support for it will
only improve as computing hardware becomes faster.

The point to take away from this is that knowing how to implement network soft-
ware is an essential part of understanding computer networks. With this in mind, this
section first introduces some of the issues involved in implementing an application pro-
gram on top of a network, and then goes on to identify the issues involved in implement-
ing the protocols running within the network. In many respects, network applications
and network protocols are very similar—the way an application engages the services of
the network is pretty much the same as the way a high-level protocol invokes the services
of a low-level protocol. As we will see later in the section, however, there are a couple of
important differences.

1.4.1 Application Programming Interface (Sockets)

The place to start when implementing a network application is the interface exported by
the network. Since most network protocols are implemented in software (especially those
high in the protocol stack), and nearly all computer systems implement their network
protocols as part of the operating system, when we refer to the interface “exported by
the network,” we are generally referring to the interface that the OS provides to its
networking subsystem. This interface is often called the network application programming
interface (API).

Although each operating system is free to define its own network API (and most
have), over time certain of these APIs have become widely supported; that is, they have
been ported to operating systems other than their native system. This is what has hap-
pened with the socket interface originally provided by the Berkeley distribution of Unix,
which is now supported in virtually all popular operating systems. The advantage of
industry-wide support for a single API is that applications can be easily ported from one
OS to another, and that developers can easily write applications for multiple OSs. It is
important to keep in mind, however, that application programs typically interact with
many parts of the OS other than the network; for example, they read and write files,
fork concurrent processes, and output to the graphical display. Just because two systems
support the same network API does not mean that their file system, process, or graphic
interfaces are the same. Still, understanding a widely adopted API like Unix sockets gives
us a good place to start.

Before describing the socket interface, it is important to keep two concerns separate
in your mind. Each protocol provides a certain set of services, and the API provides a
syntax by which those services can be invoked in this particular OS. The implementation
is then responsible for mapping the tangible set of operations and objects defined by the
APT onto the abstract set of services defined by the protocol. If you have done a good
job of defining the interface, then it will be possible to use the syntax of the interface to
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invoke the services of many different protocols. Such generality was certainly a goal of
the socket interface, although it’s far from perfect.

The main abstraction of the socket interface, not surprisingly, is the sockez. A good
way to think of a socket is as the point where a local application process attaches to the
network. The interface defines operations for creating a socket, attaching the socket to
the network, sending/receiving messages through the socket, and closing the socket. To
simplify the discussion, we will limit ourselves to showing how sockets are used with
TCP.

The first step is to create a socket, which is done with the following operation:
int socket(int domain, int type, int protocol)

The reason that this operation takes three arguments is that the socket interface was
designed to be general enough to support any underlying protocol suite. Specifi-
cally, the domain argument specifies the protocol family that is going to be used:
PF_INET denotes the Internet family; PF_UNIX denotes the Unix pipe facility; and
PF_PACKET denotes direct access to the network interface (i.e., it bypasses the TCP/IP
protocol stack). The type argument indicates the semantics of the communication.
SOCK_STREAM is used to denote a byte stream. SOCK_DGRAM is an alternative
that denotes a message-oriented service, such as that provided by UDP. The protocol
argument identifies the specific protocol that is going to be used. In our case, this ar-
gument is UNSPEC because the combination of PF_INET and SOCK_STREAM
implies TCP. Finally, the return value from socket is a handle for the newly created
socket, that is, an identifier by which we can refer to the socket in the future. It is given
as an argument to subsequent operations on this socket.

The next step depends on whether you are a client or a server. On a server machine,
the application process performs a passive open—the server says that it is prepared to
accept connections, but it does not actually establish a connection. The server does this
by invoking the following three operations:

int bind(int socket, struct sockaddr *address, int addr_len)
int listen(int socket, int backlog)
int accept(int socket, struct sockaddr *address, int *addr_len)

The bind operation, as its name suggests, binds the newly created socket to the
specified address. This is the network address of the local participant—the server. Note
that, when used with the Internet protocols, address is a data structure that includes
both the IP address of the server and a TCP port number. (As we will see in Chapter 5,
ports are used to indirectly identify processes. They are a form of demux keys as defined
in Section 1.3.1.) The port number is usually some well-known number specific to the
service being offered; for example, web servers commonly accept connections on port 80.
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The listen operation then defines how many connections can be pending on the
specified socket. Finally, the accept operation carries out the passive open. It is a
blocking operation that does not return until a remote participant has established a con-
nection, and when it does complete, it returns a zew socket that corresponds to this just-
established connection, and the address argument contains the remote participant’s
address. Note that when accept returns, the original socket that was given as an argu-
ment still exists and still corresponds to the passive open; it is used in future invocations
of accept.

On the client machine, the application process performs an active open; that is, it
says who it wants to communicate with by invoking the following single operation:

int connect(int socket, struct sockaddr *address, intaddr_len)

This operation does not return until TCP has successfully established a connection, at
which time the application is free to begin sending data. In this case, address contains
the remote participant’s address. In practice, the client usually specifies only the remote
participant’s address and lets the system fill in the local information. Whereas a server
usually listens for messages on a well-known port, a client typically does not care which
port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the following
two operations to send and receive data:

int send(int socket, char *message, int msg_len, int flags)
int recv(int socket, char *buffer, int buf_len, int flags)

The first operation sends the given message over the specified socket, while the sec-
ond operation receives a message from the specified socket into the given buffer. Both
operations take a set of flags that control certain details of the operation.

1.4.2 Example Application

We now show the implementation of a simple client/server program that uses the socket
interface to send messages over a TCP connection. The program also uses other Unix
networking utilities, which we introduce as we go. Our application allows a user on one
machine to type in and send text to a user on another machine. It is a simplified version
of the Unix talk program, which is similar to the program at the core of a web chat
room.

Client

We start with the client side, which takes the name of the remote machine as an argu-
ment. It calls the Unix utility gethostbyname to translate this name into the remote
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host’s IP address. The next step is to construct the address data structure (sin) expected
by the socket interface. Notice that this data structure specifies that we'll be using the
socket to connect to the Internet (AF_INET). In our example, we use TCP port 5432 as
the well-known server port; this happens to be a port that has not been assigned to any
other Internet service. The final step in setting up the connection is to call socket and
connect. Once the connect operation returns, the connection is established and the
client program enters its main loop, which reads text from standard input and sends it

1 Foundation

over the socket.

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i nclude <netinet/in.h>
#i ncl ude <netdb. h>

#def i ne SERVER PORT 5432
#define MAX_LI NE 256

i nt
mai n(int argc, char * argv[])

{

FI LE *fp;

struct hostent *hp;
struct sockaddr_in sin;
char *host;

char buf[ MAX_LI NE] ;

int s;

int len;

if (argc==2) {
host = argv[1];

}

el se {
fprintf(stderr, "usage: sinplex-talk host\n");
exit(1);

/* translate host nane into peer’'s |P address */

hp = get host bynane(host);

if (thp) {
fprintf(stderr, "sinplex-talk: unknown host: %\n"
exit(1);

’

host) ;
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/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_famly = AF_I NET;

bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_port = htons(SERVER PORT);

/* active open */

if ((s = socket(PF_INET, SOCK STREAM 0)) < 0) {
perror("sinplex-tal k: socket");
exit(1);

}

if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) {
perror("sinplex-tal k: connect");
cl ose(s);
exit(1);

}

/* main |oop: get and send |ines of text */

while (fgets(buf, sizeof(buf), stdin)) {
buf [ MAX_LINE-1] = '\0;
len = strlen(buf) + 1;
send(s, buf, len, 0);

}

}

Server

The server is equally simple. It first constructs the address data structure by filling in
its own port number (SERVER_PORT). By not specifying an IP address, the appli-
cation program is willing to accept connections on any of the local host’s IP addresses.
Next, the server performs the preliminary steps involved in a passive open: creates the
socket, binds it to the local address, and sets the maximum number of pending connec-
tions to be allowed. Finally, the main loop waits for a remote host to try to connect,
and when one does, receives and prints out the characters that arrive on the connec-
tion.

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <net db. h>
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#defi ne SERVER PORT 5432
#defi ne MAX_PENDI NG 5
#define MAX_LI NE 256

i nt
mai n()
{
struct sockaddr_in sin;
char buf [ MAX_LI NE] ;
int len;
int s, new.s;

/* build address data structure */
bzero((char *)&sin, sizeof(sin));
sin.sin_famly = AF_I NET;
sin.sin_addr.s_addr = | NADDR_ANY;
sin.sin_port = htons(SERVER PORT);

/* setup passive open */

if ((s = socket(PF_INET, SOCK _STREAM 0)) < 0) {
perror("sinplex-tal k: socket");
exit(1);

}

if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {
perror("sinplex-tal k: bind");
exit(1l);

}

listen(s, MAX_PENDI NG ;

/* wait for connection, then receive and print text */
while(1) {
if ((new.s = accept(s, (struct sockaddr *)&sin, & en)) < 0) {
perror("sinplex-tal k: accept");
exit(1);
}
while (len = recv(new_s, buf, sizeof(buf), 0))
f put s(buf, stdout);
cl ose(new_s);
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1.4.3 Protocol Implementation Issues

As mentioned at the beginning of this section, the way application programs interact
with the underlying network is similar to the way a high-level protocol interacts with a
low-level protocol. For example, TCP needs an interface to send outgoing messages to IP,
and IP needs to be able to deliver incoming messages to TCP. This is exactly the service
interface introduced in Section 1.3.1.

Since we already have a network API (e.g., sockets), we might be tempted to use
this same interface between every pair of protocols in the protocol stack. Although cer-
tainly an option, in practice the socket interface is not used in this way. The reason is
that there are inefficiencies built into the socket interface that protocol implementers
are not willing to tolerate. Application programmers tolerate them because they simplify
their programming task, and because the inefficiency only has to be tolerated once, but
protocol implementers are often obsessed with performance and must worry about get-
ting a message through several layers of protocols. The rest of this section discusses the
two primary differences between the network API and the protocol-to-protocol interface
found lower in the protocol graph.

Process Model

Most operating systems provide an abstraction called a process, or alternatively, a thread.
Each process runs largely independently of other processes, and the OS is responsible
for making sure that resources, such as address space and CPU cycles, are allocated to all
the current processes. The process abstraction makes it fairly straightforward to have a
lot of things executing concurrently on one machine; for example, each user application
might execute in its own process, and various things inside the OS might execute as
other processes. When the OS stops one process from executing on the CPU and starts
up another one, we call the change a context switch.

When designing the network subsystem, one of the first questions to answer is,
“Where are the processes?” There are essentially two choices, as illustrated in Figure 1.16.
In the first, which we call the process-per-protocol model, each protocol is implemented
by a separate process. This means that as a message moves up or down the protocol
stack, it is passed from one process/protocol to another—the process that implements
protocol 7 processes the message, then passes it to protocol i — 1, and so on. How
one process/protocol passes a message to the next process/protocol depends on the sup-
port the host OS provides for interprocess communication. Typically, there is a simple
mechanism for enqueuing a message with a process. The important point, however, is
that a context switch is required at each level of the protocol graph—typically a time-
consuming operation.

The alternative, which we call the process-per-message model, treats each protocol
as a static piece of code and associates the processes with the messages. That is, when a
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Figure 1.16 Alternative process models: (a) process-per-protocol;
(b) process-per-message.

message arrives from the network, the OS dispatches a process that it makes responsible
for the message as it moves up the protocol graph. At each level, the procedure that
implements that protocol is invoked, which eventually results in the procedure for the
next protocol being invoked, and so on. For outbound messages, the application’s process
invokes the necessary procedure calls until the message is delivered. In both directions,
the protocol graph is traversed in a sequence of procedure calls.

Although the process-per-protocol model is sometimes easier to think about—
I implement my protocol in my process, and you implement your protocol in your
process—the process-per-message model is generally more efficient for a simple reason:
A procedure call is an order of magnitude more efficient than a context switch on most
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computers. The former model requires the expense of a context switch at each level,
while the latter model costs only a procedure call per level.

Message Buffers

A second inefficiency of the socket interface is that the application process provides the
buffer that contains the outbound message when calling send, and similarly it provides
the buffer into which an incoming message is copied when invoking the receive opera-
tion. This forces the topmost protocol to copy the message from the application’s buffer
into a network buffer, and vice versa, as shown in Figure 1.17. It turns out that copying
data from one buffer to another is one of the most expensive things a protocol imple-
mentation can do. This is because while processors are becoming faster at an incredible
pace, memory is not getting faster as quickly as processors are. Relative to processors,
memory is getting slower.

Instead of copying message data from one buffer to another at each layer in the
protocol stack, most network subsystems define an abstract data type for messages that
is shared by all protocols in the protocol graph. Not only does this abstraction permit
messages to be passed up and down the protocol graph without copying, but it usu-
ally provides copy-free ways of manipulating messages in other ways, such as adding
and stripping headers, fragmenting large messages into a set of small messages, and re-
assembling a collection of small messages into a single large message. The exact form of
this message abstraction differs from OS to OS, but it generally involves a linked-list of
pointers to message buffers, similar to the one shown in Figure 1.18. We leave it as an
exercise for the reader to define a general copy-free message abstraction.

Application process

N

send()
deliver()

| N

Topmost protocol

Figure 1.17 Copying incoming/outgoing messages between application buffer and
network buffer.



40 1 Foundation

plle vl e el

Figure 1.18 Example message data structure.

1.5 Performance

Up to this point, we have focused primarily on the functional aspects of a network. Like
any computer system, however, computer networks are also expected to perform well.
This is because the effectiveness of computations distributed over the network often
depends directly on the efficiency with which the network delivers the computation’s
data. While the old programming adage “first get it right and then make it fast” is valid
in many settings, in networking it is usually necessary to “design for performance.” It is,
therefore, important to understand the various factors that impact network performance.

1.5.1

Network performance is measured in two fundamental ways: bandwidsh (also called
throughput) and latency (also called delay). The bandwidth of a network is given by the

Bandwidth and Latency

number of bits that can be transmitted
over the network in a certain period of
time. For example, a network might have
a bandwidth of 10 million bits/second
(Mbps), meaning that it is able to de-
liver 10 million bits every second. It is
sometimes useful to think of bandwidth
in terms of how long it takes to transmit
each bit of data. On a 10-Mbps network,
for example, it takes 0.1 microsecond (us)
to transmit each bit.

While you can talk about the band-
width of the network as a whole, some-
times you want to be more precise,
focusing, for example, on the bandwidth

Bandwidth and Throughput

Bandwidth and throughput are two
of the most confusing terms used in
networking. While we could try to
give you a precise definition of each
term, it is important that you know
how other people might use them and
for you to be aware that they are of-
ten used interchangeably. First of all,
bandwidth is literally a measure of the
width of a frequency band. For exam-
ple, a voice-grade telephone line sup-
ports a frequency band ranging from



300 to 3,300 Hz; it is said to have a
bandwidth of 3,300 Hz — 300 Hz =
3,000 Hz. If you see the word “band-
width” used in a situation in which
it is being measured in hertz, then it
probably refers to the range of signals
that can be accommodated.

When we talk about the band-
width of a communication link, we
normally refer to the number of bits
per second that can be transmitted
on the link. We might say that the
bandwidth of an Ethernet is 10 Mbps.
A useful distinction might be made,
however, between the bandwidth that
is available on the link and the num-
ber of bits per second that we can ac-
tually transmit over the link in prac-
tice. We tend to use the word “through-
put” to refer to the measured perfor-
mance of a system. Thus, because of
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of a single physical link or a logical process-
to-process channel. At the physical level,
bandwidth is constantly improving, with
no end in sight. Intuitively, if you think
of a second of time as a distance you
could measure with a ruler, and band-
width as how many bits fit in that dis-
tance, then you can think of each bit
as a pulse of some width. For exam-
ple, each bit on a 1-Mbps link is 1 us
wide, while each bit on a 2-Mbps link
is 0.5 pus wide, as illustrated in Fig-
ure 1.19. The more sophisticated the
transmitting and receiving technology, the
narrower each bit can become, and thus,
the higher the bandwidth. For logical
process-to-process bandwidth
is also influenced by other factors, in-

channels,

cluding how many times the software
that implements the channel has to han-
dle, and possibly transform, each bit of
data.

The second performance metric, latency, corresponds to how long it takes a mes-

sage to travel from one end of a network to the other. (As with bandwidth, we could be

focused on the latency of a single link or an end-to-end channel.) Latency is measured

strictly in terms of time. For example, a transcontinental network might have a latency of

1 second

1 second

Figure 1.19 Bits transmitted at a particular bandwidth can be regarded as having
some width: (a) bits transmitted at 1 Mbps (each bit 1 ys wide); (b) bits transmitted at

2 Mbps (each bit 0.5 ps wide).
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24 milliseconds (ms); that is, it takes a
message 24 ms to travel from one end
of North America to the other. There are
many situations in which it is more impor-
tant to know how long it takes to send a
message from one end of a network to the
other and back, rather than the one-way
latency. We call this the round-trip time
(RTT) of the network.

We often think of latency as having
three components. First, there is the speed-
of-light propagation delay. This delay oc-
curs because nothing, including a bit on
a wire, can travel faster than the speed of
light. If you know the distance between
two points, you can calculate the speed-
of-light latency, although you have to be
careful because light travels across different
mediums at different speeds: It travels at
3.0 x 10% m/s in a vacuum, 2.3 x 108 m/s
in a cable, and 2.0 x 10% m/s in a fiber.
Second, there is the amount of time it

various inefficiencies of implementa-
tion, a pair of nodes connected by a
link with a bandwidth of 10 Mbps
might achieve a throughput of only
2 Mbps. This would mean that an ap-
plication on one host could send data
to the other host at 2 Mbps.

Finally, we often talk about the
bandwidth reguirements of an appli-
cation. This is the number of bits
per second that it needs to transmit
over the network to perform accept-
ably. For some applications, this might
be “whatever I can get”; for others, it
might be some fixed number (prefer-
ably no more than the available link
bandwidth); and for others, it might
be a number that varies with time. We
will provide more on this topic later in
this section.

takes to transmit a unit of data. This is a function of the network bandwidth and the
size of the packet in which the data is carried. Third, there may be queuing delays inside
the network, since packet switches generally need to store packets for some time before
forwarding them on an outbound link, as discussed in Section 1.2.2. So, we could define
the total latency as

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight
Transmit = Size/Bandwidth

where Distance is the length of the wire over which the data will travel, Speed-
OfLight is the effective speed of light over that wire, Size is the size of the packet,
and Bandwidth is the bandwidth at which the packet is transmitted. Note that if the
message contains only one bit and we are talking about a single link (as opposed to a
whole network), then the Transmit and Queue terms are not relevant, and latency
corresponds to the propagation delay only.

Bandwidth and latency combine to define the performance characteristics of a
given link or channel. Their relative importance, however, depends on the application.



1.5 Performance 43

For some applications, latency dominates bandwidth. For example, a client that sends
a 1-byte message to a server and receives a 1-byte message in return is latency bound.
Assuming that no serious computation is involved in preparing the response, the appli-
cation will perform much differently on a transcontinental channel with a 100-ms RTT
than it will on an across-the-room channel with a 1-ms RTT. Whether the channel is
1 Mbps or 100 Mbps is relatively insignificant, however, since the former implies that the
time to transmit a byte (Transmit) is 8 us and the latter implies Transmit = 0.08 ws.

In contrast, consider a digital library program that is being asked to fetch a 25-
megabyte (MB) image—the more bandwidth that is available, the faster it will be able to
return the image to the user. Here, the bandwidth of the channel dominates performance.
To see this, suppose that the channel has a bandwidth of 10 Mbps. It will take 20 seconds
to transmit the image, making it relatively unimportant if the image is on the other side
of a 1-ms channel or a 100-ms channel; the difference between a 20.001-second response
time and a 20.1-second response time is negligible.

Figure 1.20 gives you a sense of how latency or bandwidth can dominate perfor-
mance in different circumstances. The graph shows how long it takes to move objects of
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Figure 1.20 Perceived latency (response time) versus round-trip time for various
object sizes and link speeds.



44 1 Foundation

various sizes (1 byte, 2 KB, 1 MB) across networks with RTTs ranging from 1 to 100 ms
and link speeds of either 1.5 or 10 Mbps. We use logarithmic scales to show relative
performance. For a 1-byte object (say, a keystroke), latency remains almost exactly equal
to the RTT, so that you cannot distinguish between a 1.5-Mbps network and a 10-Mbps
network. For a 2-KB object (say, an email message), the link speed makes quite a dif-
ference on a 1-ms-RTT network but a negligible difference on a 100-ms-RTT network.
And for a 1-MB object (say, a digital image), the RT'T makes no difference—it is the
link speed that dominates performance across the full range of RTT.

Note that throughout this book we use the terms latency and delay in a generic way,
that is, to denote how long it takes to perform a particular function such as delivering
a message or moving an object. When we are referring to the specific amount of time it
takes a signal to propagate from one end of a link to another, we use the term propagation
delay. Also, we make it clear in the context of the discussion whether we are referring to
the one-way latency or the round-trip time.

As an aside, computers are becoming so fast that when we connect them to net-
works, it is sometimes useful to think, at least figuratively, in terms of instructions per
mile. Consider what happens when a computer that is able to execute 1 billion instruc-
tions per second sends a message out on a channel with a 100-ms RTT. (To make the
math easier, assume that the message covers a distance of 5,000 miles.) If that computer
sits idle the full 100 ms waiting for a reply message, then it has forfeited the ability to
execute 100 million instructions, or 20,000 instructions per mile. It had better have been
worth going over the network to justify this waste.

1.5.2 Delay x Bandwidth Product

It is also useful to talk about the product of these two metrics, often called the delay x
bandwidth product. Intuitively, if we think of a channel between a pair of processes as a
hollow pipe (see Figure 1.21), where the latency corresponds to the length of the pipe
and the bandwidth gives the diameter of the pipe, then the delay x bandwidth product
gives the volume of the pipe—the maximum number of bits that could be in transit
through the pipe at any given instant. Said another way, if latency (measured in time)
corresponds to the length of the pipe, then given the width of each bit (also measured in
time), you can calculate how many bits fit in the pipe. For example, a transcontinental
channel with a one-way latency of 50 ms and a bandwidth of 45 Mbps is able to hold

50 x 1072 sec x 45 x 10° bits/sec
=2.25 x 10° bits

or approximately 280 KB of data. In other words, this example channel (pipe) holds as
many bytes as the memory of a personal computer from the early 1980s could hold.
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Figure 1.21 Network as a pipe.

How Big Is a Mega?

There are several pitfalls you need to
be aware of when working with the
common units of networking—MB,
Mbps, KB, and Kbps. The first is to
distinguish carefully between bits and
bytes. Throughout this book, we al-
ways use a lowercase & for bits and a
capital B for bytes. The second is to
be sure you are using the appropriate
definition of mega (M) and kilo (K).
Mega, for example, can mean either
220 6r 10°. Similarly, 4ilo can be either
219 or 10°. What is worse, in net-
working we typically use both defini-
tions. Here’s why.

Network bandwidth, which is
often specified in terms of Mbps, is
typically governed by the speed of the
clock that paces the transmission of
the bits. A clock that is running at
10 MHz is used to transmit bits at
10 Mbps. Because the mega in MHz
means 10° hertz, Mbps is usually also
defined as 10° bits per second. (Sim-
ilarly, Kbps is 10% bits per second.)
On the other hand, when we talk
about a message that we want to trans-
mit, we often give its size in kilobytes.

The delay x bandwidth product is
important to know when constructing
high-performance networks because it cor-
responds to how many bits the sender
must transmit before the first bit arrives
at the receiver. If the sender is expecting
the receiver to somehow signal that bits
are starting to arrive, and it takes another
channel latency for this signal to propa-
gate back to the sender (i.e., we are in-
terested in the channel’s RTT rather than
just its one-way latency), then the sender
can send up to two delay x bandwidths
worth of data before hearing from the re-
ceiver that all is well. The bits in the pipe
are said to be “in flight,” which means
that if the receiver tells the sender to stop
transmitting, it might receive up to a de-
lay x bandwidth’s worth of data before
the sender manages to respond. In our
example above, that amount corresponds
to 5.5 x 10° bits (671 KB) of data. On
the other hand, if the sender does not fill
the pipe—send a whole delay x bandwidth
product’s worth of data before it stops to
wait for a signal—the sender will not fully
utilize the network.

Note that most of the time we are
interested in the RTT scenario, which we
simply refer to as the delay x bandwidth
product, without explicitly saying that this
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Bandwidth | Distance
Link Type (Typical) (Typical) | Round-trip Delay | Delay x BW
Dial-up 56 Kbps 10 km 87 us 5 bits
Wireless LAN 54 Mbps 50 m 0.33 us 18 bits
Satellite 45 Mbps 35,000 km | 230 ms 10 Mb
Cross-country fiber | 10 Gbps 4,000 km | 40 ms 400 Mb

Table 1.1 Sample delay x bandwidth products.

product is muldplied by two. Again,
whether the “delay” in “delay x band-
width” means one-way latency or RTT is
made clear by the context. Table 1.1 shows
some examples of delay x bandwidth
products for some typical network links.

1.5.3 High-Speed Networks

The bandwidths available on today’s net-
works are increasing at a dramatic rate,
and there is eternal optimism that network
bandwidth will continue to improve. This
causes network designers to start thinking
about what happens in the limit, or stated
another way, what is the impact on net-
work design of having infinite bandwidth
available.

Although high-speed networks bring
a dramatic change in the bandwidth avail-
able to applications, in many respects their
impact on how we think about network-
ing comes in what does nor change as
bandwidth increases: the speed of light.
To quote Scotty from Star Trek, “You can-
nae change the laws of physics.” In other
words, “high speed” does not mean that
latency improves at the same rate as band-

Because messages are stored in the
computer’s memory, and memory is
typically measured in powers of two,
the K in KB is usually taken to mean
210, (Similarly, MB usually means
220) When you put the two together,
it is not uncommon to talk about
sending a 32-KB message over a 10-
Mbps channel, which should be inter-
preted to mean 32 x 2!9 x 8 bits are
being transmitted at a rate of 10 x 10°
bits per second. This is the interpreta-
tion we use throughout the book, un-
less explicitly stated otherwise.

The good news is that many
times we are satisfied with a back-
of-the-envelope calculation, in which
case it is perfectly reasonable to pre-
tend that a byte has 10 bits in it (mak-
ing it easy to convert between bits
and bytes) and that 10° is really equal
to 220 (making it easy to convert be-
tween the two definitions of mega).
Notice that the first approximation
introduces a 20% error, while the lat-
ter introduces only a 5% error.




To help you in your quick-and-
dirty calculations, 100 ms is a reason-
able number to use for a cross-country
round-trip time—at least when the
country in question is the United
States—and 1 ms is a good approxi-
mation of an RTT across a local area
network. In the case of the former, we
increase the 48-ms round-trip time
implied by the speed of light over
a fiber to 100 ms because there are,
as we have said, other sources of de-
lay, such as the queueing time in the
switches inside the network. You can
also be sure that the path taken by the
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width; the transcontinental RTT of a
1-Gbps link is the same 100 ms as it is
for a 1-Mbps link.

To appreciate the significance of
ever-increasing bandwidth in the face of
fixed latency, consider what is required to
transmit a 1-MB file over a 1-Mbps net-
work versus over a 1-Gbps network, both
of which have an RTT of 100 ms. In the
case of the 1-Mbps network, it takes 80
round-trip times to transmit the file; dur-
ing each RTT, 1.25% of the file is sent. In
contrast, the same 1-MB file doesn’t even
come close to filling 1 RTT’s worth of the
1-Gbps link, which has a delay x band-
width product of 12.5 MB.

Figure 1.22 illustrates the difference
between the two networks. In effect, the
1-MB file looks like a stream of data that
needs to be transmitted across a 1-Mbps network, while it looks like a single packet on a
1-Gbps network. To help drive this point home, consider that a 1-MB file is to a 1-Gbps
network what a 1-KB packer is to a 1-Mbps network.

fiber between two points will not be a
straight line.

Another way to think about the situation is that more data can be transmitted
during each RTT on a high-speed network, so much so that a single RTT becomes a
significant amount of time. Thus, while you wouldn’t think twice about the difference
between a file transfer taking 101 RTTs rather than 100 RTTs (a relative difference of
only 1%), suddenly the difference between 1 RTT and 2 RTTs is significant—a 100%
increase. In other words, latency, rather than throughput, starts to dominate our thinking
about network design.

Perhaps the best way to understand the relationship between throughput and la-
tency is to return to basics. The effective end-to-end throughput that can be achieved
over a network is given by the simple relationship

Throughput = TransferSize/TransferTime

where TransferTime includes not only the elements of one-way Latency identified
earlier in this section, but also any additional time spent requesting or setting up the
transfer. Generally, we represent this relationship as

TransferTime = RTT + 1/Bandwidth x TransferSize
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1 MB of data = 80 pipes-full

)
)
)

T
)

)
— 1-Mbps cross-country link

1-Gbps cross-country link

1 MB of data = 1/12 pipe-full

Figure 1.22 Relationship between bandwidth and latency. A 1-MB file would fill the
1-Mbps link 80 times, but only fill the 1-Gbps link 1/12 of one time.

We use RTT in this calculation to account for a request message being sent across the
network and the data being sent back. For example, consider a situation where a user
wants to fetch a 1-MB file across a 1-Gbps network with a round-trip time of 100 ms.
The TransferTime includes both the transmit time for 1 MB (1/1 Gbps x 1 MB =
8 ms), and the 100-ms RTT, for a total transfer time of 108 ms. This means that the
effective throughput will be

1 MB/108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve the effective
throughput, where in the limit, an infinitely large transfer size will cause the effective
throughput to approach the network bandwidth. On the other hand, having to endure
more than 1 RTT—for example, to retransmit missing packets—will hurt the effective
throughput for any transfer of finite size and will be most noticeable for small transfers.

1.5.4 Application Performance Needs

The discussion in this section has taken a network-centric view of performance; that
is, we have talked in terms of what a given link or channel will support. The unstated
assumption has been that application programs have simple needs—they want as much
bandwidth as the network can provide. This is certainly true of the aforementioned
digital library program that is retrieving a 25-MB image; the more bandwidth that is
available, the faster the program will be able to return the image to the user.
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However, some applications are able to state an upper limit on how much band-
width they need. Video applications are a prime example. Suppose one wants to stream
a video image; that is one-quarter the size of a standard TV image; that is, it has a res-
olution of 352 by 240 pixels. If each pixel is represented by 24 bits of information, as
would be the case for 24-bit color, then the size of each frame would be

(352 x 240 x 24)/8 =247.5 KB

If the application needs to support a frame rate of 30 frames per second, then it might
request a throughput rate of 75 Mbps. The ability of the network to provide more band-
width is of no interest to such an application because it has only so much data to transmit
in a given period of time.

Unfortunately, the situation is not as simple as this example suggests. Because the
difference between any two adjacent frames in a video stream is often small, it is possible
to compress the video by transmitting only the differences between adjacent frames. This
compressed video does not flow at a constant rate, but varies with time according to fac-
tors such as the amount of action and detail in the picture and the compression algorithm
being used. Therefore, it is possible to say what the average bandwidth requirement will
be, but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed. Suppose
that this example video application can be compressed down to the point that it needs
only 2 Mbps, on average. If it transmits 1 Mb in a 1-second interval and 3 Mb in
the following 1-second interval, then over the 2-second interval it is transmitting at an
average rate of 2 Mbps; however, this will be of little consolation to a channel that was
engineered to support no more than 2 Mb in any one second. Clearly, just knowing the
average bandwidth needs of an application will not always suffice.

Generally, however, it is possible to put an upper bound on how large a burst an
application like this is likely to transmit. A burst might be described by some peak rate
that is maintained for some period of time. Alternatively, it could be described as the
number of bytes that can be sent at the peak rate before reverting to the average rate or
some lower rate. If this peak rate is higher than the available channel capacity, then the
excess data will have to be buffered somewhere, to be transmitted later. Knowing how big
of a burst might be sent allows the network designer to allocate sufficient buffer capacity
to hold the burst. We will return to the subject of describing bursty traffic accurately in
Chapter 6.

Analogous to the way an application’s bandwidth needs can be something other
than “all it can get,” an application’s delay requirements may be more complex than
simply “as little delay as possible.” In the case of delay, it sometimes doesn’t matter so
much whether the one-way latency of the network is 100 ms or 500 ms as how much
the latency varies from packet to packet. The variation in latency is called jizter.
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Figure 1.23 Network-induced jitter.

Consider the situation in which the source sends a packet once every 33 ms, as
would be the case for a video application transmitting frames 30 times a second. If the
packets arrive at the destination spaced out exactly 33 ms apart, then we can deduce that
the delay experienced by each packet in the network was exactly the same. If the spacing
between when packets arrive at the destination—sometimes called the interpacker gap—
is variable, however, then the delay experienced by the sequence of packets must have also
been variable, and the network is said to have introduced jitter into the packet stream,
as shown in Figure 1.23. Such variation is generally not introduced in a single physical
link, but it can happen when packets experience different queuing delays in a multihop
packet-switched network. This queuing delay corresponds to the Queue component of
latency defined earlier in this section, which varies with time.

To understand the relevance of jitter, suppose that the packets being transmitted
over the network contain video frames, and in order to display these frames on the screen
the receiver needs to receive a new one every 33 ms. If a frame arrives early, then it can
simply be saved by the receiver until it is time to display it. Unfortunately, if a frame
arrives late, then the receiver will not have the frame it needs in time to update the screen,
and the video quality will suffer; it will not be smooth. Note that it is not necessary to
eliminate jitter, only to know how bad it is. The reason for this is that if the receiver
knows the upper and lower bounds on the latency that a packet can experience, it can
delay the time at which it starts playing back the video (i.e., displays the first frame) long
enough to ensure that in the future it will always have a frame to display when it needs
it. The receiver delays the frame, effectively smoothing out the jitter, by storing it in a
buffer. We return to the topic of jitter in Chapter 6.

1.6 Summary

Computer networks like the Internet have experienced enormous growth over the past
decade and are now positioned to provide a wide range of services—remote file ac-
cess, digital libraries, videoconferencing—to hundreds of millions of users. Much of this
growth can be attributed to the general-purpose nature of computer networks, and in
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particular to the ability to add new functionality to the network by writing software that
runs on affordable, high-performance computers. With this in mind, the overriding goal
of this book is to describe computer networks in such a way that when you finish reading
it, you should feel that if you had an army of programmers at your disposal, you could
actually build a fully-functional computer network from the ground up. This chapter
lays the foundation for realizing this goal.

The first step we have taken toward this goal is to carefully identify exactly what we
expect from a network. For example, a network must first provide cost-effective connec-
tivity among a set of computers. This is accomplished through a nested interconnection
of nodes and links, and by sharing this hardware base through the use of statistical mul-
tiplexing. This results in a packet-switched network, on top of which we then define a
collection of process-to-process communication services.

The second step is to define a layered architecture that will serve as a blueprint
for our design. The central objects of this architecture are network protocols. Protocols
both provide a communication service to higher-level protocols and define the form and
meaning of messages exchanged with their peers running on other machines. We have
briefly surveyed two of the most widely used architectures: the OSI architecture and the
Internet architecture. This book most closely follows the Internet architecture, both in
its organization and as a source of examples.

The third step is to implement the network’s protocols and application programs,
usually in software. Both protocols and applications need an interface by which they in-
voke the services of other protocols in the network subsystem. The socket interface is the
most widely used interface between application programs and the network subsystem,
but a slightly different interface is typically used within the network subsystem.

Finally, the network as a whole must offer high performance, where the two per-
formance metrics we are most interested in are latency and throughput. As we will see in
later chapters, it is the product of these two metrics—the so-called delay x bandwidth
product—that often plays a critical role in protocol design.

There is little doubt that com-
puter networks are becoming an in- e I =2 =N || 1S S UE
tegral part of the everyday lives of
vast numbers of people. What began
over 35 years ago as experimental sys-
tems like the ARPANET—connecting

mainframe computers over long-

Ubiquitous Networking

distance telephone lines—has turned into big business. And where there is big business,
there are lots of players. In this case, there is the computing industry, which has become
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increasingly involved in supporting packet-switched networking products; the telephone
carriers, which recognize the market for carrying all sorts of data, not just voice; and the
cable TV industry, which in parts of the world involved in both the delivery of “content”
(e.g. video-on-demand) and the provision of high-speed residential connections to the
Internet. And this list does not even include the many players involved in delivery of
services over the Internet such as voiceover IP (VoIP) and electronic commerce.

Assuming that the goal is ubiquitous networking—to bring the network into every
household—the first problem that must be addressed is how to establish the necessary
physical links. The most widely discussed options in most parts of the world make use of
either the existing cable TV facilities or the copper pairs used to deliver telephone service.
Fiber to the home, or to the apartment building, which not long ago looked like a pipe
dream, is gathering momentum in some areas. There have also been developments in the
technology to deliver network connectivity over power lines, and, as we will see in the
next chapter, there is now an abundance of wireless networking technologies. Increas-
ingly this is leading to an expectation that access to the Internet is available everywhere,
not just in the workplace or at home.

How the struggle between the computer companies, the telephone companies, the
cable industry, and other stakeholders in the networking business will play out in the
marketplace is anyone’s guess. (If we knew the answer, we'd be charging a lot more for
this book.) All we know is that there are many technical obstacles—issues of connectivity,
levels of service, performance, reliability, security, and fairness—that stand between the
current state-of-the-art and the sort of global, ubiquitous, heterogeneous network that
we believe is possible and desirable. It is these challenges that are the focus of this book.

FURTHER READING

Computer networks are not the first communication-oriented technology to have found
their way into the everyday fabric of our society. For example, the early part of this
century saw the introduction of the telephone, and then during the 1950s television
became widespread. When considering the future of networking—how widely it will
spread and how we will use it—it is instructive to study this history. Our first reference
is a good starting point for doing this (the entire issue is devoted to the first 100 years of
telecommunications).

The second and third papers are the seminal papers on the OSI and Internet ar-
chitectures, respectively. The Zimmerman paper introduces the OSI architecture, and
the Clark paper is a retrospective. The final two papers are not specific to networking,
but present viewpoints that capture the “systems approach” of this book. The Saltzer
et al. paper motivates and describes one of the most widely applied rules of network
architecture—the end-to-end argument. The paper by Mashey describes the thinking be-
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hind RISC architectures; as we will soon discover, making good judgments about where
to place functionality in a complex system is what system design is all about.

B Dierce, J. “Telephony—A Personal View.” IEEE Communications 22(5):116—
120, May 1984.

B Zimmerman, H. “OSI Reference Model—The ISO Model of Architecture for
Open Systems Interconnection.” IEEE Transactions on Communications COM-

28(4):425-432, April 1980.

B Clark, D. “The Design Philosophy of the DARPA Internet Protocols.” Proceed-
ings of the SIGCOMM '88 Symposium, pp. 106-114, August 1988.

B Saltzer, ]., D. Reed, and D. Clark. “End-to-End Arguments in System Design.”
ACM Transactions on Computer Systems 2(4):277-288, November 1984.

B Mashey, ]J. “RISC, MIPS, and the Motion of Complexity.” UniForum 1986
Conference Proceedings, pp. 116—124, 1986.

Several texts offer an introduction to computer networking: Stallings gives an ency-
clopedic treatment of the subject, with an emphasis on the lower levels of the OSI hierar-
chy [Sta07]; Tanenbaum uses the OSI architecture as an organizational model [Tan03];
Comer gives an overview of the Internet architecture [Com00]; and Bertsekas and Gal-
lager discuss networking from a performance modeling perspective [BG92].

To put computer networking into a larger context, two books—one dealing with
the past and the other looking toward the future—are must reading. The first is Holz-
mann and Pehrson’s The Early History of Data Networks [HP95]. Surprisingly, many of
the ideas covered in the book you are now reading were invented during the 1700s. The
second is Realizing the Information Future: The Internet and Beyond, a book prepared by
the Computer Science and Telecommunications Board of the National Research Council
[NRCY4].

To follow the history of the Internet from its beginning, the reader is encouraged to
peruse the Internet’s Request for Comments (RFC) series of documents. These documents,
which include everything from the TCP specification to April Fools™ jokes, are retrievable
at http://www.ietf.org/rfc.html. For example, the protocol specifications for TCP,
UDBP, and IP are available in RFC 793, 768, and 791, respectively.

To gain a better appreciation for the Internet philosophy and culture, two refer-
ences are recommended; both are also quite entertaining. Padlipsky gives a good de-
scription of the early days, including a pointed comparison of the Internet and OSI
architectures [Pad85]. For an account of what really happens behind the scenes at the
Internet Engineering Task Force, we recommend Boorsook’s article [Boo95].
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There are a wealth of articles discussing various aspects of protocol implementa-
tions. A good starting point is to understand two complete protocol implementation
environments: the Stream mechanism from System V Unix [Rit84] and the x-kernel
[HP91]. In addition, [LMKQ89] and [SW95] describe the widely used Berkeley Unix
implementation of TCP/ID.

More generally, there is a large body of work addressing the issue of structuring and
optimizing protocol implementations. Clark was one of the first to discuss the relation-
ship between modular design and protocol performance [Cla82]. Later papers then in-
troduce the use of upcalls in structuring protocol code [Cla85] and study the processing
overheads in TCP [CJRS89]. Finally, [WM87] describes how to gain efficiency through
appropriate design and implementation choices.

Several papers have introduced specific techniques and mechanisms that can be
used to improve protocol performance. For example, [HMPT89] describes some of the
mechanisms used in the x-kernel, [MD93] discusses various implementations of demul-
tiplexing tables, [VL87] introduces the timing-wheel mechanism used to manage pro-
tocol events, and [DP93] describes an efficient buffer management strategy. Also, the
performance of protocols running on parallel processors—locking is a key issue in such
environments—is discussed in [BG93] and [NYKT94].

Because many aspects of protocol implementation depend on an understanding of
the basics of operating systems, we recommend Finkel [Fin88], Bic and Shaw [BS88],
and Tanenbaum [Tan01] for an introduction to OS concepts.

Finally, we conclude the Further Reading section of each chapter with a set of live
references; that is, URLs for locations on the World Wide Web where you can learn more
about the topics discussed in that chapter. Since these references are live, it is possible that
they will not remain active for an indefinite period of time. For this reason, we limit the
set of live references at the end of each chapter to sites that either export software, provide
a service, or report on the activities of an ongoing working group or standardization
body. In other words, we only give URLs for the kinds of material that cannot easily be
referenced using standard citations. For this chapter, we include four live references:

B http://www.mkp.com/pd4e: Information about this book, including sup-
plements, addenda, and so on.

B http://www.acm.org/sigcomm/sos.html: Status of various networking
standards, including those of the IETE ISO, and IEEE.

B http://www.ietf.org/: Information about the IETF and its working groups.

B http://edas.info/S.cgi?search=1: Searchable bibliography of network-
related research papers.



Exercises 55

EXERCISES

1 Use anonymous FTP to connect to ftp.isi.edu (directory in-notes), and
retrieve the RFC index. Also retrieve the protocol specifications for TCP, 1P,
and UDP.

2 Look up the website
http://www.cs.princeton.edu/nsg

Here you can read about current network research underway at Princeton Uni-
versity and see a picture of author Larry Peterson. Follow links to find a biog-
raphy of author Bruce Davie.

3 Use a Web search tool to locate useful, general, and noncommercial informa-

tion about the following topics: MBone, ATM, MPEG, IPv6, and Ethernet.

4 The Unix utility whois can be used to find the domain name correspond-
ing to an organization, or vice versa. Read the man page documentation for
whois and experiment with it. Try whois princeton.edu and whois
princeton, for starters. As an alternative, explore the whois interface at
http://www.internic.net/whois.html.

5 Calculate the total time required to transfer a 1,000-KB file in the following
cases, assuming an RTT of 100 ms, a packet size of 1-KB data, and an initial
2 x RTT of “handshaking” before data is sent.

(a) The bandwidth is 1.5 Mbps, and data packets can be sent continuously.
(b) The bandwidth is 1.5 Mbps, but after we finish sending each data packet

we must wait one RT'T before sending the next.

(c) The bandwidth is “infinite,” meaning that we take transmit time to be
zero, and up to 20 packets can be sent per RTT.

(d) The bandwidth is infinite, and during the first RT'T we can send one
packet (1=, during the second RTT we can send two packets (2271,
during the third we can send four (2371, and so on. (A justification for
such an exponential increase will be given in Chapter 6.)

v/ 6 Calculate the total time required to transfer a 1.5 MB file in the following cases,
assuming a RTT of 80 ms, a packet size of 1 KB data, and an initial 2xRTT of
“handshaking” before data is sent.
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(a) The bandwidth is 10 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 10 Mbps, but after we finish sending each data packet
we must wait one RTT before sending the next.

(c) The link allows infinitely fast transmit, but limits bandwidth such that
only 20 packets can be sent per RT'T.

(d) Zero transmit time as in (c), but during the first RT'T we can send one
packet, during the second RT'T we can send two packets, during the third
we can send four = 27!, and so on. (A justification for such an exponen-
tial increase will be given in Chapter 6.)

Consider a point-to-point link 2 km in length. At what bandwidth would prop-
agation delay (at a speed of 2 x 10¥m/sec) equal transmit delay for 100-byte
packets? What about 512-byte packets?

Consider a point-to-point link 50 km in length. At what bandwidth would
propagation delay (at a speed of 2 x 108 m/sec) equal transmit delay for 100-
byte packets? What about 512-byte packets?

What properties of postal addresses would be likely to be shared by a network
addressing scheme? What differences might you expect to find? What proper-
ties of telephone numbering might be shared by a network addressing scheme?

One property of addresses is that they are unique; if two nodes had the same
address it would be impossible to distinguish between them. What other prop-
erties might be useful for network addresses to have? Can you think of any
situations in which network (or postal or telephone) addresses might 7oz be
unique?

Give an example of a situation in which multicast addresses might be beneficial.

What differences in traffic patterns account for the fact that STDM is a cost-
effective form of multiplexing for a voice telephone network and FDM is a
cost-effective form of multiplexing for television and radio networks, yet we
reject both as not being cost-effective for a general-purpose computer network?

How “wide” is a bit on a 1-Gbps link? How long is a bit in copper wire, where
the speed of propagation is 2.3 x 10% m/s?

How long does it take to transmit x KB over a y-Mbps link? Give your answer
as a ratio of x and y.
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Suppose a 100-Mbps point-to-point link is being set up between Earth and
a new lunar colony. The distance from the moon to Earth is approximately
385,000 km, and data travels over the link at the speed of light—3 x 108 m/s.

(a) Calculate the minimum RTT for the link.

(b) Using the RTT as the delay, calculate the delay x bandwidth product for
the link.

(c) What is the significance of the delay x bandwidth product computed
in (b)?

(d) A camera on the lunar base takes pictures of Earth and saves them in digital
format to disk. Suppose Mission Control on Earth wishes to download the
most current image, which is 25 MB. What is the minimum amount of
time that will elapse between when the request for the data goes out and
the transfer is finished?

Suppose a 128-Kbps point-to-point link is set up between Earth and a rover
on Mars. The distance from Earth to Mars (when they are closest together) is
approximately 55 Gm, and data travels over the link at the speed of light—
3 x 10 m/sec.

(a) Calculate the minimum RTT for the link.
(b) Calculate the delay x bandwidth product for the link.

(c) A camera on the rover takes pictures of its surroundings and sends these to
Earth. How quickly after a picture is taken can it reach Mission Control
on Earth? Assume that each image is 5 MB in size.

For each of the following operations on a remote file server, discuss whether
they are more likely to be delay sensitive or bandwidth sensitive.

(a) Open a file.
(b) Read the contents of a file.
(c) List the contents of a directory.

(d) Display the attributes of a file.
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18 Calculate the latency (from first bit sent to last bit received) for the following:

(a) A 10-Mbps Ethernet with a single store-and-forward switch in the path,
and a packet size of 5,000 bits. Assume that each link introduces a propaga-
tion delay of 10 us, and that the switch begins retransmitting immediately
after it has finished receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (a) but assume the switch implements “cut-through” switching: it
is able to begin retransmitting the packet after the first 200 bits have been
received.

v/ 19 Calculate the latency (from first bit sent to last bit received) for:

(a) A 1-Gbps Ethernet with a single store-and-forward switch in the path, and
a packet size of 5,000 bits. Assume that each link introduces a propagation
delay of 10 s and that the switch begins retransmitting immediately after
it has finished receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (b) but assume the switch implements cut-through switching: it
is able to begin retransmitting the packet after the first 128 bits have been
received.

20 Calculate the effective bandwidth for the following cases. For (a) and (b) as-
sume there is a steady supply of data to send; for (c) simply calculate the average
over 12 hours.

(a) A 10-Mbps Ethernet through three store-and-forward switches as in Exer-
cise 18(b). Switches can send on one link while receiving on the other.

(b) Same as (a) but with the sender having to wait for a 50-byte acknowledg-
ment packet after sending each 5,000-bit data packet.

(c) Overnight (12-hour) shipment of 100 compact discs (650 MB each).

21 Calculate the bandwidth x delay product for the following links. Use one-way
delay, measured from first bit sent to first bit received.

(a) A 10-Mbps Ethernet with a delay of 10 pus.
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(b) A 10-Mbps Ethernet with a single store-and-forward switch like that of
Exercise 18(a), packet size 5,000 bits, and 10 ws per link propagation delay.

(c) A 1.5-Mbps TT1 link, with a transcontinental one-way delay of 50 ms.

(d) A 1.5-Mbps TT1 link through a satellite in geosynchronous orbit, 35,900-
km high. The only delay is speed-of-light propagation delay.

Hosts A and B are each connected to a switch S via 10-Mbps links as in Fig-
ure 1.24. The propagation delay on each link is 20 us. S is a store-and-forward
device; it begins retransmitting a received packet 35 ps after it has finished

receiving it. Calculate the total time required to transmit 10,000 bits from
A to B.

(a) As asingle packet.
(b) As two 5,000-bit packets sent one right after the other.

Suppose a host has a 1-MB file that is to be sent to another host. The file takes
1 second of CPU time to compress 50%, or 2 seconds to compress 60%.

(a) Calculate the bandwidth at which each compression option takes the same
total compression + transmission time.

(b) Explain why latency does not affect your answer.

Suppose that a certain communications protocol involves a per-packet over-
head of 100 bytes for headers and framing. We send 1 million bytes of data
using this protocol; however, one data byte is corrupted and the entire packet
containing it is thus lost. Give the total number of overhead + loss bytes for
packet data sizes of 1,000, 5,000, 10,000, and 20,000 bytes. Which size is
optimal?

Assume you wish to transfer an 7 B file along a path composed of the source,
destination, seven point-to-point links, and five switches. Suppose each link
has a propagation delay of 2 ms, bandwidth of 4 Mbps, and that the switches
support both circuit and packet switching. Thus, you can either break the file
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up into 1-KB packets, or set up a circuit through the switches and send the file
as one contiguous bitstream. Suppose that packets have 24 B of packet header
information and 1,000 B of payload, that store-and-forward packet processing
at each switch incurs a 1-ms delay after the packet had been completely re-
ceived, that packets may be sent continuously without waiting for acknowledg-
ments, and that circuit setup requires a 1-KB message to make one round-trip
on the path incurring a 1-ms delay at each switch after the message has been
completely received. Assume switches introduce no delay to data traversing a
circuit. You may also assume that file size is a multiple of 1,000 B.

(a) For what file size 7 B is the total number of bytes sent across the network
less for circuits than for packets?

(b) For what file size 7B is the total latency incurred before the entire file
arrives at the destination less for circuits than for packets?

(c) How sensitive are these results to the number of switches along the path?
To the bandwidth of the links? To the ratio of packet size to packet header

size?

(d) How accurate do you think this model of the relative merits of circuits and
packets is? Does it ignore important considerations that discredit one or
the other approach? If so, what are they?

Consider a network with a ring topology, link bandwidths of 100 Mbps, and
propagation speed 2 x 108 m/s. What would the circumference of the loop
be to exactly contain one 250-byte packet, assuming nodes do not introduce
delay? What would the circumference be if there was a node every 100 m, and
each node introduced 10 bits of delay?

Compare the channel requirements for voice traffic with the requirements for
the real-time transmission of music, in terms of bandwidth, delay, and jitter.
What would have to improve? By approximately how much? Could any chan-
nel requirements be relaxed?

For the following, assume that no data compression is done; this would in
practice almost never be the case. For (a)—(c), calculate the bandwidth necessary
for transmitting in real time:

(a) Video at a resolution of 640 x 480, 3 bytes/pixel, 30 frames/second.
(b) 160 x 120 video, 1 byte/pixel, 5 frames/second.



29

30

31

32

Exercises 61

(c) CD-ROM music, assuming one CD holds 75 minutes’ worth and takes
650 MB.

(d) Assume a fax transmits an 8 x 10-inch black-and-white image at a reso-
lution of 72 pixels per inch. How long would this take over a 14.4-Kbps
modem?

For the following, as in the previous problem, assume that no data compression
is done. Calculate the bandwidth necessary for transmitting in real time:

(a) HDTV high-definition video at a resolution of 1,920 x 1,080, 24
bits/pixel, 30 frames/sec.

(b) Plain old telephone service (POTYS) voice audio of 8-bit samples at 8 KHz.
(c) GSM mobile voice audio of 260-bit samples at 50 Hz.
(d) HDCD high-definition audio of 24-bit samples at 88.2 kHz.

Discuss the relative performance needs of the following applications, in terms
of average bandwidth, peak bandwidth, latency, jitter, and loss tolerance:

(a) File server.

(b) Print server.

(c) Digital library.

(d) Routine monitoring of remote weather instruments.
(e) Voice.

(f) Video monitoring of a waiting room.

(g) Television broadcasting.

Suppose a shared medium M offers to hosts A, Az, ..., Ay in round-robin
fashion an opportunity to transmit one packet; hosts that have nothing to send
immediately relinquish M. How does this differ from STDM? How does net-
work utilization of this scheme compare with STDM?

Consider a simple protocol for transferring files over a link. After some initial
negotiation, A sends data packets of size 1 KB to B; B then replies with an
acknowledgment. A always waits for each ACK before sending the next data
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packet; this is known as stop-and-wait. Packets that are overdue are presumed
ost and are retransmitted.
lost and t tted

(a) In the absence of any packet losses or duplications, explain why it is not
necessary to include any “sequence number” data in the packet headers.

(b) Suppose that the link can lose occasional packets, but that packets that do
always arrive in the order sent. Is a 2-bit sequence number (that is, NV mod
4) enough for A and B to detect and resend any lost packets? Is a 1-bit
sequence number enough?

(c) Now suppose that the link can deliver out of order, and that sometimes
a packet can be delivered as much as 1 minute after subsequent packets.
How does this change the sequence number requirements?

Suppose hosts A and B are connected by a link. Host A continuously transmits
the current time from a high-precision clock, at a regular rate, fast enough to
consume all the available bandwidth. Host B reads these time values and writes
them each paired with its own time from a local clock synchronized with A’s.
Give qualitative examples of B’s output assuming the link has

(a) High bandwidth, high latency, low jitter.
(b) Low bandwidth, high latency, high jitter.

(c) High bandwidth, low latency, low jitter, occasional lost data.

For example, a link with zero jitter, a bandwidth high enough to write on
every other clock tick, and a latency of 1 tick might yield something like
(0000, 0001), (0002, 0003), (0004, 0005).

Obtain and build the simplex-talk sample socket program shown in the text.
Start one server and one client in separate windows. While the first client is run-
ning, start 10 other clients that connect to the same server; these other clients
should most likely be started in the background with their input redirected
from a file. What happens to these 10 clients? Do their connect()s fail, or
time out, or succeed? Do any other calls block? Now let the first client exit.
What happens? Try this with the server value MAX_PENDING set to 1 as

well.

Modify the simplex-talk socket program so that each time the client sends a
line to the server, the server sends the line back to the client. The client (and
server) will now have to make alternating calls to recv() and send().
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Modify the simplex-talk socket program so that it uses UDP as the trans-
port protocol, rather than TCP. You will have to change SOCK_STREAM to
SOCK_DGRAM in both client and server. Then, in the server, remove the
calls to listen() and accept(), and replace the two nested loops at the end
with a single loop that calls recv() with socket s. Finally, see what happens
when two such UDP clients simultaneously connect to the same UDP server,
and compare this to the TCP behavior.

Investigate the different options and parameters one can set for a TCP connec-
tion. (Do “man tcp” on Unix.) Experiment with various parameter settings
to see how they effect TCP performance.

The Unix utility ping can be used to find the RTT to various Inter-
net hosts. Read the man page for ping, and use it to find the RTT to
www.cs.princeton.edu in New Jersey and www.cisco.com in Califor-
nia. Measure the RT'T values at different times of day, and compare the results.
What do you think accounts for the differences?

The Unix utility traceroute, or its Windows equivalent tracert, can be used
to find the sequence of routers through which a message is routed. Use this to
find the path from your site to some others. How well does the number of hops
correlate with the RTT times from ping? How well does the number of hops
correlate with geographical distance?

Use traceroute, above, to map out some of the routers within your organiza-
tion (or to verify none are used).



Direct Link Networks

It is a mistake to look too far ahead. Only one link in the chain of
destiny can be handled at a time.

—Winston Churchill

he simplest network possible is one in which two hosts are directly connected

by some physical medium. The medium be a length of wire, a piece of optical

fiber, or a medium (such as air or even free space) through which electromagnetic
radiation (e.g., radio waves) can be transmitted. It may cover a small area (e.g., an office
building) or a wide area (e.g., transcontinental). Connecting two or more nodes with a
suitable medium is only the first step, however. There are five additional problems that
must be addressed before the nodes can successfully exchange packets.
The first is encoding bits onto
PROBLEM the transmission medium so that they
can be understood by a receiving host.
Second is the matter of delineating the
sequence of bits transmitted over the
link into complete messages that can
be delivered to the end node. This is
called the framing problem, and the messages delivered to the end hosts are often called

Physically Connecting

Hosts

frames. Third, because frames are sometimes corrupted during transmission, it is nec-
essary to detect these errors and take the appropriate action; this is the error detection
problem. The fourth issue is making a link appear reliable in spite of the fact that it
corrupts frames from time to time. Finally, in those cases where the link is shared by
multiple hosts—as opposed to a simple point-to-point link—it is necessary to mediate
access to this link. This is the media access control problem.

Although these five issues—encoding, framing, error detection, reliable delivery,
and access mediation—can be discussed in the abstract, they are very real problems that
are addressed in different ways by different networking technologies. This chapter con-
siders these issues in the context of four specific network technologies: point-to-point
links, carrier sense multiple access (CSMA) networks (of which Ethernet is the most
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famous example), token rings (of which IEEE Standard 802.5 and
FDDI are the most famous examples), and wireless networks (for
which 802.11 is the most widespread standard!). The goal of this
chapter is simultaneously to survey the available network technol-
ogy and to explore these five fundamental issues.

Before tackling the specific issues of connecting hosts, this
chapter begins by examining the building blocks that will be used:
nodes and links. We then explore the first three issues—encoding,
framing, and error detection—in the context of a simple point-to-
point link. The techniques introduced in these three sections are
general and therefore apply equally well to multiple-access net-
works. The problem of reliable delivery is considered next. Since
link-level reliability is usually not implemented in shared-access
networks, this discussion focuses on point-to-point links only.
Finally, we address the media access problem in the context of

CSMA, token rings, and wireless.

1Strictly speaking, 802.11 is a set of standards.
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2.1 Hardware Building Blocks

As we saw in Chapter 1, networks are constructed from two classes of hardware building
blocks: nodes and links. This statement is just as true for the simplest possible network—
one in which a single point-to-point link connects a pair of nodes—as it is for a world-
wide internet. This section gives a brief overview of what we mean by nodes and links
and, in so doing, defines the underlying technology that we will assume throughout the
rest of this book.

2.1.1 Nodes

Nodes are often general-purpose computers, like a desktop workstation, a multiprocessor,
or a PC. For our purposes, let’s assume it’s a workstation-class machine. This workstation
can serve as a host that users run application programs on, it might be used inside the
network as a switch that forwards messages from one link to another, or it might be
configured as a router that forwards internet packets from one network to another. In
some cases, a network node—most commonly a switch or router inside the network,
rather than a host—is implemented by special-purpose hardware. This is usually done
for reasons of performance and cost: It is generally possible to build custom hardware that
performs a particular function faster and cheaper than a general-purpose processor can
perform it. When this happens, we will first describe the basic function being performed
by the node as though this function is being implemented in software on a general-
purpose workstation, and then explain why and how this functionality might instead be
implemented by special hardware.

Although we could leave it at that, it is useful to know a little bit about what a
workstation looks like on the inside. This information becomes particularly important
when we become concerned about how well the network performs. Figure 2.1 gives a
simple block diagram of the workstation-class machine we assume throughout this book.

Two aspects of the memory component are important to note. First, the memory
on any given machine is finite. It may be 64 MB or it may be 1 GB, but it is not infinite.
As pointed out in Section 1.2.2, this is important because memory turns out to be one
of the two scarce resources in the network (the other is link bandwidth) that must be
carefully managed if we are to provide a fair amount of network capacity to each user.
Memory is a scarce resource because, on any node that forwards packets, those packets
must be buffered in memory while waiting their turn to be transmitted over an outgoing
link.

Second, while CPUs are becoming faster at an unbelievable pace, the same is
not true of memory. Recent performance trends show processor speeds doubling every
18 months, but memory latency improving at a rate of only 7% each year. The relevance
of this difference is that as a network node, a workstation runs at memory speeds, not
processor speeds, to a first approximation. This means that the network software needs
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Figure 2.1 Example workstation architecture.

to be careful about how it uses memory and, in particular, about how many times it
accesses memory as it processes each message. We do not have the luxury of being sloppy
just because processors are becoming infinitely fast.

The workstation’s network adaptor component connects the rest of the workstation
to the link. More than just a physical connection, it is an active intermediary between
node and link, with its own internal processor. Its role is to transmit data from the
workstation onto the link, and receive data from the link, storing it for the workstation.
The adaptor implements nearly all the networking functionality, to be discussed in the
course of this chapter, that makes it possible to convey data over a dumb wire (or radio
airwaves) between adaptors. For example, adaptors break data into frames that the link
can transport, detect errors introduced as a frame travels over the link, and follow fairness
rules that allow a link to be shared by multiple workstations.

A network adaptor can be thought of as having two main components: a bus inter-
face that understands how to communicate with the host and a link interface that under-
stands how to use the link. There must also be a communication path between these two
components, over which incoming and outgoing data is passed. A simple block diagram
of a network adaptor is depicted in Figure 2.2.

Different kinds of links require network adaptors with very different link interfaces.
In this chapter we will see the tasks performed by the link interface for a variety of link
technologies. Different I/O buses likewise require different adaptors. From the perspec-
tive of the host, however, bus interfaces tend to be similar to each other. Typically, the
adaptor exports a control status register (CSR) that is readable and writable from the CPU.
The CSR is typically located at some address in the memory, thereby making it possible
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Figure 2.2 Block diagram of a typical network adaptor.

for the CPU to read and write just like any other memory location. Software on the
host—a device driver—writes to the CSR to instruct it to transmit and/or receive data
and reads from the CSR to learn the current state of the adaptor. To notify the host of
an asynchronous event such as the reception of a frame, the adaptor inzerrupts the host.
One of the most important issues in network adaptor design is how bytes of data are
transferred between the adaptor and the host memory. There are two basic mechanisms:
direct memory access (DMA) and programmed I/O (PIO). With DMA, the adaptor directly
reads and writes the host's memory without any CPU involvement; the host simply gives
the adaptor a memory address and the adaptor reads from (or writes to) it. With PIO, the
CPU is directly responsible for moving data between the adaptor and the host memory:
To send a frame, the CPU executes a tight loop that first reads a word from host memory

and then writes it to the adaptor; to re-
ceive a frame, the CPU reads words from
the adaptor and writes them to memory.

As noted earlier, host memory per-
formance is often the limiting factor in
network performance. Nowhere is this
possibility more critical than at the host/
adaptor interface. To help drive this point
home, consider Figure 2.3. This diagram
shows the bandwidth available between
various components of a modern PC.
While the I/0O bus is fast enough to trans-
fer frames between the network adaptor
and host memory at gigabit rates, there are
two potential problems.

Frames, Buffers, and Messages

As this section has suggested, the net-
work adaptor is the place where the
network comes in physical contact
with the host. It also happens to be
the place where three different worlds
intersect: the network, the host archi-
tecture, and the host operating sys-
tem. It turns out that each of these
has a different terminology for talking
about the same thing. It is important
to recognize when this is happening.
From the network’s perspective,
the adaptor transmits frames from the
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Figure 2.3 Memory bandwidth on a modern PC-class machine.

The first is that the advertised I/O bus speed corresponds to its peak bandwidth;
it is the product of the bus’s width and clock speed (e.g., a 64-bit-wide bus running at
133 MHz has a peak transfer rate of 8,512 Mbps). The real limitation is the size of the
data block that is being transferred across the I/O bus, since there is a certain amount
of overhead involved in each bus transfer. On some architectures, for example, it takes
8 clock cycles to acquire the bus for the purpose of transferring data from the adaptor
to host memory. This overhead is independent of the number of data bytes transferred.
Thus, if you want to transfer a 64-byte payload across the I/O bus—this happens to
be the size of a minimum Ethernet packet—then the whole transfer takes 16 cycles:
8 cycles to acquire the bus and 8 cycles to transfer the data. (The bus is 64 bits wide,

host and receives frames into the host.
From the perspective of the host ar-
chitecture, each frame is received into
or transmitted from a buffer, which
is simply a region of main mem-
ory of some length and starting at
some address. Finally, from the op-
erating systems perspective, a 7mes-
sage is an abstract object that holds
network frames. Messages are imple-
mented by a data structure that in-
cludes pointers to different memory
locations (buffers). We saw an ex-
ample of a message data structure in

Chapter 1.

which means that it can transfer 8 bytes
during each clock cycle; 64 bytes divided
by 8 bytes per cycle equals 8 cycles.) This
means that the maximum sustained band-
width you can achieve for such packets is
only half the peak (i.e., 4,256 Mbps).

The second problem is that the
memory/CPU bandwidth, which in this
example is 3,200 MBps (25.6 Gbps), is
the same order of magnitude as the band-
width of the I/O bus. Fortunately, this is
a measured number rather than an adver-
tised peak rate. The ramification is that
while it is possible to deliver frames across
the I/O bus and into memory and then to
load the data from memory into the CPU’s
registers at network bandwidths, it is im-
practical for the device driver, operating
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system, and application to go to memory multiple times for each word of data in a net-
work packet, possibly because it needs to copy the data from one buffer to another. In
particular, if the memory/CPU path is crossed 7 times, then it might be the case that the
bandwidth your application sees is 3,200/7 MBps. (The performance might be better
if the data is cached, but often caches don’t help with data arriving from the network.)
For example, if the various software layers need to copy the message from one buffer
to another four times—not an uncommon situation—then the application might see a
throughput of 800 MBps (6,400 Mbps), less than the 8,512 Mbps that the I/O bus can
support.

As an aside, it is important to recognize that there are many parallels between
moving a message to and from memory and moving a message across a network. In
particular, the effective throughput of the memory system is defined by the same two
formulas given in Section 1.5.

Throughput = TransferSize/TransferTime

TransferTime = RTT + 1/Bandwidth x TransferSize

In the case of the memory system, however, the transfer size corresponds to how big
a unit of data we can move across the bus in one transfer (i.e., cache line versus small
cells versus large message), and the RTT corresponds to the memory latency, that is,
whether the memory is on-chip cache, off-chip cache, or main memory. Just as in the
case of the network, the larger the transfer size and the smaller the latency, the better
the effective throughput. Also similar to a network, the effective memory throughput
does not necessarily equal the peak memory bandwidth (i.e., the bandwidth that can be
achieved with an infinitely large transfer).

The main point of this discussion is that we must be aware of the limits memory
bandwidth places on network performance. If carefully designed, the system can work
around these limits. For example, it is possible to integrate the buffers used by the device
driver, the operating system, and the application in a way that minimizes data copies.
The system also needs to be aware of when data is brought into cache, so it can perform
all necessary operations on the data before it gets bumped from the cache. The details of
how this is accomplished are beyond the scope of this book, but can be found in papers
referenced at the end of the chapter.

Finally, there is a second important lesson lurking in this discussion: when the
network isn't performing as well as you think it should, it’s not always the network’s fault.
In many cases, the actual bottleneck in the system is one of the machines connected to
the network. For example, when it takes a long time for a web page to appear on your
browser, it might be network congestion, but it’s just as likely the case that the server at
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the other end of the network—which may be trying to serve many users at the same time
as you—can't keep up with the workload.

2.1.2 Links

Network links are implemented on a variety of different physical media, including
twisted pair (the wire that your phone connects to), coaxial cable (the wire that your
TV connects to), optical fiber (the medium most commonly used for high-bandwidth,
long-distance links), and space (the stuff that radio waves, microwaves, and infrared
beams propagate through). Whatever the physical medium, it is used to propagate sig-
nals. These signals are actually electromagnetic waves traveling at the speed of light. (The
speed of light is, however, medium dependent—electromagnetic waves traveling through
copper and fiber do so at about two-thirds the speed of light in a vacuum.)

One important property of an electromagnetic wave is the frequency, measured in
hertz, with which the wave oscillates. The distance between a pair of adjacent maxima
or minima of a wave, typically measured in meters, is called the wave’s wavelength. Since
all electromagnetic waves travel at the speed of light, that speed divided by the wave’s
frequency is equal to its wavelength. We have already seen the example of a voice-grade
telephone line, which carries continuous electromagnetic signals ranging between 300
and 3,300 Hz; a 300-Hz wave traveling through copper would have a wavelength of

SpeedOfLightInCopper + Frequency
=2/3 x 3 x 10% =300

= 667 x 10> meters

Generally, electromagnetic waves span a much wider range of frequencies, ranging from
radio waves, to infrared light, to visible light, to X-rays and gamma rays. Figure 2.4
depicts the electromagnetic spectrum and shows which media are commonly used to
carry which frequency bands.

So far we understand a link to be a physical medium carrying signals in the form
of electromagnetic waves. Such links provide the foundation for transmitting all sorts of
information, including the kind of data we are interested in transmitting—binary data
(1s and Os). We say that the binary data is encoded in the signal. The problem of encoding
binary data onto electromagnetic signals is a complex topic. To help make the topic
more manageable, we can think of it as being divided into two layers. The lower layer
is concerned with modulation—varying the frequency, amplitude, or phase of the signal
to effect the transmission of information. A simple example of modulation is to vary the
power (amplitude) of a single wavelength. Intuitively, this is equivalent to turning a light
on and off. Because the issue of modulation is secondary to our discussion of links as a
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Figure 2.4 Electromagnetic spectrum.

building block for computer networks, we simply assume that it is possible to transmit a
pair of distinguishable signals—think of them as a “high” signal and a “low” signal—and
we consider only the upper layer, which is concerned with the much simpler problem of
encoding binary data onto these two signals. Section 2.2 discusses such encodings.

Another attribute of a link is how many bitstreams can be encoded on it at a
given time. If the answer is only one, then the nodes connected to the link must share
access to the link. This is the case for the multiple-access links described in Sections 2.6
and 2.7. For point-to-point links, however, it is often the case that two bitstreams can be
simultaneously transmitted over the link at the same time, one going in each direction.
Such a link is said to be full-duplex. A point-to-point link that supports data flowing in
only one direction at a time—such a link is called half-duplex—requires that the two
nodes connected to the link alternate using it. For the purposes of this book, we assume
that all point-to-point links are full-duplex.

The only other property of a link that we are interested in at this stage is a very
pragmatic one—how do you go about getting one? The answer depends on how far the
link needs to reach, how much money you have to spend, and whether or not you know
how to operate earth-moving equipment. The following is a survey of different link types
you might use to build a computer network.

Cables

If the nodes you want to connect are in the same room, in the same building, or even
on the same site (e.g., a campus), then you can buy a piece of cable and physically string
it between the nodes. Exactly what type of cable you choose to install depends on the
technology you plan to use to transmit data over the link; we'll see several examples later
in this chapter. For now, a list of the common cable (fiber) types is given in Table 2.1.
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Cable Typical Bandwidths | Distances
Category 5 twisted pair | 10-100 Mbps 100m
Thin-net coax 10-100 Mbps 200m
Thick-net coax 10-100 Mbps 500m
Multimode fiber 100 Mbps 2 km
Single-mode fiber 0.1-10 Gbps 40 km

Table 2.1 Common types of cables and fibers available for local links.

Service | Bandwidth
DS1 1.544 Mbps
DS3 44.736 Mbps
STS-1 51.840 Mbps
STS-3 155.250 Mbps
STS-12 622.080 Mbps
STS-24 | 1.244160 Gbps
STS-48 | 2.488320 Gbps

Table 2.2 Common bandwidths available from the carriers.

Of these, Category 5 (Cat-5) twisted pair—it uses a thicker gauge than the twisted
pair you find in your home—is quickly becoming the within-building norm. Because
of the difficulty and cost in pulling new cable through a building, every effort is made
to make new technologies use existing cable; Gigabit Ethernet, for example, has been
designed to run over Cat-5 wiring. Fiber is typically used to connect buildings at a site.

Leased Lines

If the two nodes you want to connect are on opposite sides of the country, or even across
town, then it is not practical to install the link yourself. Until recently, your only option
was to lease a dedicated link from the telephone company. Table 2.2 gives the common
“leased line” services that can be obtained from the average phone company. Again, more
details are given throughout this chapter.

While these bandwidths appear somewhat arbitrary, there is actually some method
to the madness. DS1 and DS3 (they are also sometimes called T1 and T3, respectively)
are relatively old technologies that were originally defined for copper-based transmission
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media. DS1 is equal to the aggregation of 24 digital voice circuits of 64 Kbps each, and
DS3 is equal to 28 DS1 links. All the STS-N links are for optical fiber (STS stands
for Synchronous Transport Signal). STS-1 is the base link speed, and each STS-/V has
N times the bandwidth of STS-1. An STS-/V link is also sometimes called an OC-NV
link (OC stands for optical carrier). The difference between STS and OC is subtle: The
former refers to the electrical transmission on the devices connected to the link, and the
latter refers to the actual optical signal that is propagated over the fiber.

More recently, many providers, both traditional telephone companies and some
upstart competitors, have started to offer a range of alternatives to leased lines based on
Ethernet, a technology we will discuss in detail in Section 2.6. One consequence of this
development is a proliferation of different access speeds beyond those in Table 2.2.

Keep in mind that the phone company does not implement the “link” we just
ordered as a single, unbroken piece of cable or fiber. Instead, it implements the link on
its own network. Although the telephone network has historically looked much different
from the kind of network described in this book—it was built primarily to provide a
voice service and used circuit-switching technology—the current trend is toward the
style of packet-switched networking described in this book. This is not surprising—the
potential market for carrying data, voice, and video on one packet-switched network is
huge.

In any case, whether the link is physical or a logical connection through the tele-
phone network, the problem of building a computer network on top of a collection of
such links remains the same. So, we will proceed as though each link is implemented by
a single cable/fiber, and only when we are done will we worry about whether we have just
built a computer network on top of the underlying telephone network, or the computer
network we have just built could itself serve as the backbone for the telephone network.

Last-Mile Links

If you can't afford a dedicated leased line—they range in price from several hundred dol-
lars a month for a DS1 link across the United States to “if you have to ask, you can't
afford it"—then there are less expensive options available. We call these “last-mile” links
because they often span the last mile from the home to a network service provider. These
services, which are summarized in Table 2.3, typically connect a home to an existing net-
work. This means they are probably not suitable for use in building a complete network
from scratch, but if you've already succeeded in building a network—and “you” happen
to be either the telephone company or the cable company—then you can use these links
to reach millions of customers.

The first option is a conventional modem over POTS. Today it is possible to buy
a modem that transmits data at 56 Kbps over a standard voice-grade line for less than
a hundred dollars. The technology is already at its bandwidth limit, however, which



Service | Bandwidth

POTS 28.8-56 Kbps

ISDN | 64-128 Kbps

xDSL 128 Kbps—100 Mbps
CATV 1-40 Mbps
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Table 2.3 Common services available to connect your home.

led to the development of the second option: Integrated Services Digital Network
(ISDN). An ISDN connection includes two 64-Kbps channels, one that can be used
to transmit data and another that can be used for digitized voice. (A device that en-
codes analog voice into a digital ISDN link is called a CODEC, for coder/decoder.)
When the voice channel is not in use, it can be combined with the data channel to

Shannon’s Theorem Meets
Your Modem

There has been an enormous body of
work done in the related areas of sig-
nal processing and information the-
ory, studying everything from how
signals degrade over distance to how
much data a given signal can effec-
tively carry. The most notable piece of
work in this area is a formula known
as Shannon’s theorem. Simply stated,
Shannon’s theorem gives an upper
bound to the capacity of a link, in
terms of bits per second (bps), as a
function of the signal-to-noise ratio of
the link, measured in decibels (dB).
Shannon’s theorem can be used
to determine the data rate at which a
modem can be expected to transmit
binary data over a voice-grade phone
line without suffering from too high
an error rate. For example, we assume
that a voice-grade phone connection

support up to 128 Kbps of data band-
width.

For many years ISDN was viewed
as the future for modest bandwidth into
the home. ISDN, however, has now been
largely overtaken by two newer tech-
nologies: digital subscriber line (xDSL)
and cable modems. The former is ac-
tually a collection of technologies that
are able to transmit data at high speeds
over the standard twisted pair lines that
currently come into most homes in the
United States (and many other places).
The one in most widespread use to-
day is asymmetric digital subscriber line
(ADSL). As its name implies, ADSL pro-
vides a different bandwidth from the
subscriber to the telephone company’s
central office (upstream) than it does
from the central office to the subscriber
(downstream). The exact bandwidth de-
pends on the length of the line running
from the subscriber to the central office.
This line is called the local loop, as il-

lustrated in Figure 2.5, and runs over
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existing copper. Downstream bandwidths
range from 1.544 Mbps (18,000 feet) to
8.448 Mbps (9,000 feet), while upstream
bandwidths range from 16 to 640 Kbps.

An alternative technology that has
yet to be widely deployed—very high
data rate digital subscriber line (VDSL)—
is symmetric, with data rates ranging
from 12.96 to 55.2 Mbps. VDSL runs
over much shorter distances—1,000 to
4,500 feet—which means that it will not
typically reach from the home to the cen-
tral office. Instead, the telephone company
would have to put VDSL transmission
hardware in neighborhoods, with some
other technology (e.g., STS-N running
over fiber) connecting the neighborhood
to the central office, as illustrated in Fig-
ure 2.6. This is sometimes called “fiber to
the neighborhood” (contrasting with more
ambitious schemes such as “fiber to the
home” and “fiber to the curb”).

Cable modems are an alternative to
the various types of DSL. As the name sug-
gests, this technology uses the cable TV
(CATV) infrastructure, which currently
reaches 95% of the households in the
United States. (Only 65% of U.S. homes
actually subscribe.) In this approach, some
subset of the available CATV channels
are made available for transmitting dig-
ital data, where a single CATV channel
has a bandwidth of 6 MHz. CATV, like
ADSL, is used in an asymmetric way, with
downstream rates much greater than up-
stream rates. The technology is currently
able to achieve 40 Mbps downstream on a
single CATV channel, with 100 Mbps as
the theoretical capacity. The upstream rate

supports a frequency range of 300 to
3,300 Hz.

Shannon’s theorem is typically
given by the following formula:

C = Blog,(1+ S§/N)

where C is the achievable channel ca-
pacity measured in hertz, B is the
bandwidth of the line (3,300 Hz —
300 Hz = 3,000 Hz), S is the aver-
age signal power, and NV is the average
noise power. The signal-to-noise ratio
(§/N) is usually expressed in decibels,

related as follows:
dB =10 x log,,(S/N)

Assuming a typical decibel ratio of
30 dB, this means that S/N = 1,000.
Thus, we have

C = 3,000 x log,(1001)

which equals approximately 30 Kbps,
roughly the limit of a 28.8-Kbps
modem.

Given this fundamental limit,
why is it possible to buy 56-Kbps
modems at any electronics store? One
reason is that such rates depend on im-
proved line quality, that is, a higher
signal-to-noise ratio than 30 dB. An-
other reason is that changes within the
phone system have largely eliminated
analog lines that are bandwidth lim-
ited to 3,300 Hz.
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1.554-8.448 Mbps

16-640 Kbps

Central Subscriber
office Local loop premises

Figure 2.5 ADSL connects the subscriber to the central office via the local loop.

STS-N . . VDSL at 12.96-55.2 Mbps
Central Neighborhood optical Subscriber

office over fiber network unit over 1000-4500 feet of copper premises

Figure 2.6 VDSL connects the subscriber to the optical network that reaches the
neighborhood.

is roughly half the downstream rate (i.e., 20 Mbps) due to a 1,000-fold decrease in the
signal-to-noise ratio. It is also the case that fewer CATV channels are dedicated to up-
stream traffic than to downstream traffic. Unlike DSL, the bandwidth is shared among
all subscribers in a neighborhood (a fact that led to some amusing advertising from DSL
providers). This means that some method for arbitrating access to the shared medium—
similar to the 802 standards described later in this chapter—needs to be used. Finally,
like DSL, it is unlikely that cable modems will be used to connect arbitrary node A at
one site to arbitrary node B at some other site. Instead, cable modems are seen as a means
to connect node A in your home to the cable company, with the cable company then
defining what the rest of the network looks like.

Wireless Links

Up to this point we have discussed links that channel signals through a physical medium
like a wire or optical fiber. Wireless links transmit electromagnetic signals—radio, mi-
crowave, infrared, or even visible light—through space, even through vacuum. Wireless
communication is used not only by computer networks, of course. The ability to ex-
change signals without physical connectivity is what makes mobile communication de-
vices possible. The further ability to broadcast that signal, and the fact that the hardware
and power burden is primarily on the transmitting end, makes wireless communication
well-suited to television and radio broadcasting.

Because wireless links all share the same wire, so to speak, the challenge is to share
it efficiently, without unduly interfering with each other. Most of this sharing is accom-
plished by dividing the “wire” along the dimensions of frequency and space. Exclusive use
of a particular frequency in a particular geographic area may be allocated to an individual
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entity such as a corporation. It is feasible to limit the area covered by an electromagnetic
signal because such signals weaken, or attenuate, with the distance from their origin. To
reduce the area covered by your signal, reduce the power of your transmitter.

These allocations are determined by government agencies, such as the Federal
Communications Commission (FCC) in the United States. Specific bands (frequency
ranges) are allocated to certain uses. Some bands are reserved for government use. Other
bands are reserved for uses such as AM radio, FM radio, television, satellite commu-
nication, and cell phones. Specific frequencies within these bands are then licensed to
individual organizations for use within certain geographical areas. Finally, there are sev-
eral frequency bands set aside for “license-exempt” usage—bands in which a license is
not needed.

Devices that use license-exempt frequencies are still subject to certain restrictions
to make that otherwise unconstrained sharing work. The first is a limit on transmission
power. This limits the range of a signal, making it less likely to interfere with another
signal. For example, a cordless phone might have a range of about 100 feet.

The second restriction requires the use of spread spectrum techniques. The idea
behind spread spectrum is to spread the signal over a wider frequency band than nor-
mal in such a way as to minimize the impact of interference from other devices. (Spread
spectrum was originally designed for military use, so these “other devices” were often
attempting to jam the signal.) For example, frequency hopping is a spread spectrum tech-
nique that involves transmitting the signal over a random sequence of frequencies, that
is, first transmitting at one frequency, then a second, then a third, and so on. The se-
quence of frequencies is not truly random, but is instead computed algorithmically by a
pseudorandom number generator. The receiver uses the same algorithm as the sender—
and initializes it with the same seed—and hence is able to hop frequencies in sync with
the transmitter to correctly receive the frame. This scheme reduces interference by mak-
ing it unlikely that two signals would be using the same frequency for more than the
infrequent isolated bit.

A second spread spectrum technique, called direct sequence, adds redundancy for
greater tolerance of interference. Each bit of data is represented by multiple bits in the
transmitted signal so that, if some of the transmitted bits are damaged by interference,
there is usually enough redundancy to recover the original bit. For each bit the sender
wants to transmit, it actually sends the exclusive-OR of that bit and 7 random bits. As
with frequency hopping, the sequence of random bits is generated by a pseudorandom
number generator known to both the sender and the receiver. The transmitted values,
known as an n-bit chipping code, spread the signal across a frequency band that is 7 times
wider than the frame would have otherwise required. Figure 2.7 gives an example of a

4-bit chipping sequence.
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Data stream: 1010

1 —
0 I —L m Random sequence: 0100101101011001

Figure 2.7 Example 4-bit chipping sequence.

XOR of the two: 1011101110101001

It is these license-exempt frequencies, with their spread spectrum techniques and
limited range, that are used by 802.11 (Wi-Fi), 802.15.1 (Bluetooth), and some flavors
of 802.16 (WiMAX). These technologies are discussed further in Section 2.8.

Different parts of the electromagnetic spectrum have different properties, making
some better suited to communication, and some less so. For example, some can penetrate
buildings and some cannot. Governments regulate only the prime communication por-
tion: the radio and microwave ranges. As demand for prime spectrum increases, there is
great interest in the spectrum that will become available when analog television is phased
out in favor of digital. There is also an effort to devise a wireless network technology that
could squeeze into the currently unused frequencies that separate television channels
without interfering with them.

Among the unregulated spectra are the infrared and visual light ranges, which can-
not penetrate walls. Infrared is widely used in remote controls for television and the like.
Increasingly, it is also used in a variety of short-range data exchange applications, based
on standards established by the Infrared Data Association (IrDA). For example, IrDA has
defined a standard for “Point & Pay,” using infrared to conduct a financial transaction
between a handheld device, such as a mobile phone or PDA, and a stationary financial
terminal such as a cash register. Visual light or infrared can also be focused by a laser to
provide a high-bandwidth link between two stationary points—even though no mobility
is involved—in situations where a wired link is less practical for some reason. For exam-
ple, two buildings belonging to the same organization but separated by a busy highway
could communicate using lasers.

2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B)

The first step in turning nodes and links into usable building blocks is to understand how
to connect them in such a way that bits can be transmitted from one node to another.
As mentioned in the preceding section, signals propagate over physical links. The task,
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therefore, is to encode the binary data that the source node wants to send into the signals
that the links are able to carry, and then to decode the signal back into the corresponding
binary data at the receiving node. We ignore the details of modulation and assume we
are working with two discrete signals: high and low. In practice, these signals might
correspond to two different voltages on a copper-based link, or two different power
levels on an optical link.

As we have said, most of the functions discussed in this chapter are performed by
a network adaptor—a piece of hardware that connects a node to a link. The network
adaptor contains a signalling component that actually encodes bits into signals at the
sending node and decodes signals into bits at the receiving node. Thus, as illustrated in
Figure 2.8, signals travel over a link between two signalling components, and bits flow
between network adaptors.

Let’s return to the problem of encoding bits onto signals. The obvious thing to do is
to map the data value 1 onto the high signal and the data value 0 onto the low signal. This
is exactly the mapping used by an encoding scheme called, cryptically enough, nonreturn
to zero (NRZ). For example, Figure 2.9 schematically depicts the NRZ-encoded signal
(bottom) that corresponds to the transmission of a particular sequence of bits (top).

The problem with NRZ is that a sequence of several consecutive 1s means that the
signal stays high on the link for an extended period of time, and similarly, several con-
secutive Os means that the signal stays low for a long time. There are two fundamental
problems caused by long strings of 1s or Os. The first is that it leads to a situation known
as baseline wander. Specifically, the receiver keeps an average of the signal it has seen so
far, and then uses this average to distinguish between low and high signals. Whenever the
signal is significantly lower than this aver-

age, the receiver concludes that it has just
seen a 0, and likewise, a signal that is sig-
nificantly higher than the average is inter-
preted to be a 1. The problem, of course,
is that too many consecutive 1s or Os cause
this average to change, making it more dif-
ficult to detect a significant change in the
signal.

The second problem is that frequent
transitions from high to low and vice versa
are necessary to enable clock recovery. In-
tuitively, the clock recovery problem is
that both the encoding and the decod-
ing processes are driven by a clock—every
clock cycle the sender transmits a bit and

Bit Rates and Baud Rates

Many people use the terms bir rate
and baud rate interchangeably, even
though as we see with the Manchester
encoding, they are not the same thing.
While the Manchester encoding is an
example of a case in which a linK’s
baud rate is greater than its bit rate, it
is also possible to have a bit rate that is
greater than the baud rate. This would
imply that more than one bit is en-
coded on each pulse sent over the link.

To see how this might happen,

suppose you could transmit four
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Figure 2.9 NRZ encoding of a bitstream.

the receiver recovers a bit. The sender’s and the receiver’s clocks have to be precisely

synchronized in order for the receiver to recover the same bits the sender transmits.

If the receiver’s clock is even slightly faster or slower than the sender’s clock, then it

does not correctly decode the signal. You could imagine sending the clock to the re-

ceiver over a separate wire, but this is typically avoided because it makes the cost of

distinguished signals over a link rather
than just two. On an analog link, for
example, these four signals might cor-
respond to four different frequencies.
Given four different signals, it is possi-
ble to encode two bits of information
on each signal. That is, the first signal
means 00, the second signal means
01, and so on. Now, a sender (re-
ceiver) that is able to transmit (detect)
1,000 pulses per second would be able
to send (receive) 2,000 bits of infor-
mation per second. That is, it would
be a 1,000-baud/2,000-bps link.

cabling twice as high. So instead, the re-
ceiver derives the clock from the received
signal—the clock recovery process. When-
ever the signal changes, such as on a tran-
sition from 1 to 0 or from 0 to 1, then the
receiver knows it is at a clock cycle bound-
ary, and it can resynchronize itself. How-
ever, a long period of time without such a
transition leads to clock drift. Thus, clock
recovery depends on having lots of transi-
tions in the signal, no matter what data is
being sent.

One approach that addresses this
problem, called nonreturn to zero inverted
(NRZI), has the sender make a transition
from the current signal to encode a 1 and
stay at the current signal to encode a 0.
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Figure 2.10 Different encoding strategies.

This solves the problem of consecutive 1s, but obviously does nothing for consecutive
0s. NRZI is illustrated in Figure 2.10. An alternative, called Manchester encoding, does
a more explicit job of merging the clock with the signal by transmitting the exclusive-
OR of the NRZ-encoded data and the clock. (Think of the local clock as an internal
signal that alternates from low to high; a low/high pair is considered one clock cycle.)
The Manchester encoding is also illustrated in Figure 2.10. Observe that the Manchester
encoding results in 0 being encoded as a low-to-high transition and 1 being encoded
as a high-to-low transition. Because both 0s and 1s result in a transition to the sig-
nal, the clock can be effectively recovered at the receiver. (There is also a variant of
the Manchester encoding, called differential Manchester, in which a 1 is encoded with
the first half of the signal equal to the last half of the previous bits signal and a 0 is
encoded with the first half of the signal opposite to the last half of the previous bit’s
signal.)

The problem with the Manchester encoding scheme is that it doubles the rate at
which signal transitions are made on the link, which means that the receiver has half the
time to detect each pulse of the signal. The rate at which the signal changes is called the
linK’s baud rate. In the case of the Manchester encoding, the bit rate is half the baud rate,
so the encoding is considered only 50% efficient. Keep in mind that if the receiver had
been able to keep up with the faster baud rate required by the Manchester encoding in
Figure 2.10, then both NRZ and NRZI could have been able to transmit twice as many
bits in the same time period.

A final encoding that we consider, called 4B/5B, attempts to address the inefficiency
of the Manchester encoding without suffering from the problem of having extended du-
rations of high or low signals. The idea of 4B/5B is to insert extra bits into the bitstream
so as to break up long sequences of Os or 1s. Specifically, every 4 bits of actual data are
encoded in a 5-bit code that is then transmitted to the receiver; hence the name 4B/5B.
The 5-bit codes are selected in such a way that each one has no more than one leading 0
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4-Bit Data Symbol | 5-Bit Code
0000 11110
0001 01001
0010 10100
00M 10101
0100 01010
0101 01011
0110 01110
01 011M
1000 10010
1001 1001
1010 10110
101 10111
1100 11010
1101 110M
1110 11100
1M 11101

Table 2.4 4B/5B encoding.

and no more than two trailing 0s. Thus, when sent back-to-back, no pair of 5-bit codes
results in more than three consecutive Os being transmitted. The resulting 5-bit codes are
then transmitted using the NRZI encoding, which explains why the code is only con-
cerned about consecutive 0s—NRZI already solves the problem of consecutive 1s. Note
that the 4B/5B encoding results in 80% efficiency.

Table 2.4 gives the 5-bit codes that correspond to each of the 16 possible 4-bit data
symbols. Notice that since 5 bits are enough to encode 32 different codes, and we are
using only 16 of these for data, there are 16 codes left over that we can use for other
purposes. Of these, code 11111 is used when the line is idle, code 00000 corresponds to
when the line is dead, and 00100 is interpreted to mean halt. Of the remaining 13 codes,
7 of them are not valid because they violate the “one leading 0, two trailing 0s,” rule, and
the other 6 represent various control symbols. As we will see later in this chapter, some
framing protocols (e.g., FDDI) make use of these control symbols.
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Figure 2.11 Bits flow between adaptors, frames between hosts.

2.3 Framing

Now that we have seen how to transmit a sequence of bits over a point-to-point link—
from adaptor to adaptor—Ilet’s consider the scenario illustrated in Figure 2.11. Recall
from Chapter 1 that we are focusing on packet-switched networks, which means that
blocks of data (called frames at this level), not bitstreams, are exchanged between nodes.
It is the network adaptor that enables the nodes to exchange frames. When node A
wishes to transmit a frame to node B, it tells its adaptor to transmit a frame from the
node’s memory. This results in a sequence of bits being sent over the link. The adaptor
on node B then collects together the sequence of bits arriving on the link and deposits
the corresponding frame in B’s memory. Recognizing exactly what set of bits constitute
a frame—that is, determining where the frame begins and ends—is the central challenge
faced by the adapror.

There are several ways to address the framing problem. This section uses several
different protocols to illustrate the various points in the design space. Note that while we
discuss framing in the context of point-to-point links, the problem is a fundamental one
that must also be addressed in multiple-access networks like Ethernet and token rings.

2.3.1 Byte-Oriented Protocols (PPP)

One of the oldest approaches to framing—it has its roots in connecting terminals to
mainframes—is to view each frame as a collection of bytes (characters) rather than a
collection of bits. Such a byze-oriented approach is exemplified by older protocols such as
the Binary Synchronous Communication (BISYNC) protocol developed by IBM in the
late 1960s, and the Digital Data Communication Message Protocol (DDCMP) used in
Digital Equipment Corporation’s DECNET. The more recent and widely used Point-to-
Point Protocol (PPP) provides another example of this approach.

Sentinel-based Approaches

Figure 2.12 illustrates the BISYNC protocol’s frame format. This figure is the first of
many that you will see in this book that are used to illustrate frame or packet formats,
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Figure 2.12 BISYNC frame format.
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Figure 2.13 PPP frame format.

so a few words of explanation are in order. We show a packet as a sequence of labeled
fields. Above each field is a number indicating the length of that field in bits. Note that
the packets are transmitted beginning with the leftmost field.

BISYNC uses special characters known as sentinel characters to indicate where
frames start and end. The beginning of a frame is denoted by sending a special SYN
(synchronization) character. The data portion of the frame is then contained between
two more special characters: STX (start of text) and ETX (end of text). The SOH (start
of header) field serves much the same purpose as the STX field. The problem with the
sentinel approach, of course, is that the ETX character might appear in the data por-
tion of the frame. BISYNC overcomes this problem by “escaping” the ETX character by
preceding it with a data-link-escape (DLE) character whenever it appears in the body of
a frame; the DLE character is also escaped (by preceding it with an extra DLE) in the
frame body. (C programmers may notice that this is analogous to the way a quotation
mark is escaped by the backslash when it occurs inside a string.) This approach is often
called character stuffing because extra characters are inserted in the data portion of the
frame.

The frame format also includes a field labeled cyclic redundancy check (CRC) that
is used to detect transmission errors; various algorithms for error detection are presented
in Section 2.4. Finally, the frame contains additional header fields that are used for,
among other things, the link-level reliable delivery algorithm. Examples of these algo-
rithms are given in Section 2.5.

The more recent PPP, which is commonly used to carry Internet Protocol pack-
ets over various sorts of point-to-point links, is similar to BISYNC in that it also uses
sentinels and character stuffing. The format for a PPP frame is given in Figure 2.13.
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The special start-of-text character,
denoted as the Flag field in Figure 2.13,
is 01111110. The Address and Con-
trol fields usually contain default values,
and so are uninteresting. The Protocol
field is used for demultiplexing: it iden-
tifies the high-level protocol such as IP
or IPX (an IP-like protocol developed by
Novell). The frame payload size can be
negotiated, but it is 1,500 bytes by de-
fault. The Checksum field is either 2
(by default) or 4 bytes long.

The PPP frame format is unusual
in that several of the field sizes are negoti-
ated rather than fixed. This negotiation is
conducted by a protocol called Link Con-
trol Protocol (LCP). PPP and LCP work
in tandem: LCP sends control messages
encapsulated in PPP frames—such mes-
sages are denoted by an LCP identifier in
the PPP Protocol field—and then turns
around and changes PPP’s frame format
based on the information contained in
those control messages. LCP is also in-
volved in establishing a link between two
peers when both sides detect that com-
munication over the link is possible (e.g.,
when each optical receiver detects an in-
coming signal from the fiber to which it
connects).

Byte-Counting Approach

As every Computer Sciences 101 student
knows, the alternative to detecting the
end of a file with a sentinel value is to
include the number of items in the file
at the beginning of the file. The same
is true in framing—the number of bytes
contained in a frame can be included

What's in a Layer?

One of the important contributions of
the OSI reference model presented in
Chapter 1 was to provide some vocab-
ulary for talking about protocols and,
in particular, protocol layers. This vo-
cabulary has provided fuel for plenty
of arguments along the lines of “Your
protocol does function X at layer Y,
and the OSI reference model says it
should be done at layer Z—that’s a
layer violation.” In fact, figuring out
the right layer at which to perform
a given function can be very diffi-
cult, and the reasoning is usually a lot
more subtle than “What does the OSI
model say?” It is partly for this rea-
son that this book avoids a rigidly lay-
erist approach. Instead, it shows you
a lot of functions that need to be per-
formed by protocols and looks at some
ways that they have been successfully
implemented.

In spite of our nonlayerist ap-
proach, sometimes we need conve-
nient ways to talk about classes of
protocols, and the name of the layer
at which they operate is often the
best choice. Thus, for example, this
chapter focuses primarily on link-layer
protocols. (Bit encoding, described in
Section 2.2, is the exception, being
considered a physical-layer function.)
Link-layer protocols can be identified
by the fact that they run over sin-
gle links—the type of network dis-
cussed in this chapter. Network-layer
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Figure 2.14 DDCMP frame format.

protocols, by contrast, run over
switched networks that contain lots
of links interconnected by switches
or routers. Topics related to network-
layer protocols are discussed in Chap-
ters 3 and 4.

Note that protocol layers are
supposed to be helpful—they provide
helpful ways to talk about classes of
protocols, and they help us divide the
problem of building networks into
manageable subtasks. However, they
are not meant to be overly restrictive—
the mere fact that something is a layer
violation does not end the argument
about whether it is a worthwhile thing
to do. In other words, layering makes
a good slave, but a poor master. A par-
ticularly interesting argument about
the best layer in which to place a cer-
tain function comes up when we look
at congestion control in Chapter 6.

as a field in the frame header. The DEC-
NET’s DDCMP protocol uses this ap-
proach, as illustrated in Figure 2.14. In this
example, the COUNT field specifies how
many bytes are contained in the frame’s
body.

One danger with this approach is
that a transmission error could corrupt
the count field, in which case the end of
the frame would not be correctly detected.
(A similar problem exists with the sentinel-
based approach if the ETX field becomes
corrupted.) Should this happen, the re-
ceiver will accumulate as many bytes as the
bad COUNT field indicates and then use
the error detection field to determine that
the frame is bad. This is sometimes called
a framing error. The receiver will then wait
until it sees the next SYN character to start
collecting the bytes that make up the next
frame. It is therefore possible that a fram-
ing error will cause back-to-back frames to
be incorrectly received.

2.3.2 Bit-Oriented Protocols (HDLC)

Unlike byte-oriented protocols, a bit-oriented protocol is not concerned with byte

boundaries—it simply views the frame as a collection of bits. These bits might come

from some character set, such as ASCII, they might be pixel values in an image, or they

could be instructions and operands from an executable file. The Synchronous Data Link

Control (SDLC) protocol developed by IBM is an example of a bit-oriented protocol;
SDLC was later standardized by the ISO as the High-Level Data Link Control (HDLC)
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Figure 2.15 HDLC frame format.

protocol. In the following discussion, we use HDLC as an example; its frame format is
given in Figure 2.15.

HDLC denotes both the beginning and the end of a frame with the distinguished
bit sequence 01111110. This sequence is also transmitted during any times that the link
is idle so that the sender and receiver can keep their clocks synchronized. In this way,
both protocols essentially use the sentinel approach. Because this sequence might ap-
pear anywhere in the body of the frame—in fact, the bits 01111110 might cross byte
boundaries—bit-oriented protocols use the analog of the DLE character, a technique
known as bit stuffing.

Bit stuffing in the HDLC protocol works as follows. On the sending side, any time
five consecutive 1s have been transmitted from the body of the message (i.e., excluding
when the sender is trying to transmit the distinguished 01111110 sequence), the sender
inserts a 0 before transmitting the next bit. On the receiving side, should five consecutive
Is arrive, the receiver makes its decision based on the next bit it sees (i.e., the bit following
the five 1s). If the next bit is a 0, it must have been stuffed, and so the receiver removes
it. If the next bit is a 1, then one of two things is true: Either this is the end-of-frame
marker or an error has been introduced into the bitstream. By looking at the next bit,
the receiver can distinguish between these two cases: if it sees a 0 (i.e., the last eight bits
it has looked at are 01111110), then it is the end-of-frame marker; if it sees a 1 (i.e., the
last eight bits it has looked at are 01111111), then there must have been an error and the
whole frame is discarded. In the latter case, the receiver has to wait for the next 01111110
before it can start receiving again, and as a consequence, there is the potential that the
receiver will fail to receive two consecutive frames. Obviously, there are still ways that
framing errors can go undetected, such as when an entire spurious end-of-frame pattern
is generated by errors, but these failures are relatively unlikely. Robust ways of detecting
errors are discussed in Section 2.4.

An interesting characteristic of bit stuffing, as well as character stuffing, is that the
size of a frame is dependent on the data that is being sent in the payload of the frame.
It is in fact not possible to make all frames exactly the same size, given that the data that
might be carried in any frame is arbitrary. (To convince yourself of this, consider what
happens if the last byte of a frame’s body is the ETX character.) A form of framing that
ensures that all frames are the same size is described in the next subsection.
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2.3.3 Clock-Based Framing (SONET)

A third approach to framing is exemplified by the Synchronous Optical Network
(SONET) standard. For lack of a widely accepted generic term, we refer to this ap-
proach simply as clock-based framing. SONET was first proposed by Bell Communica-
tions Research (Bellcore), and then developed under the American National Standards
Institute (ANSI) for digital transmission over optical fiber; it has since been adopted by
the ITU-T. Who standardized what and when is not the interesting issue, though. The
thing to remember about SONET is that it is the dominant standard for long-distance
transmission of data over optical networks.

An important point to make about SONET before we go any further is that the
full specification is substantially larger than this book. Thus, the following discussion
will necessarily cover only the high points of the standard. Also, SONET addresses both
the framing problem and the encoding problem. It also addresses a problem that is very
important for phone companies—the multiplexing of several low-speed links onto one
high-speed link. We begin with framing and discuss the other issues following.

As with the previously discussed framing schemes, a SONET frame has some spe-
cial information that tells the receiver where the frame starts and ends. However, that is
about as far as the similarities go. Notably, no bit stuffing is used, so that a frame’s length
does not depend on the data being sent. So the question to ask is, “How does the receiver
know where each frame starts and ends?” We consider this question for the lowest-speed
SONET link, which is known as STS-1 and runs at 51.84 Mbps. An STS-1 frame is
shown in Figure 2.16. It is arranged as nine rows of 90 bytes each, and the first 3 bytes
of each row are overhead, with the rest being available for data that is being transmitted
over the link. The first 2 bytes of the frame contain a special bit pattern, and it is these
bytes that enable the receiver to determine where the frame starts. However, since bit
stuffing is not used, there is no reason why this pattern will not occasionally turn up in
the payload portion of the frame. To guard against this, the receiver looks for the special
bit pattern consistently, hoping to see it appearing once every 810 bytes, since each frame
is 9 x 90 = 810 bytes long. When the special pattern turns up in the right place enough
times, the receiver concludes that it is in sync and can then interpret the frame correctly.

One of the things we are not describing due to the complexity of SONET is the
detailed use of all the other overhead bytes. Part of this complexity can be attributed to
the fact that SONET runs across the carrier’s optical network, not just over a single link.
(Recall that we are glossing over the fact that the carriers implement a network, and we
are instead focusing on the fact that we can lease a SONET link from them and then use
this link to build our own packet-switched network.) Additional complexity comes from
the fact that SONET provides a considerably richer set of services than just data transfer.
For example, 64 Kbps of a SONET link’s capacity is set aside for a voice channel that is
used for maintenance.
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Figure 2.16 A SONET STS-1 frame.

The overhead bytes of a SONET frame are encoded using NRZ, the simple en-
coding described in the previous section where 1s are high and Os are low. However, to
ensure that there are plenty of transitions to allow the receiver to recover the sender’s
clock, the payload bytes are scrambled. This is done by calculating the exclusive-OR
(XOR) of the data to be transmitted and by the use of a well-known bit pattern. The bit
pattern, which is 127 bits long, has plenty of transitions from 1 to 0, so that XORing
it with the transmitted data is likely to yield a signal with enough transitions to enable
clock recovery.

SONET supports the multiplexing of multiple low-speed links in the following
way. A given SONET link runs at one of a finite set of possible rates, ranging from
51.84 Mbps (STS-1) to 2,488.32 Mbps (STS-48), and beyond. (See Table 2.2 in Sec-
tion 2.1 for the full set of SONET data rates.) Note that all of these rates are integer
multiples of STS-1. The significance for framing is that a single SONET frame can con-
tain subframes for multiple lower-rate channels. A second related feature is that each
frame is 125 ps long. This means that at STS-1 rates, a SONET frame is 810 bytes long,
while at STS-3 rates, each SONET frame is 2,430 bytes long. Notice the synergy be-
tween these two features: 3 x 810 = 2,430, meaning that three STS-1 frames fit exactly
in a single STS-3 frame.

Intuitively, the STS-/V frame can be thought of as consisting of N STS-1 frames,
where the bytes from these frames are interleaved, that is, a byte from the first frame is
transmitted, then a byte from the second frame is transmitted, and so on. The reason for
interleaving the bytes from each STS-/V frame is to ensure that the bytes in each STS-1
frame are evenly paced, that is, bytes show up at the receiver at a smooth 51 Mbps, rather
than all bunched up during one particular 1//Nth of the 125-us interval.

Although it is accurate to view an STS-/V signal as being used to multiplex NV
STS-1 frames, the payload from these STS-1 frames can be linked together to form a
larger STS-N payload; such a link is denoted STS-Nc (for concatenated). One of the
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Figure 2.18 SONET frames out of phase.

fields in the overhead is used for this purpose. Figure 2.17 schematically depicts con-
catenation in the case of three STS-1 frames being concatenated into a single STS-3¢
frame. The significance of a SONET link being designated as STS-3c rather than STS-3
is that, in the former case, the user of the link can view it as a single 155.25-Mbps pipe,
whereas an STS-3 should really be viewed as three 51.84-Mbps links that happen to
share a fiber.

Finally, the preceding description of SONET is overly simplistic in that it assumes
that the payload for each frame is completely contained within the frame. (Why wouldn’t
it be?) In fact, we should view the STS-1 frame just described as simply a placeholder for
the frame, where the actual payload may floar across frame boundaries. This situation
is illustrated in Figure 2.18. Here we see both the STS-1 payload floating across two
STS-1 frames, and the payload shifted some number of bytes to the right and, therefore,
wrapped around. One of the fields in the frame overhead points to the beginning of the
payload. The value of this capability is that it simplifies the task of synchronizing the
clocks used throughout the carriers’ networks, which is something that carriers spend a
lot of their time worrying about.
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2.4 Error Detection

As discussed in Chapter 1, bit errors are sometimes introduced into frames. This hap-
pens, for example, because of electrical interference or thermal noise. Although errors are
rare, especially on optical links, some mechanism is needed to detect these errors so that
corrective action can be taken. Otherwise, the end user is left wondering why the C pro-
gram that successfully compiled just a moment ago now suddenly has a syntax error in it,
when all that happened in the interim is that it was copied across a network file system.

There is a long history of techniques for dealing with bit errors in computer sys-
tems, dating back to at least the 1940s. Hamming and Reed/Solomon codes are two
notable examples that were developed for use in punch card readers and when storing
data on magnetic disks and in early core memories. This section describes some of the
error detection techniques most commonly used in networking.

Detecting errors is only one part of the problem. The other part is correcting errors
once detected. There are two basic approaches that can be taken when the recipient of
a message detects an error. One is to notify the sender that the message was corrupted
so that the sender can retransmit a copy of the message. If bit errors are rare, then in all
probability the retransmitted copy will be error free. Alternatively, there are some types
of error detection algorithms that allow the recipient to reconstruct the correct message
even after it has been corrupted; such algorithms rely on error correcting codes, discussed
below.

One of the most common techniques for detecting transmission errors is a tech-
nique known as the c¢yclic redundancy check (CRC). It is used in nearly all the link-level
protocols discussed in the previous section—for example, HDLC, DDCMP—as well as
in the CSMA and token ring protocols described later in this chapter. Section 2.4.3 out-
lines the basic CRC algorithm. Before discussing that approach, we consider two simpler
schemes that are also widely used: two-dimensional parity and checksums. The former is
used by the BISYNC protocol when it is transmitting ASCII characters (CRC is used as
the error code when BISYNC is used to transmit EBCDIC), and the latter is used by
several Internet protocols.

The basic idea behind any error detection scheme is to add redundant information
to a frame that can be used to determine if errors have been introduced. In the extreme,
we could imagine transmitting two complete copies of the data. If the two copies are
identical at the receiver, then it is probably the case that both are correct. If they differ,
then an error was introduced into one (or both) of them, and they must be discarded.
This is a rather poor error detection scheme for two reasons. First, it sends 7 redun-
dant bits for an #-bit message. Second, many errors will go undetected—any error that
happens to corrupt the same bit positions in the first and second copies of the message.

Fortunately, we can do a lot better than this simple scheme. In general, we can
provide quite strong error detection capability while sending only 4 redundant bits for
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an 7-bit message, where # < 7. On an Ethernet, for example, a frame carrying up to
12,000 bits (1,500 bytes) of data requires only a 32-bit CRC code, or as it is commonly
expressed, uses CRC-32. Such a code will catch the overwhelming majority of errors, as
we will see below.

We say that the extra bits we send are redundant because they add no new infor-
mation to the message. Instead, they are derived directly from the original message using
some well-defined algorithm. Both the sender and the receiver know exactly what that
algorithm is. The sender applies the algorithm to the message to generate the redun-
dant bits. It then transmits both the message and those few extra bits. When the receiver
applies the same algorithm to the received message, it should (in the absence of errors)
come up with the same result as the sender. It compares the result with the one sent to it
by the sender. If they match, it can conclude (with high likelihood) that no errors were
introduced in the message during transmission. If they do not match, it can be sure that
either the message or the redundant bits were corrupted, and it must take appropriate
action, that is, discarding the message, or correcting it if that is possible.

One note on the terminology for these extra bits. In general, they are referred to
as error-detecting codes. In specific cases, when the algorithm to create the code is based
on addition, they may be called a checksum. We will see that the Internet checksum is
appropriately named: It is an error check that uses a summing algorithm. Unfortunately,
the word “checksum” is often used imprecisely to mean any form of error detecting code,
including CRC:s. This can be confusing, so we urge you to use the word “checksum” only
to apply to codes that actually do use addition and to use “error detecting code” to refer
to the general class of codes described in this section.

2.4.1 Two-Dimensional Parity

Two-dimensional parity is exactly what the name suggests. It is based on “simple” (one-
dimensional) parity, which usually involves adding one extra bit to a 7-bit code to balance
the number of 1s in the byte. For example, odd parity sets the eighth bit to 1 if needed
to give an odd number of 1Is in the byte, and even parity sets the eighth bit to 1 if
needed to give an even number of 1s in the byte. Two-dimensional parity does a similar
calculation for each bit position across each of the bytes contained in the frame. This
results in an extra parity byte for the entire frame, in addition to a parity bit for each byte.
Figure 2.19 illustrates how two-dimensional even parity works for an example frame
containing 6 bytes of data. Notice that the third bit of the parity byte is 1 since there is
an odd number of 1s in the third bit across the 6 bytes in the frame. It can be shown
that two-dimensional parity catches all 1-, 2-, and 3-bit errors, and most 4-bit errors. In
this case, we have added 14 bits of redundant information to a 42-bit message, and yet
we have stronger protection against common errors than the “repetition code” described
above.
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Figure 2.19 Two-dimensional parity.

2.4.2 Internet Checksum Algorithm

A second approach to error detection is exemplified by the Internet checksum. Although
it is not used at the link level, it nevertheless provides the same sort of functionality as
CRCs and parity, so we discuss it here. We will see examples of its use in Sections 4.1,
5.1,and 5.2.

The idea behind the Internet checksum is very simple—you add up all the words
that are transmitted and then transmit the result of that sum. The result is called the
checksum. The receiver performs the same calculation on the received data and compares
the result with the received checksum. If any transmitted data, including the checksum
itself, is corrupted, then the results will not match, so the receiver knows that an error
occurred.

You can imagine many different variations on the basic idea of a checksum. The
exact scheme used by the Internet protocols works as follows. Consider the data being
checksummed as a sequence of 16-bit integers. Add them together using 16-bit ones
complement arithmetic (explained below) and then take the ones complement of the
result. That 16-bit number is the checksum.

In ones complement arithmetic, a negative integer —x is represented as the comple-
ment of x, that is, each bit of x is inverted. When adding numbers in ones complement
arithmetic, a carryout from the most significant bit needs to be added to the result. Con-
sider, for example, the addition of —5 and —3 in ones complement arithmetic on 4-bit
integers: +5 is 0101, so —5 is 1010; +3 is 0011, so —3 is 1100. If we add 1010 and
1100 ignoring the carry, we get 0110. In ones complement arithmetic, the fact that this
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operation caused a carry from the most significant bit causes us to increment the result,
giving 0111, which is the ones complement representation of —8 (obtained by inverting
the bits in 1000), as we would expect.

The following routine gives a straightforward implementation of the Internet’s
checksum algorithm. The count argument gives the length of buf measured in
16-bit units. The routine assumes that buf has already been padded with Os to a 16-bit

boundary.
u_short
cksum(u_short *buf, int count)
{
regi ster u_long sum= 0;
while (count--)
{
sum += *buf ++;
if (sum & OxFFFFO000)
{
/* carry occurred,
so wap around */
sum &= OXxFFFF;
sumt+;
}
}
return ~(sum & OxXFFFF);
}

This code ensures that the calculation uses ones complement arithmetic, rather
than the twos complement that is used in most machines. Note the if statement inside
the while loop. If there is a carry into the top 16 bits of sum, then we increment sum
just as in the previous example.

Compared to our repetition code, this algorithm scores well for using a small num-
ber of redundant bits—only 16 for a message of any length—but it does not score ex-
tremely well for strength of error detection. For example, a pair of single-bit errors, one
of which increments a word and one of which decrements another word by the same
amount, will go undetected. The reason for using an algorithm like this in spite of its
relatively weak protection against errors (compared to a CRC, for example) is simple:
This algorithm is much easier to implement in software. Experience in the ARPANET
suggested that a checksum of this form was adequate. One reason it is adequate is that
this checksum is the last line of defense in an end-to-end protocol; the majority of errors
are picked up by stronger error detection algorithms, such as CRCs, at the link level.
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2.4.3 Cyclic Redundancy Check

It should be clear by now that a major goal in designing error detection algorithms is to
maximize the probability of detecting errors using only a small number of redundant bits.
Cyclic redundancy checks use some fairly powerful mathematics to achieve this goal. For
example, a 32-bit CRC gives strong protection against common bit errors in messages
that are thousands of bytes long. The theoretical foundation of the cyclic redundancy
check is rooted in a branch of mathematics called finite fields. While this may sound
daunting, the basic ideas can be easily understood.

To start, think of an (7 + 1)-bit message as being represented by an 7 degree poly-
nomial, that is, a polynomial whose highest-order term is x”. The message is repre-
sented by a polynomial by using the value of each bit in the message as the coefficient

for each term in the polynomial, starting
with the most significant bit to represent
the highest-order term. For example,
an 8-bit message consisting of the bits
10011010 corresponds to the polyno-

mial

]\4(x):1><x7+0><x6—i—0><x5
+Ixx 1 %2740 x 2
+1 xx! +0xx°

=x7+x4+x3+x1

We can thus think of a sender and a
receiver as exchanging polynomials with
each other.

For the purposes of calculating a
CRC, a sender and receiver have to agree
on a divisor polynomial, C(x). C(x) is
a polynomial of degree 4. For example,
suppose C(x) = x° + x> + 1. In this
case, # = 3. The answer to the ques-
tion “Where did C(x) come from?” is,
in most practical cases, “You look it up
in a book.” In fact, the choice of C(x)
has a significant impact on what types
of errors can be reliably detected, as we

Simple Probability Calculations
When dealing with network errors
and other unlikely (we hope) events,
we often have use for simple back-
of-the-envelope probability estimates.
A useful approximation here is that
if two independent events have small
probabilities p and g, then the proba-
bility of either event is p + ¢; the ex-
act answer is 1 — (1 — p)(1 — ¢) =
p+q—pq. For p=¢g = .01, this es-
timate is .02, while the exact value is
.0199.

For a simple application of this,
suppose that the per-bit error rate on
alink is 1 in 107. Now suppose we are
interested in estimating the probabil-
ity of at least one bit in a 10,000-bit
packet being errored. Using the above
approximation repeatedly over all the
bits, we can say that we are interested
in the probability of either the first
bit being errored, or the second bit,
or the third, and so on. Assuming bit
errors are all independent (which they
aren’t), we can therefore estimate that
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discuss below. There are a handful of divisor polynomials that are very good choices
for various environments, and the exact choice is normally made as part of the proto-
col design. For example, the Ethernet standard uses a well-known polynomial of de-
gree 32.

When a sender wishes to transmit a message M (x) that is 7+ 1 bits long, what
is actually sent is the (7 + 1)-bit message plus 4 bits. We call the complete transmit-
ted message, including the redundant bits, P(x). What we are going to do is con-
trive to make the polynomial representing P(x) exactly divisible by C(x); we explain
how this is achieved below. If P(x) is transmitted over a link and there are no er-
rors introduced during transmission, then the receiver should be able to divide P(x)
by C(x) exactly, leaving a remainder of zero. On the other hand, if some error is in-
troduced into P(x) during transmission, then in all likelihood the received polynomial
will no longer be exactly divisible by C(x), and thus the receiver will obtain a nonzero

" . remainder implying that an error has oc-
the probability of at least one error in Pying

a10,000-bit (10* bit) packet is 10% x
10~7 = 1073, The exact answer, com-
puted as 1 — P(no errors), would be
1 — (1 —10"7)10.000 = 00099950.
For a slightly more complex ap-

curred.

It will help to understand the follow-
ing if you know a little about polynomial
arithmetic; it is just slightly different from
normal integer arithmetic. We are dealing
e, v e fhe ey With. a special class of Polynomial arith-

: metic here, where coefficients may be only
of exactly two errors in such a packet;
this is the probability of an error that
would sneak past a 1-parity-bit check-
sum. If we consider two particular bits
in the packet, say bit 7 and bit j, the
probability of those exact bits being
errored is 1077 x 10™/. Now the to-
tal number of possible bit pairs in the

packet is

one or zero, and operations on the coeffi-
cients are performed using modulo 2 arith-
metic. This is referred to as polynomial
arithmetic modulo 2. Since this is a net-
working book, not a mathematics text, let’s
focus on the key properties of this type of
arithmetic for our purposes (which we ask
you to accept on faith):

100 (4 i ~ - B Any polynomial B(x) can be di-
(3)=10"x 0" ~1/2~5x10 vided by a divisor polynomial
C(x) if B(x) is of higher degree

than C(x);

So again using the approximation of
repeatedly adding the probabilities of
many rare events (in this case, of any ) '
possible bit pair being errored), our  Any polynomial B(x) can be di-

total probability of at least two errored X ] )
bits is 5 x 107 x 10~ 4 =5 % 10~7, mial C(x) if B(x) is of the same

degree as C(x);

vided once by a divisor polyno-
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B The remainder obtained when B(x) is divided by C(x) is obtained by subtract-
ing C(x) from B(x);

B To subtract C(x) from B(x), we simply perform the exclusive-OR (XOR) oper-
ation on each pair of matching coefficients.

For example, the polynomial x° 4+ 1 can be divided by x® + x% + 1 (because they
are both of degree 3) and the remainder would be 0 x FH1Ix2+0xxl +0xx0 =2
(obtained by XORing the coefficients of each term). In terms of messages, we could say
that 1001 can be divided by 1101 and leaves a remainder of 0100. You should be able to
see that the remainder is just the bitwise exclusive-OR of the two messages.

Now that we know the basic rules for dividing polynomials, we are able to do long
division, which is necessary to deal with longer messages. An example appears below.

Recall that we wanted to create a polynomial for transmission that is derived from
the original message M (x), is 4 bits longer than M (x), and is exactly divisible by C(x).
We can do this in the following way:

1 Multiply M (x) by x*, that is, add # zeros at the end of the message. Call this

zero-extended message 7'(x).
2 Divide 7'(x) by C(x) and find the remainder.

3 Subtract the remainder from 7'(x).

It should be obvious that what is left at this point is a message that is exactly
divisible by C(x). We may also note that the resulting message consists of M (x) followed
by the remainder obtained in step 2, because when we subtracted the remainder (which
can be no more than 4 bits long), we were just XORing it with the 4 zeros added in
step 1. This part will become clearer with an example.

Consider the message x” +x* +x% +x!, or 10011010. We begin by multiplying by
%7, since our divisor polynomial is of degree 3. This gives 10011010000. We divide this
by C(x), which corresponds to 1101 in this case. Figure 2.20 shows the polynomial long-
division operation. Given the rules of polynomial arithmetic described above, the long
division operation proceeds much as it would if we were dividing integers. Thus, in the
first step of our example, we see that the divisor 1101 divides once into the first four bits
of the message (1001), since they are of the same degree, and leaves a remainder of 100
(1101 XOR 1001). The next step is to bring down a digit from the message polynomial
until we get another polynomial with the same degree as C(x), in this case 1001. We
calculate the remainder again (100) and continue until the calculation is complete. Note
that the “result” of the long division, which appears at the top of the calculation, is not
really of much interest—it is the remainder at the end that matters.
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Figure 2.20 CRC calculation using polynomial long division.

You can see from the very bottom of Figure 2.20 that the remainder of the example
calculation is 101. So we know that 10011010000 minus 101 would be exactly divisible
by C(x), and this is what we send. The minus operation in polynomial arithmetic is the
logical XOR operation, so we actually send 10011010101. As noted above, this turns
out to be just the original message with the remainder from the long-division calculation
appended to it. The recipient divides the received polynomial by C(x) and, if the result
is 0, concludes that there were no errors. If the result is nonzero, it may be necessary
to discard the corrupted message; with some codes, it may be possible to correct a small
error (e.g., if the error affected only one bit). A code that enables error correction is called
an error correcting code (ECC).

Now we will consider the question of where the polynomial C(x) comes from.
Intuitively, the idea is to select this polynomial so that it is very unlikely to divide evenly
into a message that has errors introduced into it. If the transmitted message is P(x), we
may think of the introduction of errors as the addition of another polynomial £(x), so
the recipient sees P(x) + E (x). The only way that an error could slip by undetected would
be if the received message could be evenly divided by C(x), and since we know that P(x)
can be evenly divided by C(x), this could only happen if £(x) can be divided evenly by
C(x). The trick is to pick C(x) so that this is very unlikely for common types of errors.

One common type of error is a single-bit error, which can be expressed as E(x) = x’
when it affects bit position 7. If we select C(x) such that the first and the last term are
nonzero, then we already have a two-term polynomial that cannot divide evenly into the
one term E(x). Such a C(x) can, therefore, detect all single-bit errors. In general, it is
possible to prove that the following types of errors can be detected by a C(x) with the
stated properties:
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m All single-bit errors, as long as the x* and %0 terms have nonzero coefficients;

B All double-bit errors, as long as C(x) has a factor with at least three terms;

B Any odd number of errors, as long as C(x) contains the factor (x + 1);

B Any “burst” error (i.e., sequence
of consecutive errored bits) for
which the length of the burst is
less than £ bits. (Most burst er-
rors of larger than £ bits can also

be detected.)

Six versions of C(x) are widely used

in link-level protocols (shown in Table 2.5).

For example, the Ethernet and 802.5
networks described later in this chapter
use CRC-32, while HDLC uses CRC-
CCITT. ATM, as described in Chapter 3,
uses CRC-8, CRC-10, and CRC-32.
Finally, we note that the CRC algo-
rithm, while seemingly complex, is easily
implemented in hardware using a /-bit
shift register and XOR gates. The number
of bits in the shift register equals the de-
gree of the generator polynomial (£). Fig-
ure 2.21 shows the hardware that would
be used for the generator O+ a2+ 1
from our previous example. The mes-
sage is shifted in from the left, begin-
ning with the most significant bit and
ending with the string of % zeros that
is attached to the message, just as in
the long-division example. When all the
bits have been shifted in and appropri-
ately XORed, the register contains the
remainder, that is, the CRC (most sig-
nificant bit on the right). The position
of the XOR gates is determined as fol-
lows: If the bits in the shift register are
labeled 0 through £ — 1, left to right,

Error Detection or Error
Correction?

We have mentioned that it is possi-
ble to use codes that not only detect
the presence of errors but also enable
errors to be corrected. Since the de-
tails of such codes require yet more
complex mathematics than that re-
quired to understand CRCs, we will
not dwell on them here. However, it
is worth considering the merits of cor-
rection versus detection.

At first glance, it would seem
that correction is always better, since
with detection we are forced to throw
away the message and, in general, ask
for another copy to be transmitted.
This uses up bandwidth and may in-
troduce latency while waiting for the
retransmission. However, there is a
downside to correction: It generally
requires a greater number of redun-
dant bits to send an error correcting
code that is as strong (that is, able to
cope with the same range of errors) as
a code that only detects errors. Thus,
while error detection requires more
bits to be sent when errors occur, er-
ror correction requires more bits to be
sent all the time. As a resul, error cor-
rection tends to be most useful when
(1) errors are quite probable, as they
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CRC C(x)

CRC-8 B+l 41

CRC-10 0420 40t a1

CRC-12 )24l P 42+ 1

CRC-16 %10 4wl a2 41

CRC-CCITT | #'0+ %124+ x° 41

CRC-32 x32 +x26 +x23 +x22 +x16 +x12 +x11
+x 048 0 P a1

Table 2.5 Common CRC polynomials.

Message
\ x0 <L xor gate X
N . N,
€V ‘J

Figure 2.21

may be, for example, in a wireless
environment, or (2) the cost of re-
transmission is too high, for exam-
ple, because of the latency involved re-
transmitting a packet over a satellite
link.

The use of error correcting codes
in networking is sometimes referred
to as forward error correction (FEC)
because the correction of errors is han-
dled “in advance” by sending extra
information, rather than waiting for
errors to happen and dealing with
them later by retransmission.

CRC calculation using shift register.

then put an XOR gate in front of bit 7 if
there is a term x” in the generator poly-
nomial. Thus, we see an XOR gate in
front of positions 0 and 2 for the genera-
tor x° + x> + x0.

2.5 Reliable
Transmission

As we saw in the previous section, frames
are sometimes corrupted while in tran-
sit, with an error code like CRC used
to detect such errors. While some error
codes are strong enough also to correct er-
rors, in practice the overhead is typically
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too large to handle the range of bit and burst errors that can be introduced on a network
link. Even when error correcting codes are used (e.g., on wireless links) some errors will
be too severe to be corrected. As a result, some corrupt frames must be discarded. A link-
level protocol that wants to deliver frames reliably must somehow recover from these
discarded (lost) frames.

This is usually accomplished using a combination of two fundamental mechanisms
—acknowledgments and timeouts. An acknowledgment (ACK for short) is a small control
frame that a protocol sends back to its peer saying that it has received an earlier frame.
By control frame we mean a header without any data, although a protocol can piggyback
an ACK on a data frame it just happens to be sending in the opposite direction. The
receipt of an acknowledgment indicates to the sender of the original frame that its frame
was successfully delivered. If the sender does not receive an acknowledgment after a
reasonable amount of time, then it rezzansmits the original frame. This action of waiting
a reasonable amount of time is called a timeout.

The general strategy of using acknowledgments and timeouts to implement reliable
delivery is sometimes called automatic repeat request (normally abbreviated ARQ). This
section describes three different ARQ algorithms using generic language, that is, we do
not give detailed information about a particular protocol’s header fields.

2.5.1 Stop-and-Wait

The simplest ARQ scheme is the stop-and-wair algorithm. The idea of stop-and-wait is
straightforward: After transmitting one frame, the sender waits for an acknowledgment
before transmitting the next frame. If the acknowledgment does not arrive after a certain
period of time, the sender times out and retransmits the original frame.

Figure 2.22 illustrates four different scenarios that result from this basic algorithm.
This figure is a timeline, a common way to depict a protocol’s behavior (see also the
sidebar on this sort of diagram). The sending side is represented on the left, the receiving
side is depicted on the right, and time flows from top to bottom. Figure 2.22(a) shows
the situation in which the ACK is received before the timer expires, (b) and (c) show the
situation in which the original frame and the ACK, respectively, are lost, and (d) shows
the situation in which the timeout fires too soon. Recall that by “lost” we mean that the
frame was corrupted while in transit, that this corruption was detected by an error code
on the receiver, and that the frame was subsequently discarded.

There is one important subtlety in the stop-and-wait algorithm. Suppose the sender
sends a frame and the receiver acknowledges it, but the acknowledgment is either lost or
delayed in arriving. This situation is illustrated in timelines (c) and (d) of Figure 2.22.
In both cases, the sender times out and retransmits the original frame, but the receiver
will think that it is the next frame, since it correctly received and acknowledged the first
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Figure 2.22 Timeline showing four different scenarios for the stop-and-wait algorithm.
(a) The ACK is received before the timer expires; (b) the original frame is lost; (c) the
ACK is lost; (d) the timeout fires too soon.

frame. This has the potential to cause du-
plicate copies of a frame to be delivered.
To address this problem, the header for a
stop-and-wait protocol usually includes a
amples of a frequently-used tool in 1-bit sequence number—that is, the se-

teaching, explaining, and designing quence number can take on the values 0
protocols: the timeline or packet ex-

Timelines and Packet Exchange
Diagrams

Figures 2.22 and 2.23 are two ex-

and 1—and the sequence numbers used
change diagram. You are going to see for each frame alternate, as illustrated in
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Sender

Time

Receiver

Figure 2.23 Timeline for stop-and-wait with 1-bit sequence number.

Figure 2.23. Thus, when the sender retransmits frame 0, the receiver can determine that
it is seeing a second copy of frame 0 rather than the first copy of frame 1 and therefore

can ignore it (the receiver still acknowledges it, in case the first ACK was lost).

The main shortcoming of the stop-
and-wait algorithm is that it allows the
sender to have only one outstanding
frame on the link at a time, and this
may be far below the link’s capacity. Con-
sider, for example, a 1.5-Mbps link with
a 45-ms round-trip time. This link has a
delay x bandwidth product of 67.5 Kb,
or approximately 8 KB. Since the sender
can send only one frame per RTT, and as-
suming a frame size of 1 KB, this implies
a maximum sending rate of

Bits Per Frame = Time Per Frame
=1024 x 8 = 0.045
= 182 Kbps

or about one-eighth of the link’s capacity.

many more of them in this book—
see Figures 9.12 and 9.16 for more
complex examples. They are very use-
ful because they capture visually the
behavior over time of a distributed
system—something that can be quite
hard to analyze. When designing a
protocol, you often have to be pre-
pared for the unexpected—a system
crashes, a message gets lost, or some-
thing that you expected to happen
quickly turns out to take a long time.
These sorts of diagrams can often help
understand what might go wrong in
such cases and thus help a protocol
designer be prepared for every eventu-

ality.
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Sender Receiver

Time

Figure 2.24 Timeline for the sliding window algorithm.

To use the link fully, then, we'd like the sender to be able to transmit up to eight frames
before having to wait for an acknowledgment.

The significance of the bandwidth x delay product is that it represents the amount
of data that could be in transit. We would like to be able to send this much data without
waiting for the first acknowledgment. The principle at work here is often referred to
as keeping the pipe full. The algorithms presented in the following two subsections do
exactly this.

2.5.2 Sliding Window

Consider again the scenario in which the link has a delay x bandwidth product of 8 KB
and frames are of 1-KB size. We would like the sender to be ready to transmit the ninth
frame at pretty much the same moment that the ACK for the first frame arrives. The
algorithm that allows us to do this is called sliding window, and an illustrative timeline is
given in Figure 2.24.

The Sliding Window Algorithm

The sliding window algorithm works as follows. First, the sender assigns a sequence num-
ber, denoted SeqNum, to each frame. For now, lets ignore the fact that SeqgNum
is implemented by a finite-size header field and instead assume that it can grow infi-
nitely large. The sender maintains three variables: The send window size, denoted SWS,
gives the upper bound on the number of outstanding (unacknowledged) frames that the
sender can transmit; LAR denotes the sequence number of the last acknowledgment re-
ceived; and LFS denotes the sequence number of the last frame sent. The sender also
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Figure 2.26 Sliding window on receiver.

maintains the following invariant:
LFS — LAR <SWS

This situation is illustrated in Figure 2.25.

When an acknowledgment arrives, the sender moves LAR to the right, thereby
allowing the sender to transmit another frame. Also, the sender associates a timer with
each frame it transmits, and it retransmits the frame should the timer expire before an
ACK is received. Notice that the sender has to be willing to buffer up to SWS frames
since it must be prepared to retransmit them until they are acknowledged.

The receiver maintains the following three variables: The receive window size, de-
noted RWS, gives the upper bound on the number of out-of-order frames that the
receiver is willing to accept; LAF denotes the sequence number of the largest acceptable
frame; and LFR denotes the sequence number of the last frame received. The receiver also
maintains the following invariant:

LAF — LFR <RWS

This situation is illustrated in Figure 2.26.

When a frame with sequence number SeqNum arrives, the receiver takes the
following action. If SeqNum < LFR or SeqNum > LAF, then the frame is out-
side the receiver’s window and it is discarded. If LFR < SeqNum < LAF, then the
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frame is within the receiver’s window and it is accepted. Now the receiver needs to de-
cide whether or not to send an ACK. Let SegNumToAck denote the largest sequence
number not yet acknowledged, such that all frames with sequence numbers less than or
equal to SeqNumToAck have been received. The receiver acknowledges the receipt of
SegqNumToAck, even if higher-numbered packets have been received. This acknowl-
edgment is said to be cumulative. It then sets LFR = SeqNumToAck and adjusts
LAF =LFR + RWS.

For example, suppose LFR =5 (i.e., the last ACK the receiver sent was for sequence
number 5), and RWS = 4. This implies that LAF = 9. Should frames 7 and 8 arrive,
they will be buffered because they are within the receiver’s window. However, no ACK
needs to be sent since frame 6 is yet to arrive. Frames 7 and 8 are said to have arrived out
of order. (Technically, the receiver could resend an ACK for frame 5 when frames 7 and 8
arrive.) Should frame 6 then arrive—perhaps it is late because it was lost the first time and
had to be retransmitted, or perhaps it was simply delayed®—the receiver acknowledges
frame 8, bumps LFR to 8, and sets LAF to 12. If frame 6 was in fact lost, then a timeout
will have occurred at the sender, causing it to retransmit frame 6.

We observe that when a timeout occurs, the amount of data in transit decreases,
since the sender is unable to advance its window until frame 6 is acknowledged. This
means that when packet losses occur, this scheme is no longer keeping the pipe full. The
longer it takes to notice that a packet loss has occurred, the more severe this problem
becomes.

Notice that in this example, the receiver could have sent a negative acknowledg-
ment (NAK) for frame 6 as soon as frame 7 arrived. However, this is unnecessary since
the sender’s timeout mechanism is sufficient to catch this situation, and sending NAKSs
adds additional complexity to the receiver. Also, as we mentioned, it would have been
legitimate to send additional acknowledgments of frame 5 when frames 7 and 8 arrived;
in some cases, a sender can use duplicate ACKs as a clue that a frame was lost. Both
approaches help to improve performance by allowing early detection of packet losses.

Yet another variation on this scheme would be to use selective acknowledgments.
That is, the receiver could acknowledge exactly those frames it has received, rather than
just the highest-numbered frame received in order. So, in the above example, the receiver
could acknowledge the receipt of frames 7 and 8. Giving more information to the sender
makes it potentially easier for the sender to keep the pipe full, but adds complexity to
the implementation.

The sending window size is selected according to how many frames we want to have
outstanding on the link at a given time; SWS is easy to compute for a given delay x

21rs unlikely that a packet could be delayed in this way on a point-to-point link, but later on we will see this same

algorithm used on more complex networks where such delays are possible.
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bandwidth product.3 On the other hand, the receiver can set RWS to whatever it wants.
Two common settings are RWS = 1, which implies that the receiver will not buffer any
frames that arrive out of order, and RWS = SWS, which implies that the receiver can
buffer any of the frames the sender transmits. It makes no sense to set RWS > SWS
since it’s impossible for more than SWS frames to arrive out of order.

Finite Sequence Numbers and Sliding Window

We now return to the one simplification we introduced into the algorithm—our assump-
tion that sequence numbers can grow infinitely large. In practice, of course, a frame’s
sequence number is specified in a header field of some finite size. For example, a 3-bit
field means that there are eight possible sequence numbers, 0. ..7. This makes it neces-
sary to reuse sequence numbers or, stated another way, sequence numbers wrap around.
This introduces the problem of being able to distinguish between different incarnations
of the same sequence numbers, which implies that the number of possible sequence
numbers must be larger than the number of outstanding frames allowed. For example,
stop-and-wait allowed one outstanding frame at a time and had two distinct sequence
numbers.

Suppose we have one more number in our space of sequence numbers than we
have potentially outstanding frames, that is, SWS < MaxSeqNum — 1, where Max-
SeqNum is the number of available sequence numbers. Is this sufficient? The answer
depends on RWR. If RWS = 1, then MaxSeqNum > SWS + 1 is sufficient. If
RWS is equal to SWS, then having a MaxSeqNum just one greater than the sending
window size is not good enough. To see this, consider the situation in which we have
the eight sequence numbers 0 through 7, and SWS = RWS = 7. Suppose the sender
transmits frames 0..6, they are successfully received, but the ACKs are lost. The receiver
is now expecting frames 7, 0..5, but the sender times out and sends frames 0..6. Unfor-
tunately, the receiver is expecting the second incarnation of frames 0..5, but gets the first
incarnation of these frames. This is exactly the situation we wanted to avoid.

It turns out that the sending window size can be no more than half as big as the
number of available sequence numbers when RWS = SWS, or stated more precisely,

SWS < (MaxSeqNum + 1)/2

Intuitively, what this is saying is that the sliding window protocol alternates between
the two halves of the sequence number space, just as stop-and-wait alternates between
sequence numbers 0 and 1. The only difference is that it continually slides between the
two halves rather than discretely alternating between them.

3Fasy, that is, if we know the delay and the bandwidth. Sometimes we do not, and estimating them well is a challenge to

protocol designers. We discuss this further in Chapter 5.
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Note that this rule is specific to the situation where RWS = SWS. We leave it as
an exercise to determine the more general rule that works for arbitrary values of RWS
and SWS. Also note that the relationship between the window size and the sequence
number space depends on an assumption that is so obvious that it is easy to overlook,
namely, that frames are not reordered in transit. This cannot happen on a direct point-to-
point link since there is no way for one frame to overtake another during transmission.
However, we will see the sliding window algorithm used in a different environment in
Chapter 5, and we will need to devise another rule.

Implementation of Sliding Window

The following routines illustrate how we might implement the sending and receiving
sides of the sliding window algorithm. The routines are taken from a working protocol
named, appropriately enough, Sliding Window Protocol (SWP). So as not to concern
ourselves with the adjacent protocols in the protocol graph, we denote the protocol sit-
ting above SWP as high-level protocol (HLP) and the protocol sitting below SWP as a
link-level protocol (LINK).

We start by defining a pair of data structures. First, the frame header is very
simple: It contains a sequence number (SeqNum) and an acknowledgment number
(AckNum). It also contains a Flags field that indicates whether the frame is an ACK
or carries data.

typedef u_char SwpSegno;

typedef struct {
SwpSegno SeqNum  /* sequence nunber of this frane */
SwpSeqno AckNunmy  /* ack of received frane */
u_char Fl ags; /* up to 8 bits worth of flags */

} SwpHdr;

Next, the state of the sliding window algorithm has the following structure. For
the sending side of the protocol, this state includes variables LAR and LFS, as described
earlier in this section, as well as a queue that holds frames that have been transmit-
ted but not yet acknowledged (sendQ). The sending state also includes a counting
semaphore called sendWindowNotFull. We will see how this is used below, but gen-
erally a semaphore is a synchronization primitive that supports semWait and sem-
Signal operations. Every invocation of semSignal increments the semaphore by 1,
and every invocation of semWait decrements s by 1, with the calling process blocked
(suspended) should decrementing the semaphore cause its value to become less than 0. A
process that is blocked during its call to semWait will be allowed to resume as soon as
enough semSignal operations have been performed to raise the value of the semaphore
above 0.
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For the receiving side of the protocol, the state includes the variable NFE. This
is the next frame expected (i.e., the frame with a sequence number one more than the
last frame received (LFR), described earlier in this section). There is also a queue that
holds frames that have been received out of order (recvQ). Finally, although not shown,
the sender and receiver sliding window sizes are defined by constants SWS and RWS,
respectively.

typedef struct ({
/* sender side state: */

SwpSeqno LAR; /* segno of |ast ACK received */
SwpSeqgno LFS; /* last frane sent */

Senmaphor e sendW ndowNot Ful | ;

SwpHdr hdr ; /* pre-initialized header */

struct sendQ slot {
Event ti meout ;
/* event associated with send-timeout */
NBg nmsg;
} send( SW5] ;

/* receiver side state: */
SwpSeqno NFE;

/* seqno of next frane expected */
struct recvQslot {

i nt received; /* is nsg valid? */
NBg msg;
} recv RWE];
} SwpSt at e;

The sending side of SWP is implemented by procedure sendSWP. This routine
is rather simple. First, semWait causes this process to block on a semaphore until it
is OK to send another frame. Once allowed to proceed, sendSWP sets the sequence
number in the frame’s header, saves a copy of the frame in the transmit queue (sendQ),
schedules a timeout event to handle the case in which the frame is not acknowledged,
and sends the frame to the next-lower-level protocol, which we denote as LINK.

One detail worth noting is the call to store_swp_hdr just before the call to
msgAddHdr. This routine translates the C structure that holds the SWP header
(state->hdr) into a byte string that can be safely attached to the front of the mes-
sage (hbuf). This routine (not shown) must translate each integer field in the header
into network byte order and remove any padding that the compiler has added to the C
structure. The issue of byte order is discussed more fully in Section 7.1, but for now it is
enough to assume that this routine places the most significant bit of a multiword integer
in the byte with the highest address.
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Another piece of complexity in this routine is the use of semWait and the send-
WindowNotFull semaphore. sendWindowNotFull is initialized to the size of the
sender’s sliding window, SWS (this initialization is not shown). Each time the sender
transmits a frame, the semWait operation decrements this count and blocks the sender
should the count go to 0. Each time an ACK is received, the semSignal operation in-
voked in deliverSWP (see below) increments this count, thus unblocking any waiting
sender.

static int
sendSWP( SwpSt ate *state, Msg *frame)
{

struct sendQ slot *slot;
hbuf [ HLEN ;

/* wait for send wi ndow to open */

semMi t (&st at e- >sendW ndowNot Ful | ) ;

st at e- >hdr. SeqNum = ++st at e- >LFS;

sl ot = &st at e- >send st at e- >hdr. SeqNum % SW5] ;

store_swp_hdr (state->hdr, hbuf);

nmsgAddHdr (frame, hbuf, HLEN);

nsgSaveCopy( &sl ot - >nsg, frane);

sl ot->ti meout = evSchedul e(swpTi meout, slot,
SWP_SEND_TI MEQUT) ;

return send(LINK, frane);

}

Before continuing to the receive side of SWP, we need to reconcile a seeming in-
consistency. On the one hand, we have been saying that a high-level protocol invokes the
services of a low-level protocol by calling the send operation, so we would expect that a
protocol that wants to send a message via SWP would call send(SWP, packet). On the
other hand, the procedure that implements SWP’s send operation is called sendSWP,
and its first argument is a state variable (SwpState). What gives? The answer is that
the operating system provides glue code that translates the generic call to send into a
protocol-specific call to sendSWP. This glue code maps the first argument to send
(the magic protocol variable SWP) into both a function pointer to sendSWP, and
a pointer to the protocol state that SWP needs to do its job. The reason we have the
high-level protocol indirectly invoke the protocol-specific function through the generic
function call is that we want to limit how much information the high-level protocol has
coded in it about the low-level protocol. This makes it easier to change the protocol
graph configuration at some time in the future.

Now to SWP’s protocol-specific implementation of the deliver operation, which
is given in procedure deliverSWP. This routine actually handles two different kinds
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of incoming messages: ACKs for frames sent earlier from this node and data frames
arriving at this node. In a sense, the ACK half of this routine is the counterpart to the
sender side of the algorithm given in sendSWP. A decision as to whether the incoming
message is an ACK or a data frame is made by checking the Flags field in the header.
Note that this particular implementation does not support piggybacking ACKs on data
frames.

When the incoming frame is an ACK, deliverSWP simply finds the slot in the
transmit queue (sendQ) that corresponds to the ACK, cancels the timeout event, and
frees the frame saved in that slot. This work is actually done in a loop since the ACK
may be cumulative. The only other thing to notice about this case is the call to subrou-
tine swplnWindow. This subroutine, which is given below, ensures that the sequence
number for the frame being acknowledged is within the range of ACKs that the sender
currently expects to receive.

When the incoming frame contains data, deliverSWP first calls msgStripHdr
and load_swp_hdr to extract the header from the frame. Routine load_swp_hdr is
the counterpart to store_swp_hdr discussed earlier; it translates a byte string into the
C data structure that holds the SWP header. deliverSWP then calls swplnWindow
to make sure the sequence number of the frame is within the range of sequence numbers
that it expects. If it is, the routine loops over the set of consecutive frames it has received
and passes them up to the higher-level protocol by invoking the deliverHLP routine. It
also sends a cumulative ACK back to the sender, but does so by looping over the receive
queue (it does not use the SeqNumToAck variable used in the prose description given
earlier in this section).

static int
deliver SWP(SwpState state, Msg *frane)
{

SwpHdr hdr ;

char *hbuf ;

hbuf = msgStripHdr (frane, HLEN);
| oad_swp_hdr ( &dr, hbuf)
i f (hdr->Flags & FLAG ACK_VALI D)
{
/* received an acknow edgnent - --do SENDER si de */
i f (swpl nWndow hdr. AckNum state->LAR + 1,
state->LFS))

{
do

{

struct sendQ slot *slot;
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sl ot = &state->send ++state->LAR % SW5] ;
evCancel (sl ot->tinmeout);
nmsgDest r oy( &sl ot - >nsQ) ;
senti gnal ( &st at e- >sendW ndowNot Ful | ) ;
} while (state->LAR != hdr. AckNunj;

}
}
if (hdr.Flags & FLAG HAS DATA)
{
struct recvQ slot *slot;
/* received data packet---do RECEl VER side */
sl ot = &state->recv hdr. SegNum % RWE] ;
if (!swpl nWndow hdr. SeqNum st at e- >NFE,
state->NFE + R\ - 1))
{
/* drop the message */
return SUCCESS;
}
msgSaveCopy( &sl ot - >nsg, frane);
sl ot - >recei ved = TRUE;
i f (hdr.SegNum == st at e- >NFE)
{
Neg m
whi | e (sl ot->received)
{
del i ver (HLP, &sl ot->nsQ);
nsgDest r oy( &sl ot - >nsQ) ;
sl ot->recei ved = FALSE;
slot = &state->recv( ++state->NFE % RWS] ;
}
/* send ACK: */
prepare_ack(&m state->NFE - 1);
send( LI NK, &m;
nsgDest roy( & ;
}
}

return SUCCESS,
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Finally, swplnWindow is a simple subroutine that checks to see if a given se-
quence number falls between some minimum and maximum sequence number.

static bool
swpl nW ndow( SwpSegno segno, SwpSegno nin, SwpSegno nax)

{
SwpSeqno pos, maxpos;

pos = seqno - nin;
/* pos *should* be in range [0..NMAX) */
maxpos = max - mn + 1;

/* maxpos is in range [0..MAX] */
return pos < maxpos;

Frame Order and Flow Control

The sliding window protocol is perhaps the best-known algorithm in computer net-
working. What is easily confusing about the algorithm, however, is that it can be used to
serve three different roles. The first role is the one we have been concentrating on in this
section—to reliably deliver frames across an unreliable link. (In general, the algorithm
can be used to reliably deliver messages across an unreliable network.) This is the core
function of the algorithm.

The second role that the sliding window algorithm can serve is to preserve the order
in which frames are transmitted. This is easy to do at the receiver—since each frame has
a sequence number, the receiver just makes sure that it does not pass a frame up to the
next-higher-level protocol until it has already passed up all frames with a smaller sequence
number. That is, the receiver buffers (i.e., does not pass along) out-of-order frames. The
version of the sliding window algorithm described in this section does preserve frame
order, although we could imagine a variation in which the receiver passes frames to
the next protocol without waiting for all earlier frames to be delivered. A question we
should ask ourselves is whether we really need the sliding window protocol to keep the
frames in order, or whether, instead, this is unnecessary functionality at the link level.
Unfortunately, we have not yet seen enough of the network architecture to answer this
question; we first need to understand how a sequence of point-to-point links is connected
by switches to form an end-to-end path.

The third role that the sliding window algorithm sometimes plays is to support
Sflow control—a feedback mechanism by which the receiver is able to throttle the sender.
Such a mechanism is used to keep the sender from overrunning the receiver, that is, from
transmitting more data than the receiver is able to process. This is usually accomplished
by augmenting the sliding window protocol so that the receiver not only acknowledges
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frames it has received, but also informs the sender of how many frames it has room to
receive. The number of frames that the receiver is capable of receiving corresponds to
how much free buffer space it has. As in the case of ordered delivery, we need to make
sure that flow control is necessary at the link level before incorporating it into the sliding
window protocol.

One important concept to take away from this discussion is the system design prin-
ciple we call separation of concerns. That is, you must be careful to distinguish between
different functions that are sometimes rolled together in one mechanism, and you must
make sure that each function is necessary and being supported in the most effective way.
In this particular case, reliable delivery, ordered delivery, and flow control are sometimes
combined in a single sliding window protocol, and we should ask ourselves if this is the
right thing to do at the link level. With this question in mind, we revisit the sliding
window algorithm in Chapter 3 (we show how X.25 networks use it to implement hop-
by-hop flow control) and in Chapter 5 (we describe how TCP uses it to implement a
reliable byte-stream channel).

2.5.3 Concurrent Logical Channels

The data link protocol used in the ARPANET provides an interesting alternative to the
sliding window protocol, in that it is able to keep the pipe full while still using the
simple stop-and-wait algorithm. One important consequence of this approach is that
the frames sent over a given link are not kept in any particular order. The protocol also
implies nothing about flow control.

The idea underlying the ARPANET protocol, which we refer to as concurrent logi-
cal channels, is to multiplex several logical channels onto a single point-to-point link and
to run the stop-and-wait algorithm on each of these logical channels. There is no rela-
tionship maintained among the frames sent on any of the logical channels, yet because
a different frame can be outstanding on each of the several logical channels, the sender
can keep the link full.

More precisely, the sender keeps 3 bits of state for each channel: a boolean, saying
whether the channel is currently busy; the 1-bit sequence number to use the next time a
frame is sent on this logical channel; and the next sequence number to expect on a frame
that arrives on this channel. When the node has a frame to send, it uses the lowest idle
channel, and otherwise it behaves just like stop-and-wait.

In practice, the ARPANET supported 8 logical channels over each ground link and
16 over each satellite link. In the ground-link case, the header for each frame included
a 3-bit channel number and a 1-bit sequence number, for a total of 4 bits. This is ex-

actly the number of bits the sliding window protocol requires to support up to eight
outstanding frames on the link when RWS = SWS.
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2.6 Ethernet (802.3)

The Ethernet is easily the most successful local area networking technology of the last 20
years. Developed in the mid-1970s by researchers at the Xerox Palo Alto Research Center
(PARC), the Ethernet is a working example of the more general carrier sense, multiple
access with collision detect (CSMA/CD) local area network technology.

As indicated by the CSMA name, the Ethernet is a multiple-access network, mean-
ing that a set of nodes send and receive frames over a shared link. You can, therefore,
think of an Ethernet as being like a bus that has multiple stations plugged into it. The
“carrier sense” in CSMA/CD means that all the nodes can distinguish between an idle
and a busy link, and “collision detect” means that a node listens as it transmits and can
therefore detect when a frame it is transmitting has interfered (collided) with a frame
transmitted by another node.

The Ethernet has its roots in an early packet radio network, called Aloha, developed
at the University of Hawaii to support computer communication across the Hawaiian
Islands. Like the Aloha network, the fundamental problem faced by the Ethernet is how
to mediate access to a shared medium fairly and efficiently (in Aloha the medium was
the atmosphere, while in Ethernet the medium is a coax cable). That is, the core idea in
both Aloha and the Ethernet is an algorithm that controls when each node can transmit.

Digital Equipment Corporation and Intel Corporation joined Xerox to define a
10-Mbps Ethernet standard in 1978. This standard then formed the basis for IEEE
standard 802.3. With one exception that we will see in Section 2.6.2, it is fair to view
the 1978 Ethernet standard as a proper subset of the 802.3 standard; 802.3 additionally
defines a much wider collection of physical media over which Ethernet can operate, and
more recently, it has been extended to include a 100-Mbps version called Fast Ethernet,
and a 1,000-Mbps version called Gigabit Ethernet. The rest of this section focuses on the
10-Mbps Ethernet since it is typically used in multiple-access mode, and we are interested
in how multiple hosts share a single link. Both 100- and 1,000-Mbps Ethernets are
designed to be used in full-duplex, point-to-point configurations, which means that they
are typically used in switched networks, as described in the next chapter.

2.6.1 Physical Properties

An Ethernet segment is implemented on a coaxial cable of up to 500 m. This cable is sim-
ilar to the type used for cable TV, except that it typically has an impedance of 50 ohms
instead of cable TV’s 75 ohms. Hosts connect to an Ethernet segment by tapping into
it; taps must be at least 2.5 m apart. A transceiver—a small device directly attached to
the tap—detects when the line is idle and drives the signal when the host is transmitting.
It also receives incoming signals. The transceiver is, in turn, connected to an Ethernet

adaptor, which is plugged into the host. All the logic that makes up the Ethernet pro-
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Figure 2.27 Ethernet transceiver and adaptor.

tocol, as described in this section, is implemented in the adaptor (not the transceiver).
This configuration is shown in Figure 2.27.

Multiple Ethernet segments can be joined together by repeaters. A repeater is a de-
vice that forwards digital signals, much like an amplifier forwards analog signals. How-
ever, no more than four repeaters may be positioned between any pair of hosts, meaning
that an Ethernet has a total reach of only 2,500 m. For example, using just two repeaters
between any pair of hosts supports a configuration similar to the one illustrated in Fig-
ure 2.28, that is, a segment running down the spine of a building with a segment on
each floor. All told, an Ethernet is limited to supporting a maximum of 1,024 hosts.

Any signal placed on the Ethernet by a host is broadcast over the entire network,
that is, the signal is propagated in both directions, and repeaters forward the signal on all
outgoing segments. Terminators attached to the end of each segment absorb the signal
and keep it from bouncing back and interfering with trailing signals. The Ethernet uses
the Manchester encoding scheme described in Section 2.2.

In addition to the system of segments and repeaters just described, alternative tech-
nologies have been introduced over the years. For example, rather than using a 50-ohm
coax cable, an Ethernet can be constructed from a thinner cable known as 10Base2; the
original cable is called 10Base5 (the two cables are commonly called #hin-ner and thick-
net, respectively). The “10” in 10Base2 means that the network operates at 10 Mbps,
“Base” refers to the fact that the cable is used in a baseband system, and the “2” means
that a given segment can be no longer than 200 m (a segment of the original 10Base5
cable can be up to 500 m long). Today, a third cable technology is predominantly used,
called 10BaseT, where the “T” stands for twisted pair. Typically, Category 5 twisted pair
wiring is used. A 10BaseT segment is usually limited to under 100 m in length. (Both
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Figure 2.28 Ethernet repeater.

100- and 1,000-Mbps Ethernets also run up over Category 5 twisted pair, up to distances
of 100 m.)

Because the cable is so thin, you do not tap into a 10Base2 or 10BaseT cable
in the same way as you would with 10Base5 cable. With 10Base2, a T-joint is spliced
into the cable. In effect, 10Base2 is used to daisy-chain a set of hosts together. With
10BaseT, the common configuration is to have several point-to-point segments coming
out of a multiway repeater, sometimes called a /ub, as illustrated in Figure 2.29. Multiple
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Figure 2.29 Ethernet hub.
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100-Mbps Ethernet segments can also be connected by a hub, but the same is not true
of 1,000-Mbps segments.

It is important to understand that whether a given Ethernet spans a single segment,
a linear sequence of segments connected by repeaters, or multiple segments connected
in a star configuration by a hub, data transmitted by any one host on that Ethernet
reaches all the other hosts. This is the good news. The bad news is that all these hosts are
competing for access to the same link, and as a consequence, they are said to be in the
same collision domain.

2.6.2 Access Protocol

We now turn our attention to the algorithm that controls access to the shared Ethernet
link. This algorithm is commonly called the Ethernet’s media access control (MAC). Tt
is typically implemented in hardware on the network adaptor. We will not describe the
hardware per se, but instead focus on the algorithm it implements. First, however, we
describe the Ethernet’s frame format and addresses.

Frame Format
Each Ethernet frame is defined by the format given in Figure 2.30. The 64-bit pream-

ble allows the receiver to synchronize with the signal; it is a sequence of alternating Os
and 1s. Both the source and destination hosts are identified with a 48-bit address. The
packet type field serves as the demultiplexing key, that is, it identifies to which of pos-
sibly many higher-level protocols this frame should be delivered. Each frame contains
up to 1,500 bytes of data. Minimally, a frame must contain at least 46 bytes of data,
even if this means the host has to pad the frame before transmitting it. The reason for
this minimum frame size is that the frame must be long enough to detect a collision; we
discuss this more below. Finally, each frame includes a 32-bit CRC. Like the HDLC pro-
tocol described in Section 2.3.2, the Ethernet is a bit-oriented framing protocol. Note
that from the host’s perspective, an Ethernet frame has a 14-byte header: two 6-byte ad-
dresses and a 2-byte type field. The sending adaptor attaches the preamble, CRC, and
postamble before transmitting, and the receiving adaptor removes them.

The frame format just described is taken from the Digital-Intel-Xerox Ethernet
standard. The 802.3 frame format is exactly the same, except it substitutes a 16-bit length

64 48 48 16 32
Preamble Dest Sre Type| Body CRC
addr addr y

Figure 2.30 Ethernet frame format.
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field for the 16-bit type field. 802.3 is usually paired with an encapsulation standard that
defines a type field used to demultiplex incoming frames. This type field is the first thing
in the data portion of the 802.3 frames, that is, it immediately follows the 802.3 header.
Fortunately, since the Ethernet standard has avoided using any type values less than 1,500
(the maximum length found in an 802.3 header), and the type and length fields are in
the same location in the header, it is possible for a single device to accept both formats,
and for the device driver running on the host to interpret the last 16 bits of the header
as either a type or a length. In practice, most hosts follow the Digital-Intel-Xerox format
and interpret this field as the frame’s type.

Addresses

Each host on an Ethernet—in fact, every Ethernet host in the world—has a unique Eth-
ernet address. Technically, the address belongs to the adaptor, not the host; it is usually
burned into ROM. Ethernet addresses are typically printed in a form humans can read
as a sequence of six numbers separated by colons. Each number corresponds to 1 byte
of the 6-byte address and is given by a pair of hexadecimal digits, one for each of the
4-bit nibbles in the byte; leading Os are dropped. For example, 8:0:2b:e4:b1:2 is the

human-readable representation of Ethernet address
00001000 00000000 00101011 11100100 10110001 00000010

To ensure that every adaptor gets a unique address, each manufacturer of Ethernet
devices is allocated a different prefix that must be prepended to the address on every
adaptor they build. For example, Advanced Micro Devices has been assigned the 24-bit
prefix X080020 (or 8:0:20). A given manufacturer then makes sure the address suffixes
it produces are unique.

Each frame transmitted on an Ethernet is received by every adaptor connected to
that Ethernet. Each adaptor recognizes those frames addressed to its address and passes
only those frames on to the host. (An adaptor can also be programmed to run in promis-
cuous mode, in which case it delivers all received frames to the host, but this is not the
normal mode.) In addition to these unicast addresses, an Ethernet address consisting of
all 1s is treated as a broadcast address; all adaptors pass frames addressed to the broadcast
address up to the host. Similarly, an address that has the first bit set to 1 but is not the
broadcast address is called a multicast address. A given host can program its adaptor to
accept some set of multicast addresses. Multicast addresses are used to send messages to
some subset of the hosts on an Ethernet (e.g., all file servers). To summarize, an Ethernet
adaptor receives all frames and accepts

B Frames addressed to its own address;

B Frames addressed to the broadcast address;
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B Frames addressed to a multicast address, if it has been instructed to listen to that
address;

B All frames, if it has been placed in promiscuous mode.

It passes to the host only the frames that it accepts.

Transmitter Algorithm

As we have just seen, the receiver side of the Ethernet protocol is simple; the real smarts
are implemented at the sender’s side. The transmitter algorithm is defined as follows.

When the adaptor has a frame to send and the line is idle, it transmits the frame
immediately; there is no negotiation with the other adaptors. The upper bound of
1,500 bytes in the message means that the adaptor can occupy the line for only a fixed
length of time.

When an adaptor has a frame to send and the line is busy, it waits for the line to go
idle and then transmits immediately.* The Ethernet is said to be a I-persistent protocol
because an adaptor with a frame to send transmits with probability 1 whenever a busy
line goes idle. In general, a p-persistent algorithm transmits with probability 0 < p <'1
after a line becomes idle, and defers with probability ¢ =1 — p. The reasoning behind
choosing a p < 1 is that there might be multiple adaptors waiting for the busy line to
become idle, and we don’t want all of them to begin transmitting at the same time.
If each adaptor transmits immediately with a probability of, say, 33%, then up to three
adaptors can be waiting to transmit and the odds are that only one will begin transmitting
when the line becomes idle. Despite this reasoning, an Ethernet adaptor always transmits
immediately after noticing that the network has become idle and has been very effective
in doing so.

To complete the story about p-persistent protocols for the case when p < 1, you
might wonder how long a sender that loses the coin flip (i.e., decides to defer) has to wait
before it can transmit. The answer for the Aloha network, which originally developed this
style of protocol, was to divide time into discrete slots, with each slot corresponding to
the length of time it takes to transmit a full frame. Whenever a node has a frame to
send and it senses an empty (idle) slot, it transmits with probability p and defers until
the next slot with probability g = 1 — p. If that next slot is also empty, the node again
decides to transmit or defer, with probabilities p and ¢, respectively. If that next slot is
not empty—that is, some other station has decided to transmit—then the node simply
waits for the next idle slot and the algorithm repeats.

Returning to our discussion of the Ethernet, because there is no centralized control
it is possible for two (or more) adaptors to begin transmitting at the same time, either

“4To be more precise, all adaptors wait 9.6 s after the end of one frame before beginning to transmit the next frame. This

is true for both the sender of the first frame, as well as those nodes listening for the line to become idle.
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because both found the line to be idle or because both had been waiting for a busy
line to become idle. When this happens, the two (or more) frames are said to collide on
the network. Each sender, because the Ethernet supports collision detection, is able to
determine that a collision is in progress. At the moment an adaptor detects that its frame
is colliding with another, it first makes sure to transmit a 32-bit jamming sequence and
then stops the transmission. Thus, a transmitter will minimally send 96 bits in the case
of a collision: 64-bit preamble plus 32-bit jamming sequence.

One way that an adaptor will send only 96 bits—which is sometimes called a runz
frame—is if the two hosts are close to each other. Had the two hosts been farther apart,
they would have had to transmit longer, and thus send more bits, before detecting the
collision. In fact, the worst-case scenario happens when the two hosts are at opposite
ends of the Ethernet. To know for sure that the frame it just sent did not collide with
another frame, the transmitter may need to send as many as 512 bits. Not coincidentally,
every Ethernet frame must be at least 512 bits (64 bytes) long: 14 bytes of header plus
46 bytes of data plus 4 bytes of CRC.

Why 512 bits? The answer is related to another question you might ask about an
Ethernet: Why is its length limited to only 2,500 m? Why not 10 or 1,000 km? The
answer to both questions has to do with the fact that the farther apart two nodes are, the
longer it takes for a frame sent by one to reach the other, and the network is vulnerable
to a collision during this time.

Figure 2.31 illustrates the worst-case scenario, where hosts A and B are at opposite
ends of the network. Suppose host A begins transmitting a frame at time #, as shown
in (a). It takes it one link latency (let’s denote the latency as &) for the frame to reach
host B. Thus, the first bit of A’s frame arrives at B at time # 4 4, as shown in (b). Suppose
an instant before host A’s frame arrives (i.e., B still sees an idle line), host B begins
to transmit its own frame. B’s frame will immediately collide with A’s frame, and this
collision will be detected by host B (c). Host B will send the 32-bit jamming sequence,
as described above. (B’s frame will be a runt.) Unfortunately, host A will not know that
the collision occurred until B’s frame reaches it, which will happen one link latency
later, at time # + 2 X 4, as shown in (d). Host A must continue to transmit until this
time in order to detect the collision. In other words, host A must transmit for 2 x 4
to be sure that it detects all possible collisions. Considering that a maximally configured
Ethernet is 2,500 m long, and that there may be up to four repeaters between any two
hosts, the round-trip delay has been determined to be 51.2 us, which on a 10-Mbps
Ethernet corresponds to 512 bits. The other way to look at this situation is that we need
to limit the Ethernet’s maximum latency to a fairly small value (e.g., 51.2 us) for the
access algorithm to work; hence, an Ethernet’s maximum length must be something on
the order of 2,500 m.
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Figure 2.31 Worst-case scenario: (a) A sends a frame at time t; (b) A's frame arrives at
B at time t + d; (c) B begins transmitting at time t + d and collides with A’s frame;
(d) B’s runt (32-bit) frame arrives at A at time t + 2d.

Once an adaptor has detected a collision and stopped its transmission, it waits a
certain amount of time and tries again. Each time it tries to transmit but fails, the adap-
tor doubles the amount of time it waits before trying again. This strategy of doubling
the delay interval between each retransmission attempt is a general technique known as
exponential backoff. More precisely, the adaptor first delays either 0 or 51.2 us, selected
at random. If this effort fails, it then waits 0, 51.2, 102.4, or 153.6 us (selected ran-
domly) before trying again; this is # x 51.2 for £ = 0..3. After the third collision, it
waits k£ x 51.2 for £ =0..2% — 1, again selected at random. In general, the algorithm
randomly selects a £ between 0 and 2”7 — 1 and waits # x 51.2 us, where 7 is the number
of collisions experienced so far. The adaptor gives up after a given number of tries and
reports a transmit error to the host. Adaptors typically retry up to 16 times, although the
backoff algorithm caps 7 in the above formula at 10.

2.6.3 Experience with Ethernet

Because Ethernets have been around for so many years and are so popular, we have a
y ¥
great deal of experience in using them. One of the most important observations people
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have made about Ethernets is that they work best under lightly loaded conditions. This
is because under heavy loads—typically, a utilization of over 30% is considered heavy on
an Ethernet—too much of the network’s capacity is wasted by collisions.

Fortunately, most Ethernets are used in a far more conservative way than the stan-
dard allows. For example, most Ethernets have fewer than 200 hosts connected to them,
which is far fewer than the maximum of 1,024. (See if you can discover a reason for this
upper limit of around 200 hosts in Chapter 4.) Similarly, most Ethernets are far shorter
than 2,500 m, with a round-trip delay of closer to 5 ps than 51.2 us. Another factor that
makes Ethernets practical is that, even though Ethernet adaptors do not implement link-
level flow control, the hosts typically provide an end-to-end flow-control mechanism.
As a result, it is rare to find situations in which any one host is continuously pumping
frames onto the network.

Finally, it is worth saying a few words about why Ethernets have been so successful,
so that we can understand the properties we should emulate with any LAN technology
that tries to replace it. First, an Ethernet is extremely easy to administer and maintain:
There are no switches that can fail, no routing or configuration tables that have to be kept
up-to-date, and it is easy to add a new host to the network. It is hard to imagine a simpler
network to administer. Second, it is inexpensive: Cable is cheap, and the only other
cost is the network adaptor on each host. Any switch-based approach will involve an
investment in some relatively expensive infrastructure (the switches), in addition to the
incremental cost of each adaptor. As we will see in the next chapter, the most successful
LAN switching technology in use today is itself based on Ethernet.

2.7 Rings (802.5, FDDI, RPR)

Ring networks, like Ethernets, are shared-media networks. This section will focus on
the type that was for years the most prevalent, known as the IBM Token Ring. Like
the Xerox Ethernet, IBM’s Token Ring has a nearly identical IEEE standard, known as
802.5. 802.5 and the later Fiber Distributed Data Interface (FDDI) token ring are no
longer in widespread use. Resilient Packet Ring (RPR) is a relatively recent technology,
and its corresponding IEEE standard is known as 802.17; it remains to be seen how
popular RPR will be.

As the name suggests, a ring network consists of a set of nodes connected in a
ring (see Figure 2.32). Data always flows in a particular direction around the ring, with
each node receiving frames from its upstream neighbor and then forwarding them to
its downstream neighbor. This ring-based topology is in contrast to the Ethernet’s bus
topology. Like the Ethernet, however, the ring is viewed as a single shared medium; it
does not behave as a collection of independent point-to-point links that just happen to
be configured in a loop. Thus, a ring network shares two key features with an Ethernet:
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Figure 2.32 A ring network.

First, it involves a distributed algorithm that controls when each node is allowed to
transmit, and second, all nodes typically5 see all frames, with the node identified in the
frame header as the destination saving a copy of the frame as it flows past.

The most common early forms of ring network were all token rings. The word
“token” comes from the way access to the shared ring is managed. The idea is that a
token, which is really just a special sequence of bits, circulates around the ring; each node
receives and then forwards the token. When a node that has a frame to transmit sees the
token, it takes the token off the ring (i.e., it does not forward the special bit pattern)
and instead inserts its frame into the ring. Each node along the way simply forwards the
frame, with the destination node saving a copy and forwarding the message onto the next
node on the ring. When the frame makes its way back around to the sender, this node
strips its frame off the ring (rather than continuing to forward it) and reinserts the token.
In this way, some node downstream will have the opportunity to transmit a frame. The
media access algorithm is fair in the sense that as the token circulates around the ring,
each node gets a chance to transmit. Nodes are serviced in a round-robin fashion.

One of the first things you might worry about with a ring topology is that any link
or node failure would render the whole network useless. The problem of node failure
may be addressed by connecting each station into the ring using an electromechanical
relay. As long as the station is healthy, the relay is open and the station is included in
the ring. If the station stops providing power, the relay closes and the ring automatically
bypasses the station. This is illustrated in Figure 2.33. Note that this approach is only
effective when the transmission medium is electrical cable, not optical fiber.

5 We will see an exception to this in Section 2.7.4.
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Figure 2.34 Multistation access unit.

Several of these relays are usually packed into a single box, known as a multistation
access unit (MSAU). This has the interesting effect of making a token ring actually look
more like a star topology, as shown in Figure 2.34. Any failure of a link outside the
MSAU is then equivalent to a host failure, hence solved by the same relay mechanism.
It also makes it very easy to add stations to and remove stations from the network, since
they can just be plugged into or unplugged from the nearest MSAU, while the overall

wiring of the network can be left unchanged.
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2.7.1 Token Ring Media Access Control

It is now time to look a little more closely at how the MAC protocol operates on a token
ring. The network adaptor for a token ring contains a receiver and a transmitter. Most
of the time, when a node is neither the source nor the destination of the data on the
ring, its adaptor is simply retransmitting the data that its receiver receives. When none
of the stations connected to the ring has anything to send, the token circulates around
the ring. As it does so, any station that has data to send may “seize” the token, that is,
not retransmit it and begin sending data. Once a station has the token, it is allowed to
send one or more packets—exactly how many more depends on some factors described
below.

Each transmitted packet contains the destination address of the intended receiver;
it may also contain a multicast (or broadcast) address if it is intended to reach more than
one (or all) receivers. As the packet flows past each node on the ring, each node looks
inside the packet to see if it is the intended recipient. If so, it copies the packet into a
buffer as it flows through the network adaptor, but it does not remove the packet from
the ring. The sending station has the responsibility of removing the packet from the
ring.

One issue we must address is how much data a given node is allowed to transmit
each time it possesses the token or, equivalently, how long a given node is allowed to hold
the token: the token holding time (THT). If we assume that most nodes on the network
do not have data to send at any given time—a reasonable assumption, and certainly one
that the Ethernet takes advantage of—then we could make a case for letting a node that
possesses the token transmit as much data as it has before passing the token on to the
next node, in effect setting the THT to infinity. The danger is that a single station could
monopolize the ring for an arbitrarily long time, but we could certainly set the THT to
significantly more than the time to send one packet.

It is easy to see that the more bytes a node can send each time it has the token, the
better the utilization of the ring you can achieve in the situation in which only a single
node has data to send. The downside, of course, is that this strategy does not work well
when multiple nodes have data to send—it favors nodes that have a lot of data to send
over nodes that have only a small message to send, even when it is important to get this
small message delivered as soon as possible.

That issue is addressed by the 802.5 protocol’s support for different levels of pri-
ority. The token contains a 3-bit priority field, so we can think of the token having a
certain priority 7 at any time. Each device that wants to send a packet assigns a priority
to that packet, and the device can only seize the token to transmit a packet if the packet’s
priority is at least as great as the token’s. The priority of the token changes over time due
to the use of three reservation bits in the frame header. For example, a station X waiting
to send a priority 7 packet may set these bits to 7 if it sees a data frame going past and
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Figure 2.35 Token release: (a) early versus (b) delayed.

the bits have not already been set to a higher value. This causes the station that currently
holds the token to elevate its priority to 7 when it releases it. Station X is responsible for
lowering the token priority to its old value when it is done.

Note that this is a szréct priority scheme, in the sense that no lower-priority packets
get sent when higher-priority packets are waiting. This may cause lower-priority packets
to be locked out of the ring for extended periods if there is a sufficient supply of high-
priority packets.

The 802.5 protocol provides a form of reliable delivery using 2 bits in the packet
trailer, the A and C bits. These are both 0 initially. When a station sees a frame for
which it is the intended recipient, it sets the A bit in the frame. When it copies the
frame into its adaptor, it sets the C bit. If the sending station sees the frame come back
over the ring with the A bit still 0, it knows that the intended recipient is not func-
tioning or absent. If the A bit is set but not the C bit, this implies that for some rea-
son (e.g., lack of buffer space), the destination could not accept the frame. Thus, the
frame might reasonably be retransmitted later in the hope that buffer space had become
available.

One final issue will complete our discussion of the MAC protocol, which is the
matter of exactly when the sending node releases the token. As illustrated in Figure 2.35,
the sender can insert the token back onto the ring immediately following its frame (this is
called early release) or after the frame it transmits has gone all the way around the ring and
been removed (this is called delayed release). Clearly early release allows better bandwidth
utilization, especially on large rings. 802.5 originally used delayed token release, but
support for early release was subsequently added.
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2.7.2 Token Ring Maintenance

Each 802.5 token ring has one station designated as a monitor. The monitor’s job is to
ensure the health of the ring by, for example, making sure that the token is not lost. Any
station on the ring can become the monitor, and there are defined procedures by which
the monitor is elected when the ring is first connected or on the failure of the current
monitor. A healthy monitor periodically announces its presence with a special control
message; if a station fails to see such a message for some period of time, it will assume
that the monitor has failed and will try to become the monitor. The procedures for
electing a monitor are the same whether the ring has just come up or the active monitor
has just failed.

When a station decides that a new monitor is needed, it transmits a “claim token”
frame, announcing its intent to become the new monitor. If that token circulates back
to the sender, it can assume that it is okay for it to become the monitor. If some other
station is also trying to become the monitor at the same instant, the sender might see
a claim token message from that other station first. In this case, it will be necessary to
break the tie using some well-defined rule like “highest address wins.”

One responsibility of the monitor is to make sure that there is always a token
somewhere in the ring, either circulating or currently held by a station. It should be clear
that a token may vanish for several reasons, such as a bit error, or a crash on the part of a
station that was holding it. To detect a missing token, the monitor watches for a passing
token and maintains a timer equal to the maximum possible token rotation time. This
interval equals

NumStations x THT + RingLatency

where NumStations is the number of stations on the ring, and RingLatency is the
total propagation delay of the ring. If the timer expires without the monitor seeing a
token, it creates a new one.

The monitor also checks for corrupted or orphaned frames. The former have check-
sum errors or invalid formats, and without monitor intervention, they could circulate
forever on the ring. The monitor drains them off the ring before reinserting the token.
An orphaned frame is one that was transmitted correctly onto the ring but whose “par-
ent” died, that is, the sending station went down before it could remove the frame from
the ring. These are detected using another header bit, the “monitor” bit. This is 0 on
transmission and set to 1 the first time the packet passes the monitor. If the monitor
sees a packet with this bit set, it knows the packet is going by for the second time and it
drains the packet off the ring.

One additional ring maintenance function is the detection of dead stations. The
relays in the MSAU can automatically bypass a station that has been disconnected or
powered down, but may not detect more subtle failures. If any station suspects a failure
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Figure 2.36 802.5/token ring frame format.

on the ring, it can send a beacon frame to the suspect destination. Based on how far this
frame gets, the status of the ring can be established, and malfunctioning stations can be

bypassed by the relays in the MSAU.

Frame Format

We are now ready to define the 802.5 frame format, which is depicted in Figure 2.36.
802.5 uses differential Manchester encoding. This fact is used by the frame format, which
uses “illegal” Manchester codes in the start and end delimiters. After the start delimiter
comes the access control byte, which includes the frame priority and the reservation
priority mentioned above. The frame control byte is a demux key that identifies the
higher-layer protocol.

Similar to the Ethernet, 802.5 addresses are 48 bits long. The frame also includes a
32-bit CRC. This is followed by the frame status byte, which includes the A and C bits

for reliable delivery.

2.7.3 FDDI

Although FDDI is similar to 802.5 in many respects, there are significant differences.
For one, FDDI runs on fiber, not copper (although a later standard, CDDI, was defined
to allow copper links to be used). A more interesting difference is that an FDDI network
consists of a dual ring—two independent rings that transmit data in opposite directions,
as illustrated in Figure 2.37(a). The second ring is not used during normal operation
but instead comes into play only if the primary ring fails, as depicted in Figure 2.37(b).
That is, the ring loops back on the secondary fiber to form a complete ring, and as a
consequence, an FDDI network is able to tolerate a single break in the cable or the
failure of one station.

Another interesting difference is that instead of designating one node as a monitor,
all the nodes participate equally in maintaining the FDDI ring. Each node maintains an
estimate of the token rotation time (TRT)—the expected maximum time for the token
to make one complete trip around the ring. A node then measures the time between
successive arrivals of the token. If too much time elapses, suggesting that the token has
been lost, the node transmits a “claim” frame, in which it includes its current TRT
estimate. This claim serves two functions. First, the claim frame is a vote for a particular
value of the TRT. Any node that wants to vote for a shorter TRT will replace that claim
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Figure 2.37 Dual-fiber ring: (a) normal operation; (b) failure of the primary ring.

frame with its own claim frame, otherwise it will accept the new time and forward the
claim frame. Second, the claim frame is a request for authorization to regenerate the
token. If a claim frame makes it all the way back around to the original sender, that node
knows not only that the TRT it voted for was the shortest and has been accepted by all
the other nodes, but also that it has been authorized to regenerate the token.

When the token arrives at a node with time to spare (i.e., in less than one TRT
since the last time this node saw the token), the node can transmit data so long as it
does not make the token fall behind schedule; otherwise, the node cannot transmit data.
A shortcoming of this basic scheme is that it cannot guarantee any particular node the
opportunity to transmit regularly, even if that node has data that is sensitive to jitter,
because an upstream node could consume all the available time. To account for this
possibility, FDDI defines two classes of traffic: synchronous and asynchronous. When a
node receives a token, it is always allowed to send synchronous data, without regard for
whether the token is early or late. In contrast, a node can send asynchronous traffic only
when the token is early.

2.7.4 Resilient Packet Ring (802.17)

Resilient Packet Ring (RPR) is a relatively recent technology that has been standardized
by the IEEE as 802.17. While it bears some similarity to the ring technologies described
above, it was designed with slightly different goals in mind, which led to some key dif-
ferences in the protocol. Resiliency—the ability to recover quickly from a link or node
failure—was a key design goal, to make the technology suitable for service provider net-
works. Historically this had been provided at lower layers (e.g., by SONET’s protection
mechanisms). Other design goals included bandwidth efficiency and quality of service
(QoS) support, which had quite an impact on the protocol.
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Like FDDI, RPR consists of two counterrotating optical fiber rings; unlike FDDI,
it takes advantage of the bandwidth of both rings during normal operation. And unlike

the previously described rings, an RPR frame is removed from the ring by the receiving

node instead of leaving it to be removed by the sender, thereby freeing up some of the
bandwidth on the ring in what is called spazial reuse.
Most strikingly, RPR does not use tokens. Instead, RPR uses a technique called

buffer insertion. In a buffer insertion ring, a node can transmit its own frames when-

ever it has no other frames to forward. If a frame arrives while the node is transmitting

its own frame, then the node temporarily
buffers that frame. One of the major chal-
lenges for buffer insertion rings is how to
avoid starvation and enforce QoS guar-
antees, since in its simplest form a buffer
insertion ring could allow a station to hog
the link indefinitely. RPR addresses this
issue with fairly sophisticated QoS and
fairness mechanisms.

RPR supports three QoS classes:
class A provides low latency and low jit-
ter (e.g., for phone calls), class B pro-
vides predictable latency and jitter (e.g.,
for prerecorded multimedia), and class C
provides a best-effort transport.

To meet the resiliency goals, RPR
uses two mechanisms to recover from the
failure of a link or node. The first, wrap-
ping, is similar to the approach described
above for FDDI. The second, steering,
is more sophisticated: nodes adjacent to
the failure notify the other nodes, which
are then able to direct packets in the
correct (unbroken) direction around the
ring toward any given destination, even if
that is the “long” way around the ring—
assuming the destination is not the node

that just failed, of course.
A final interesting aspect of RPR is

that it was designed to run over previ-
ously defined physical layers, including

here Are They Now

The Future of Rings

The history of rings has seen them
compete against Ethernet and ulti-
mately lose on several occasions. 802.5
eventually lost out to 10-Mbit Eth-
ernet for a variety of reasons, not
least of which being the develop-
ment of switched Ethernet, a topic
we will discuss in the next chapter.
FDDI was proposed as the faster al-
ternative to Ethernet, but then Eth-
ernet got faster too, and without the
need for costly fiber optics, and FDDI
never really caught on. The one ring
technology that is still seeing some
significant deployment is RPR, pri-
marily in metropolitan area networks
(MAN:S), although it seems likely that
“metro Ethernet” will eventually come
to dominate here just as Ethernet has
done in LANs. There is, however, at
least one reason RPR has had some
success in MANSs, which is the fact
that rings are something of a nat-
ural fit for this kind of network, in
a way that they are not in the LAN.
Whereas it is cheap enough in a LAN
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SONET and the physical layer specified for Ethernet. This saved the designers the time
and effort of developing their own physical layer specs and hardware—a good example

of the value of layered architectures.

2.8 Wireless

Wireless technologies differ in a variety of dimensions, most notably in how much band-

width they provide and how far apart communicating nodes can be. Other important dif-

ferences include which part of the electromagnetic spectrum they use (including whether

it requires a license) and how much power they consume (important for mobile nodes).

here Are They Now w

to string cables in a hub-and-spoke
manner from a central switch to each
workstation, a ring actually provides
a very cost-effective way to intercon-
nect nodes in a MAN, where the cost
of obtaining rights-of-way and lay-
ing fiber can be significant. The re-
siliency of a ring is also attractive in
this environment—the fact that you
have both a “clockwise” and an “coun-
terclockwise” path between any two
points ensures that a single fiber cut
won't cut off a customer. RPR was also
developed with some fairness mech-
anisms that ensure that a node’s lo-
cation on the ring doesn’t put it at
an unfair advantage or disadvantage
to another node in another location
when it comes to getting access to the
bandwidth—this is harder to achieve
with Ethernet. Thus, while there is
certainly plenty of momentum behind
Ethernet in the MAN, it is probably
too soon to predict the demise of RPR
in this environment.

In this section we discuss four promi-
nent wireless technologies: Bluetooth,
Wi-Fi (more formally known as 802.11),
WiMAX (802.16), and third-generation
or 3G cellular wireless. In the following
sections we present them in order from
shortest range to longest. Table 2.6 gives
an overview of these technologies and
how they relate to each other.

The most widely used wireless links
today are usually asymmetric, that is, the
two endpoints are usually different kinds
of nodes. One endpoint, sometimes de-
scribed as the base station, usually has no
mobility, but has a wired (or at least high
bandwidth) connection to the Internet or
other networks as in Figure 2.38. The
node at the other end of the link—shown
here as a “client node”—is often mobile,
and relies on its link to the base sta-
tion for all its communication with other
nodes.

Observe that in Figure 2.38 we
have used a wavy pair of lines to repre-
sent the wireless “link” abstraction pro-
vided between two devices (e.g., between
a base station and one of its client nodes).
One of the interesting aspects of wireless
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Bluetooth WiIiMAX
802.15.1 Wi-Fi 802.11 802.16 3G Cellular
Typical link 10 m 100 m 10 km Tens of km
length
Typical 2.1 Mbps 54 Mbps 70 Mbps 384+ Kbps (per
bandwidth (shared) (shared) (shared) connection)
Typical use Link a Link a Link a building | Link a cell
peripheral to a notebook to a wired tower | phone to a
notebook computer to a wired tower
computer wired base
Wired technol- | USB Ethernet Coaxial cable DSL
ogy analogy
Table 2.6 Overview of leading wireless technologies.
Client
node
B Wired
a.se network
station
Client
node
KEY

Wireless “link”
between 2 nodes

Figure 2.38 A wireless network using a base station.
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Mobile node

Wireless transmission Mobile node

Mobile node

Figure 2.39 A wireless ad hoc or mesh network.

communication is that it naturally supports point-to-multipoint communication, be-
cause radio waves sent by one device can be simultaneously received by many devices.
However, it is often useful to create a point-to-point link abstraction for higher-layer
protocols, and we will see examples of how this works later in this section.

Note that in Figure 2.38, communication between nonbase (client) nodes is routed
via the base station. This is in spite of the fact that radio waves emitted by one client node
may well be received by other client nodes—the common base station model does not
permit direct communication between the client nodes.

This topology implies three qualitatively different levels of mobility. The first level
is no mobility, such as when a receiver must be in a fixed location to receive a directional
transmission from the base station, as is the case with the initial version of WiMAX. The
second level is mobility within the range of a base, as is the case with Bluetooth. The
third level is mobility between bases, as is the case with cell phones and Wi-Fi.

An alternative topology that is seeing increasing interest is the mesh or ad hoc net-
work. In a wireless mesh, nodes are peers (i.e., there is no special base station node).
Messages may be forwarded via a chain of peer nodes as long as each node is within
range of the preceding node. This is illustrated in Figure 2.39. This allows the wireless
portion of a network to extend beyond the limited range of a single radio. From the point
of view of competition between technologies, this allows a shorter-range technology to
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extend its range and potentially compete with a longer-range technology. Meshes also
offer fault tolerance by providing multiple routes for a message to get from point A to
point B. A mesh network can be extended incrementally, with incremental costs. On
the other hand, a mesh requires nonbase nodes to have a certain level of sophistication
in their hardware and software, potentially increasing per-unit costs—and power con-
sumption, a critical consideration for battery-powered devices. Wireless mesh networks
are of considerable research interest, but they are still in their relative infancy compared
to networks with base stations, and thus we do not cover them further here.

We now turn our attention to the details of the four wireless technologies men-
tioned above, beginning with the most short-range technology, Bluetooth.

2.8.1 Bluetooth (802.15.1)

Bluetooth fills the niche of very short-range communication between mobile phones,
PDAs, notebook computers, and other personal or peripheral devices. For example, Blue-
tooth can be used to connect a mobile phone to a headset, or a notebook computer to a
printer. Roughly speaking, Bluetooth is a more convenient alternative to connecting two
devices with a wire. In such applications, it is not necessary to provide much range or
bandwidth. This is fortunate for some of the target battery-powered devices, since it is
important that they not consume much power.

Bluetooth operates in the license-exempt band at 2.45 GHz. It has a range of only
about 10 m. For this reason, and because the communicating devices typically belong to
one individual or group, Bluetooth is sometimes categorized as a personal area network
(PAN). Version 2.0 provides speeds up to 2.1 Mbps. Power consumption is low.

Bluetooth is specified by an industry consortium called the Bluetooth Special Inter-
est Group. It specifies an entire suite of protocols, going beyond the link layer to define
application protocols, which it calls profiles, for a range of applications. For example,
there is a profile for synchronizing a PDA with a personal computer. Another profile
gives a mobile computer access to a wired LAN in the manner of 802.11, although this
was not Bluetooth’s original goal. The IEEE 802.15.1 standard is based on Bluetooth
but excludes the application protocols.

The basic Bluetooth network configuration, called a piconet, consists of a master de-
vice and up to seven slave devices, as in Figure 2.40. Any communication is between the
master and a slave; the slaves do not communicate directly with each other. Because slaves
have a simpler role, their Bluetooth hardware and software can be simpler and cheaper.

Since Bluetooth operates in an license-exempt band, it is required to use a spread
spectrum technique (as discussed in Section 2.1.2) to deal with possible interference
in the band. It uses frequency hopping with 79 channels (frequencies), using each for
625 pm at a time. This provides a natural time slot for Bluetooth to use for synchronous
time division multiplexing. A frame takes up 1, 3, or 5 consecutive time slots. Only



2.8 Wireless 137

Slave
(parked)
Slave Slave
(active) (active)
Master
Slave Slave
(parked) (active)
Slave
(active)

Figure 2.40 A Bluetooth piconet.

the master can start to transmit in odd-numbered slots. A slave can start to transmit in
an even-numbered slot, but only in response to a request from the master during the
previous slot, thereby preventing any contention between the slave devices.

A slave device can be parked: set to an inactive, low-power state. A parked device
cannot communicate on the piconet; it can only be reactivated by the master. A piconet
can have up to 255 parked devices in addition to its active slave devices.

ZigBee is a newer technology that competes with Bluetooth to some extent. De-
vised by the ZigBee alliance and standardized as IEEE 802.15.4, it is designed for sit-
uations where the bandwidth requirements are low and power consumption must be
very low to give very long battery life. It is also intended to be simpler and cheaper than
Bluetooth, making it financially feasible to incorporate in cheaper devices such as a wall
switch that wirelessly communicates with a ceiling-mounted fan.

2.8.2 Wi-Fi (802.11)

This section takes a closer look at a specific technology centered around the emerging
IEEE 802.11 standard, also known as Wi-F7.° Wi-Fi is technically a trademark, owned by

O There is some debate over whether Wi-Fi stands for “wireless fidelity,” by analogy to Hi-Fi, or whether it is just a catchy
name that doesn’t stand for anything other than 802.11.
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a trade group called the Wi-Fi alliance, that certifies product compliance with 802.11.
Like its Ethernet and token ring siblings, 802.11 is designed for use in a limited geo-
graphical area (homes, office buildings, campuses), and its primary challenge is to medi-
ate access to a shared communication medium—in this case, signals propagating through
space. 802.11 supports additional features (e.g., time-bounded services, power manage-
ment, and security mechanisms), but we focus our discussion on its base functionality.

Physical Properties

802.11 runs over six different physical layer protocols (so far). Five are based on spread
spectrum radio, and one on diffused infrared (and is of historical interest only at this
point). The fastest runs at a maximum of 54 Mbps.

The original 802.11 standard defined two radio-based physical layers standards,
one using frequency hopping (over 79 1-MHz-wide frequency bandwidths) and the
other using direct sequence (with an 11-bit chipping sequence). Both provide up to
2 Mbps. Then physical layer standard 802.11b was added. Using a variant of direct
sequence, 802.11b provides up to 11 Mbps. These three standards run in the license-
exempt 2.4 GHz frequency band of the electromagnetic spectrum. Then came 802.11a,
which delivers up to 54 Mbps using a variant of FDM called orthogonal frequency division
multiplexing (OFDM). 802.11a runs in the license-exempt 5-GHz band. On one hand,
this band is less used, so there is less interference. On the other hand, there is more ab-
sorption of the signal and it is limited to almost line of sight. The most recent standard
is 802.11g, which is backward compatible with 802.11b (and returns to the 2.4-GHz
band). 802.11g uses OFDM and delivers up to 54 Mbps. It is common for commercial
products to support all three of 802.11a, 802.11b, and 802.11g, which not only ensures
compatibility with any device that supports any one of the standards, but also makes it
possible for two such products to choose the highest bandwidth option for a particular
environment.

Collision Avoidance

At first glance, it might seem that a wireless protocol would follow the same algorithm as
the Ethernet—wait until the link becomes idle before transmitting and back off should
a collision occur—and to a first approximation, this is what 802.11 does. The additional
complication for wireless is that, while a node on an Ethernet receives every other node’s
transmissions, a node on an 802.11 network may be too far from certain other nodes to
receive their transmissions (and vice versa).

Consider the situation depicted in Figure 2.41, where A and C are both within
range of B but not each other. Suppose both A and C want to communicate with B and
so they each send it a frame. A and C are unaware of each other since their signals do
not carry that far. These two frames collide with each other at B, but unlike an Ethernet,
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Figure 2.41 The hidden node problem. Although A and C are hidden from each other,
their signals can collide at B. (B’s reach is not shown.)

Figure 2.42 The exposed node problem. Although B and C are exposed to each other’s
signals, there is no interference if B transmits to A while C transmits to D. (A’s and D’s
reaches are not shown.)

neither A nor C is aware of this collision. A and C are said to be hidden nodes with respect
to each other.

A related problem, called the exposed node problem, occurs under the circumstances
illustrated in Figure 2.42, where each of the four nodes is able to send and receive signals
that reach just the nodes to its immediate left and right. For example, B can exchange
frames with A and C but it cannot reach D, while C can reach B and D but not A.
Suppose B is sending to A. Node C is aware of this communication because it hears B’s
transmission. It would be a mistake, however, for C to conclude that it cannot transmit
to anyone just because it can hear B’s transmission. For example, suppose C wants to
transmit to node D. This is not a problem since C’s transmission to D will not interfere
with A’s ability to receive from B. (It would interfere with A sending to B, but B is
transmitting in our example.)
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802.11 addresses these two problems with an algorithm called multiple access with
collision avoidance (MACA). The idea is for the sender and receiver to exchange control
frames with each other before the sender actually transmits any data. This exchange
informs all nearby nodes that a transmission is about to begin. Specifically, the sender
transmits a Request to Send (RTS) frame to the receiver; the RTS frame includes a field
that indicates how long the sender wants to hold the medium (i.e., it specifies the length
of the data frame to be transmitted). The receiver then replies with a Clear to Send (CTS)
frame; this frame echoes this length field back to the sender. Any node that sees the CTS
frame knows that it is close to the receiver, and therefore cannot transmit for the period
of time it takes to send a frame of the specified length. Any node that sees the RTS frame
but not the CTS frame is not close enough to the receiver to interfere with it, and so is
free to transmit.

There are two more details to complete the picture. First, the receiver sends an
ACK to the sender after successfully receiving a frame. All nodes must wait for this ACK
before trying to transmit.” Second, should two or more nodes detect an idle link and
try to transmit an RTS frame at the same time, their RTS frames will collide with each
other. 802.11 does not support collision detection, but instead the senders realize the
collision has happened when they do not receive the CTS frame after a period of time,
in which case they each wait a random amount of time before trying again. The amount
of time a given node delays is defined by the same exponential backoff algorithm used
on the Ethernet (see Section 2.6.2).

Distribution System

As described so far, 802.11 would be suitable for a network with a mesh (ad hoc) topol-
ogy, and development of an 802.11s standard for mesh networks is nearing completion.
At the current time, however, nearly all 802.11 networks use a base-station-oriented
topology.

Instead of all nodes being created equal, some nodes are allowed to roam (e.g.,
your laptop) and some are connected to a wired network infrastructure. 802.11 calls
these base stations access points (AP), and they are connected to each other by a so-called
distribution system. Figure 2.43 illustrates a distribution system that connects three access
points, each of which services the nodes in some region. The details of the distribution
system are not important to this discussion—it could be an Ethernet or a token ring, for
example. The only important point is that the distribution network runs at layer 2 of
the ISO architecture (the link layer), that is, it operates at the same protocol layer as the
wireless links. In other words, it does not depend on any higher-level protocols (such as
the network layer).

7This ACK was not part of the original MACA algorithm, but was instead proposed in an extended version called
MACAW: MACA for Wireless LANs.
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Distribution system

Figure 2.43 Access points connected to a distribution network.

Although two nodes can communicate directly with each other if they are within
reach of each other, the idea behind this configuration is that each node associates itself
with one access point. For node A to communicate with node E, for example, A first
sends a frame to its access point (AP-1), which forwards the frame across the distribution
system to AP-3, which finally transmits the frame to E. How AP-1 knew to forward the
message to AP-3 is beyond the scope of 802.11; it may have used the bridging protocol
described in the next chapter (Section 3.2). What 802.11 does specify is how nodes select
their access points and, more interestingly, how this algorithm works in light of nodes
moving from one cell to another.

The technique for selecting an AP is called scanning and involves the following four
steps:

1 The node sends a Probe frame;
2 All APs within reach reply with a Probe Response frame;

3 The node selects one of the access points, and sends that AP an Association
Request frame;

4 The AP replies with an Association Response frame.

A node engages this protocol whenever it joins the network, as well as when it becomes
unhappy with its current AP. This might happen, for example, because the signal from
its current AP has weakened due to the node moving away from it. Whenever a node
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Distribution system

Figure 2.44 Node mobility.

16 16 48 48 48 16 48 0-18,496 32
Control | Duration | Addrl | Addr2 | Addr3 | SeqCtrl | Addr4 Payload% CRC

Figure 2.45 802.11 frame format.

acquires a new AP, the new AP notifies the old AP of the change (this happens in step 4)
via the distribution system.

Consider the situation shown in Figure 2.44, where node C moves from the cell
serviced by AP-1 to the cell serviced by AP-2. As it moves, it sends Probe frames, which
eventually result in Probe Response frames from AP-2. At some point, C prefers
AP-2 over AP-1, and so it associates itself with that access point.

The mechanism just described is called active scanning since the node is actively
searching for an access point. APs also periodically send a Beacon frame that advertises
the capabilities of the access point; these include the transmission rates supported by
the AP, This is called passive scanning, and a node can change to this AP based on the
Beacon frame simply by sending an Association Request frame back to the access
point.

Frame Format

Most of the 802.11 frame format, which is depicted in Figure 2.45, is exactly what we
would expect. The frame contains the source and destination node addresses, each of

which are 48 bits long, up to 2,312 bytes of data, and a 32-bit CRC. The Control
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field contains three subfields of interest (not shown): a 6-bit Type field that indicates
whether the frame carries data, is an RTS or CTS frame, or is being used by the scanning
algorithm; and a pair of 1-bit fields—called TODS and FromDS—that are described
below.

The peculiar thing about the 802.11 frame format is that it contains four, rather
than two, addresses. How these addresses are interpreted depends on the settings of the
ToDS and FromDS bits in the frame’s Control field. This is to account for the pos-
sibility that the frame had to be forwarded across the distribution system, which would
mean that the original sender is not necessarily the same as the most recent transmitting
node. Similar reasoning applies to the destination address. In the simplest case, when
one node is sending directly to another, both the DS bits are 0, Addr1 identifies the
target node, and Addr2 identifies the source node. In the most complex case, both DS
bits are set to 1, indicating that the message went from a wireless node onto the dis-
tribution system, and then from the distribution system to another wireless node. With
both bits set, Addr1 identifies the ultimate destination, Addr2 identifies the immediate
sender (the one that forwarded the frame from the distribution system to the ultimate
destination), Addr3 identifies the intermediate destination (the one that accepted the
frame from a wireless node and forwarded it across the distribution system), and Addr4
identifies the original source. In terms of the example given in Figure 2.43, Addr1
corresponds to E, Addr2 identifies AP-3, Addr3 corresponds to AP-1, and Addrd
identifies A.

2.8.3 WiIMAX (802.16)

WiMAX, which stands for Worldwide Interoperability for Microwave Access, was de-
signed by the WiMAX Forum and standardized as IEEE 802.16. It was originally con-
ceived as a last-mile technology (Section 2.1.2). In WiMAX’s case that “mile” is typically
1 to 6 miles, with a maximum of about 30 miles, leading to WiMAX being classified
as a metropolitan area network (MAN). In keeping with a last-mile role, WiMAX does
not incorporate mobility at the time of this writing, although efforts to add mobility are
nearing completion as IEEE 802.16e. Also in keeping with the last-mile niche, WiMAX’s
client systems, called subscriber stations, are assumed to be not end-user computing de-
vices, but rather systems that multiplex all the communication of the computing devices
being used in a particular building. WiMAX provides up to 70 Mbps to a single sub-
scriber station.

In order to adapt to different frequency bands and different conditions, WiMAX
defines several physical layer protocols. The original WiMAX physical layer protocol
is designed to use frequencies in the 10- to 66-GHz range. In this range waves travel
in straight lines, so communication is limited to line-of-sight (LOS). A WiMAX base
station uses multiple antennas pointed in different directions; the area covered by one
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antenna’s signal is a seczor. To extend WiMAX to near-line-of-sight and nonline-of-sight
situations, several physical layer protocols were added that use the frequencies below
11 GHz (in the 10- to 11-GHz range, WiMAX can use either the original physical
layer or one of the newer ones). Since this range includes both licensed and license-
exempt frequencies, each of these physical layer protocols defines a variant better adapted
to the additional interference and the regulatory constraints of the license-exempt
frequencies.

The physical layer protocols provide two ways to divide the bandwidth between
upstream (i.e., from subscribers to base station) and downstream traffic: time division
duplexing (TDD) and frequency division duplexing (FDD). TDD is simply STDM
of the two streams; they take turns using the same frequency, and the proportion of
upstream to downstream time can be varied dynamically, adaptively, by the base station.
FDD is simply FDM of the two streams; one frequency is used for upstream and another
for downstream. In license-exempt bands, the protocols use only TDD.

Both channels, upstream and downstream, must be shared not just among the
many subscriber stations in a given sector, but also among the many WiMAX connec-
tions that each subscriber can have with the base station. WiMAX—unlike 802.11 and
Ethernet—is connection oriented. One reason for this is to be able to offer a variety
of QoS guarantees regarding properties such as latency and jitter, with the aim of sup-
porting high-quality telephony and high-volume multimedia in addition to bursty data
traffic. This is conceptually similar to some of the wired last mile technologies (such as
DSL) with which WiMAX is intended to compete.

Sharing of the upstream and downstream channels is based on dividing them into
equal-sized time slots. A WiMAX frame generally takes up multiple slots, with differ-
ent frames taking different numbers of slots. The downstream channel (from base to
subscribers) is relatively easy to subdivide into connections since only the base station
sends on that channel. The base station simply sends addressed frames, one after the
other. Each subscriber station in the sector receives all the frames, but ignores those not
addressed to one of its connections.

In the upstream direction, how a connection gets handled depends on its QoS
parameters. Some connections get slots at a fixed rate, some get polled to determine
how many slots they need currently, and some must request slots whenever they need
them. Connections in this last category must contend to place their requests in a limited
number of upstream slots set aside for contention. They use an exponential backoff
algorithm to minimize the chance of a collision, even on the first actempt.

A European alternative to WiMAX is HIPERMAN, which stands for high-
performance radio metropolitan area network and uses the 2- to 11-GHz range. South
Korea’s WiBro (for wireless broadband) technology operates at 2.3 GHz, and is being
brought into line with the emerging IEEE 802.16e standard for mobile WiMAX.
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2.8.4 Cell Phone Technologies

Cell phone technology seems an obvious approach to mobile computer communication,
and indeed data services based on cellular standards are commercially available. One
drawback is the cost to users, due in part to cellular’s use of licensed spectrum (which
has historically been sold off to cellular phone operators for astronomical sums). The
frequency bands that are used for cellular telephones (and now for cellular data) vary
around the world. In Europe, for example, the main bands for cellular phones are at
900 and 1,800 MHz. In North America, 850- and 1,900-MHz bands are used. This
global variation in spectrum usage creates problems for users who want to travel from
one part of the world to another, and has created a market for phones that can operate
at multiple frequencies (e.g., a tri-band phone can operate at three of the four frequency
bands mentioned above). That problem, however, pales in comparison to the prolifera-
tion of incompatible standards that have plagued the cellular communication business.
Only recently have some signs of convergence on a small set of standards appeared.
And finally, there is the problem that most cellular technology was designed for voice
communication, and is only now starting to support moderately high-bandwidth data
communication.

Like 802.11 and WiMAX, cellular technology relies on the use of base stations
that are part of a wired network. The geographic area served by a base station’s antenna is
called a ce/l. A base station could serve a single cell, or use multiple directional antennas
to serve multiple cells. Cells don't have crisp boundaries, and they overlap. Where they
overlap, a mobile phone could potentially communicate with multiple base stations. This
is somewhat similar to the 802.11 picture shown in Figure 2.43. At any time, however,
the phone is in communication with, and under the control of, just one base station. As
the phone begins to leave a cell, it moves into an area of overlap with one or more other
cells. The current base station senses the weakening signal from the phone, and gives
control of the phone to whichever base station is receiving the strongest signal from it.
If the phone is involved in a call at the time, the call must be transferred to the new base
station in what is called a handoff-

As we noted above, there is not one unique standard for cellular, but rather a col-
lection of competing technologies that support data traffic in different ways and deliver
different speeds. These technologies are loosely categorized by “generation.” The first
generation (1G) was analog, and thus of limited interest from a data communications
perspective. Most of the cell phone technology currently deployed is considered second
generation (2G) or “2.5G” (not quite worthy of being called 3G, but more advanced
than 2G). The 2G and later technologies are digital. The most widely deployed 2G tech-
nology is referred to as GSM—the Global System for Mobile Communications, which
is used in more than 200 countries. North America, however, is a late adopter of GSM,
which helped prolong the proliferation of competing standards.
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Most 2G technologies use one of two approaches to sharing a limited amount of
spectrum between simultaneous calls. One way is a combination of FDM and TDM.
The spectrum available is divided into disjoint frequency bands, and each band is sub-
divided into time slots. A given call is allocated every nth slot in one of the bands. The
other approach is code division multiple access (CDMA). CDMA does not divide the
channel in either time or frequency, but rather uses different chipping codes to distin-
guish the transmissions of different cellphone users. (See Section 2.1.2 for a discussion
of chipping codes.)

The 2G and later cell phone technologies use compression algorithms tailored to
human speech to compress voice data to about 8 Kbps without losing quality. Since 2G
technologies focus on voice communication, they provide connections with just enough
bandwidth for that compressed speech—not enough for a decent data link. One of the
first cellular data standards to gain widespread adoption is the General Packet Radio
Service (GPRS), which is part of the GSM set of standards and is often referred to as a
2.5G technology.

GSM networks make use of a multiplexing technique called time division multiple
access (TDMA). (Confusingly, there is also a particular cellular standard that is some-
times called TDMA, but is known formally as IS-136.) You can think of TDMA as being
like TDM (time division multiplexing)—traditionally used for telephone services—with
the additional feature that the timeslots can be dynamically allocated to users or devices
that need them (and deallocated from devices that no longer need them). The number
of timeslots that are available for GPRS at a given frequency depends on how many cel-
lular voice calls are currently in progress, since voice calls also consume timeslots. As a
result, GPRS data rates tend to be lower in busy cells. In practice, users often get between
30 and 70 Kbps—coincidentally, just about the same as a user of a dial-up modem on
a landline. Nevertheless, GPRS has proven quite useful and popular in some parts of
the world as a way to communicate wirelessly when faster connection methods (such
as 802.11) are not available. Other 2.5G data standards have also become available and
some manage to be quite a bit higher in bandwidth than GPRS.

The concept of a third generation (3G) was established before there was any
implementation of 3G technologies, with the aim of shaping a single international
standard that would provide much higher data bandwidth. Unfortunately, at the
time of writing, several mutually incompatible 3G standards are emerging. Thus,
the possibility that cellular standards will continue to diverge seems quite realistic.
Interestingly, all the 3G standards are based on variants of CDMA. For example,
the Universal Mobile Telecommunications System (UMTS) is based on wideband
CDMA (W-CDMA). UMTS appears poised to be the successor to GSM, and in
fact is sometimes referred to as 3GSM (i.e., the third generation version of GSM).
UMTS is intended to support data transfer rates of up to 1.92 Mbps, although



2.9 Summary 147

real network conditions will probably result in lower rates in practice. Neverthe-
less, it should represent a significant performance improvement over GPRS. And like
GSM, it should have quite widespread (if not actually universal) adoption around the
world.

There are a number of commercial UMTS networks in operation at the time of
writing with many more announced or planned. And to make it quite clear that work
in this field is far from complete, we note that 3.5G and 4G standards are also in the
works.

Finally, it should be noted that there is a class of mobile phones that are not cellular
phones but satellite phones, or sazphones. Satphones use communication satellites as base
stations, communicating on frequency bands that have been reserved internationally for
satellite use. Consequently, service is available even where there are no cellular base sta-
tions. Satphones are rarely used where cellular is available, since service is typically much
more expensive. Satphones are also larger and heavier than modern cell phones because
of the need to transmit and receive over much longer distances, to reach satellites rather
than cellphone towers. Satellite communication is more extensively used in television
and radio broadcasting, taking advantage of the fact that the signal is broadcast, not
point-to-point. High-bandwidth data communication via satellite is commercially avail-
able, but its relatively high price (for both equipment and service) limits its use to regions
where no alternative is available.

2.9 Summary

This chapter introduced the hardware building blocks of a computer network—nodes
and links—and discussed the five key problems that must be solved so that two or more
nodes that are directly connected by a physical link can exchange messages with each
other. In practice, most of the algorithms that address these five problems are imple-
mented on the adaptor that connects the host to the link. It turns out that the design of
this adaptor, and how the rest of the host interacts with it, is of critical importance in
how well the network performs overall.

The first problem is to encode the bits that make up a binary message into the signal
at the source node and then to recover the bits from the signal at the receiving node. This
is the encoding problem, and it is made challenging by the need to keep the sender’s and
receiver’s clocks synchronized. We discussed four different encoding techniques—NRZ,
NRZI, Manchester, and 4B/5B—which differ largely in how they encode clock infor-
mation along with the data being transmitted. One of the key attributes of an encoding
scheme is its efficiency, that is, the ratio of signal pulses to encoded bits.

Once it is possible to transmit bits between nodes, the next step is to figure out
how to package these bits into frames. This is the framing problem, and it boils down
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to being able to recognize the beginning and end of each frame. Again, we looked at
several different techniques, including byte-oriented protocols, bit-oriented protocols,
and clock-based protocols.

Assuming that each node is able to recognize the collection of bits that make up
a frame, the third problem is to determine if those bits are in fact correct, or if they
have possibly been corrupted in transit. This is the error detection problem, and we
looked at three different approaches: cyclic redundancy check, two-dimensional parity,
and checksums. Of these, the CRC approach gives the strongest guarantees and is the
most widely used at the link level.

Given that some frames will arrive at the destination node containing errors and
thus will have to be discarded, the next problem is how to recover from such losses. The
goal is to make the link appear reliable. The general approach to this problem is called
ARQ and involves using a combination of acknowledgments and timeouts. We looked at
three specific ARQ algorithms: stop-and-wait, sliding window, and concurrent channels.
What makes these algorithms interesting is how effectively they use the link, with the
goal being to keep the pipe full.

The final problem is not relevant to point-to-point links, but it is the central issue
in multiple-access links: how to mediate access to a shared link so that all nodes even-
tually have a chance to transmit their data. In this case, we looked at a variety of media
access protocols—Ethernet, token ring, and several wireless protocols—which have been
put to practical use in building local area networks. The Ethernet and token ring media
access protocols are notable for their distributed nature—there is no central arbitrator
of access. Media access in wireless networks is made more complicated by the fact that
some nodes may be “hidden” from each other due to range limitations of radio transmis-
sion. Most of the common wireless protocols today designate some nodes as “wired” or
“base-station” nodes, while the other “mobile” nodes communicate with a base station.
Wireless standards and technologies are rapidly evolving, with mesh networks, in which
all nodes communicate as peers, now starting to emerge.

A sensor network is a wireless

OPEN 1SS UE network of many nodes—up to tens of

thousands—whose purpose is to mon-

Sensor Networks

itor some aspect of the geographic area
over which it is spread. The nodes are
equipped with one or more types of

sensor that allow them to detect, for
example, sound, motion, radiation, or chemicals. Some example applications of sensor
networks are monitoring a battleground to detect the locations of enemy forces, monitor-
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ing a natural environment for pollutants or seismic activity, and monitoring temperature
throughout a building to optimize climate control.

The nodes in a sensor network must be low cost because of the quantity involved,
and must use very little power because they are generally battery powered. These min-
imal nodes are perhaps better described as devices rather than computers. There is an
open-source operating system called TinyOS designed specifically for the constraints
of these devices. Researchers are pursuing development of smart dust—sensor network
nodes called motes whose size is on the order of millimeters.

Although the sensor information is ultimately routed to a base station, most of the
nodes are not directly linked to the base station. Instead they communicate only with
their nearest neighbors, who forward the data to their neighbors until it reaches the base
station. This uses less power than transmitting over a longer distance, and allows the sen-
sor network to extend beyond the range of a single link. One of the open questions about
sensor networks is how a node should determine which node to transmit or forward data
to. In one technique, the nodes form clusters. Each cluster designates one node as cluster
head, and all data is routed via cluster heads. In a technique that blurs the line between
network and application, nodes called aggregation points collect and process the data they
receive from neighboring nodes, then transmit the processed data. By processing the data
incrementally, instead of forwarding all the raw data to the base station, the amount of
traffic in the network (and the power consumed) is reduced. Further complicating the
issue of how to organize the network is the possibility of nodes failing, perhaps because of
battery exhaustion, and the possibility of nodes being dynamically added to an existing
network.

Another open issue for sensor networks is localization or location discovery—
determining the locations of nodes. Suppose the nodes are deployed by dropping them
from an aircraft, as might be the case for, say, military or environmental monitoring.
Then neither the node nor the base station would know where a node is. And yet that
geographical information is crucial; we need to know the location of that seismic activity
or enemy tank. GPS is considered too expensive and consumes too much power for the
majority of nodes. A typical solution requires a few nodes called beacons to determine
their own absolute locations based on GPS or manual configuration. The majority of
nodes can then derive their absolute location by combining an estimate of their position
relative to the beacons with the absolute location information provided by the beacons.

FURTHER READING

One of the most important contributions in computer networking over the last 20 years
is the original paper by Metcalf and Boggs (1976) introducing the Ethernet. Many years
later, Boggs, Mogul, and Kent (1988) reported their practical experiences with Ethernet,
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debunking many of the myths that had found their way into the literature over the years.
Both papers are must reading. The third and fourth papers discuss the issues involved in
integrating high-speed network adaptors with system software.

B Metcalf, R, and D. Boggs. “Ethernet: Distributed Packet Switching for Local
Computer Networks.” Communications of the ACM 19(7):395-403, July 1976.

B Boggs, D., J. Mogul, and C. Kent. “Measured Capacity of an Ethernet.” Pro-
ceedings of the SIGCOMM 88 Symposium, pp. 222-234, August 1988.

B Metcalf, R. “Computer/Network Interface Design Lessons from Arpanet and
Ethernet.” IEEE Journal of Selected Areas in Communication (JSAC) 11(2):173—
180, February 1993.

B Druschel, P, M. Abbott, M. Pagels, and L. L. Peterson. “Network Subsystem
Design.” IEEE Network (Special Issue on End-System Support for High-Speed Net-
works) 7(4):8—17, July 1993.

There are countless textbooks with a heavy emphasis on the lower levels of the
network hierarchy, with a particular focus on telecommunications—networking from the
phone company’s perspective. Books by Spragins et al. [SHP91] and Minoli [Min93]
are two good examples. Several other books concentrate on various local area network
technologies. Of these, Stallings’s book is the most comprehensive [Sta00], while Jain
gives a thorough description of FDDI [Jai94]. Jain’s book also gives a good introduction
to the low-level details of optical communication. Also, a comprehensive overview of
FDDI can be found in Ross’s article [Ros86].

For an introduction to information theory, Blahut’s book is a good place to start
[Bla87], along with Shannon’s seminal paper on link capacity [Sha48].

For a general introduction to the mathematics behind error codes, Rao and Fu-
jiwara [RF89] is recommended. For a detailed discussion of the mathematics of CRCs
in particular, along with some more information about the hardware used to calculate
them, see Peterson and Brown [PB61].

On the topic of network adaptor design, much work was done in the early 1990s
by researchers trying to connect hosts to networks running at higher and higher rates.
In addition to the two examples given in the reading list, see Traw and Smith [TS93],
Ramakrishnan [Ram93], Edwards et al. [EWL*94], Druschel et al. [DPD94], Kanakia
and Cheriton [KC88], Cohen et al. [CFFD93], and Steenkiste [Ste94a]. Recently, a new
generation of interface cards, ones that utilize network processors, are coming onto the
market. Spalink et al. demonstrate how these new processors can be programmed to
implement various network functionality [SKPGO1].
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For general information on computer architecture, Hennessy and Patterson’s book
[HPOG] is an excellent reference.
Finally, we recommend the following live reference:

B http://standards.ieee.org/: Status of various IEEE network-related

standards.

EXERCISES

1

Show the NRZ, Manchester, and NRZI encodings for the bit pattern shown
in Figure 2.46. Assume that the NRZI signal starts out low.

Show the 4B/5B encoding, and the resulting NRZI signal, for the following
bit sequence:

1110 0101 0000 0011

Show the 4B/5B encoding, and the resulting NRZI signal, for the following

bit sequence:

1101 1110 1010 1101 1011 1110 1110 1111

In the 4B/5B encoding (see Table 2.4), only two of the 5-bit codes used end
in two 0s. How many possible 5-bit sequences are there (used by the existing
code or not) that meet the stronger restriction of having at most one leading
and at most one trailing 02 Could all 4-bit sequences be mapped to such 5-bit
sequences?
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Figure 2.46 Diagram for Exercise 1.
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Assuming a framing protocol that uses bit stuffing, show the bit sequence trans-
mitted over the link when the frame contains the following bit sequence:

110101111101011111101011111110
Mark the stuffed bits.
Suppose the following sequence of bits arrives over a link:

1101011111010111110010111110110

Show the resulting frame after any stuffed bits have been removed. Indicate any
errors that might have been introduced into the frame.

Suppose the following sequence of bits arrive over a link:
011010111110101001111111011001111110

Show the resulting frame after any stuffed bits have been removed. Indicate any
errors that might have been introduced into the frame.

Suppose you want to send some data using the BISYNC framing protocol, and
the last 2 bytes of your data are DLE and ETX. What sequence of bytes would
be transmitted immediately prior to the CRC?

For each of the following framing protocols, give an example of a byte/bit
sequence that should never appear in a transmission:

(a) BISYNC.
(b) HDLC.

Assume that a SONET receiver resynchronizes its clock whenever a 1 bit ap-
pears; otherwise, the receiver samples the signal in the middle of what it believes
is the bit’s timeslot.

(a) What relative accuracy of the sender’s and receiver’s clocks is required in
order to receive correctly 48 zero-bytes (one ATM AALS5 cell’s worth) in a
row?

(b) Consider a forwarding station A on a SONET STS-1 line, receiving frames
from the downstream end B and retransmitting them upstream. What rel-
ative accuracy of A’s and B’s clocks is required to keep A from accumulating
more than one extra frame per minute?



1

12

13

14

15

16

17

18

Exercises 153

Show that two-dimensional parity allows detection of all 3-bit errors.

Give an example of a 4-bit error that would not be detected by a two-
dimensional parity, as illustrated in Figure 2.19. What is the general set of
circumstances under which 4-bit errors will be undetected?

Show that two-dimensional parity provides the receiver enough information to
correct any 1-bit error (assuming the receiver knows only 1 bit is bad), but not
any 2-bit error.

Show that the Internet checksum will never be O0xFFFF (that is, the final value
of sum will not be 0x0000) unless every byte in the buffer is 0. (Internet spec-
ifications in fact require that a checksum of 0x0000 be transmitted as OxFFFF;
the value 0x0000 is then reserved for an omitted checksum. Note that, in ones
complement arithmetic, 0x0000 and OxFFFF are both representations of the
number 0.)

Prove the Internet checksum computation shown in the text is independent
of byte order (host order or network order) except that the bytes in the final
checksum should be swapped later to be in the correct order. Specifically, show
that the sum of 16-bit words can be computed in either byte order. For exam-
ple, if the 1’s complement sum (denoted by +’) of 16-bit words is represented
as follows,

[A,B] + [C,D] + --- +" [Y,Z]
the following swapped sum is the same as the original sum above.
[B,A] + [D,C] + - -+ +" [Z,Y]

Suppose that one byte in a buffer covered by the Internet checksum algorithm
needs to be decremented (e.g., a header hop count field). Give an algorithm
to compute the revised checksum without rescanning the entire buffer. Your
algorithm should consider whether the byte in question is low order or high
order.

Show that the Internet checksum can be computed by first taking the 32-bit
ones complement sum of the buffer in 32-bit units, then taking the 16-bit ones
complement sum of the upper and lower halfwords, and finishing as before by
complementing the result. (To take a 32-bit ones complement sum on 32-bit
twos complement hardware, you need access to the “overflow” bit.)

Suppose we want to transmit the message 11001001 and protect it from errors
using the CRC polynomial 3 + 1.
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(a) Use polynomial long division to determine the message that should be
transmitted.

(b) Suppose the leftmost bit of the message is inverted due to noise on the
transmission link. What is the result of the receiver’s CRC calculation?
How does the receiver know that an error has occurred?

Suppose we want to transmit the message 1011 0010 0100 1011 and protect
it from errors using the CRC8 polynomial x8 + x% + x! + 1.

(a) Use polynomial long division to determine the message that should be
transmitted.

(b) Suppose the leftmost bit of the message is inverted due to noise on the
transmission link. What is the result of the receiver’s CRC calculation?
How does the receiver know that an error has occurred?

The CRC algorithm as presented in this chapter requires lots of bit manipu-
lations. It is, however, possible to do polynomial long division taking multiple
bits at a time, via a table-driven method, that enables efficient software imple-
mentations of CRC. We outline the strategy here for long division 3 bits at a
time (see Table 2.7); in practice we would divide 8 bits at a time, and the table
would have 256 entries.

Let the divisor polynomial C = C(x) be x* 4+ x* + 1, or 1101. To build
the table for C, we take each 3-bit sequence, p, append three trailing Os, and

? q=p~000+-C | Cxgq
000 | 000 000 000
001 | 001 001 101
010 | 011 010
011 | 0___ 011 ___
100 | 111 100 011
101 | 110 101 110
110 | 100 110
| 11 _

Table 2.7 Table-driven CRC calculation.
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then find the quotient g = p™000 <+ C, ignoring the remainder. The third
column is the product C x g, the first 3 bits of which should equal p.

(a) Verify, for p = 110, that the quotients 000+ C and p™ 111 = C are the
same, that is, it doesn’t matter what the trailing bits are.

(b) Fill in the missing entries in the table.

(c) Use the table to divide 101 001 011 001 100 by C. Hint: The first 3 bits
of the dividend are p = 101, so from the table the corresponding first 3 bits
of the quotient are g = 110. Write the 110 above the second 3 bits of the
dividend, and subtract C x ¢ =101 110, again from the table, from the
first 6 bits of the dividend. Keep going in groups of 3 bits. There should

be no remainder.

With 1 parity bit we can detect all 1-bit errors. Show that at least one general-
ization fails, as follows:

(a) Show that if messages 7 are 8 bits long, then there is no error detection
code ¢ = e(m) of size 2 bits that can detect all 2-bit errors. (Hint: Consider
the set M of all 8-bit messages with a single 1 bit; note that any message
from M can be transmuted into any other with a 2-bit error, and show that
some pair of messages 721 and 7, in M must have the same error code ¢.)

(b) Find an N (not necessarily minimal) such that no 32-bit error detection
code applied to /V-bit blocks can detect all errors altering up to 8 bits.

Consider an ARQ protocol that uses only negative acknowledgments (NAKs),
but no positive acknowledgments (ACKs). Describe what timeouts would need
to be scheduled. Explain why an ACK-based protocol is usually preferred to a
NAK-based protocol.

Consider an ARQ algorithm running over a 20-km point-to-point fiber link.

(a) Compute the propagation delay for this link, assuming that the speed of
light is 2 x 10® m/s in the fiber.

(b) Suggest a suitable timeout value for the ARQ algorithm to use.

(c) Why might it still be possible for the ARQ algorithm to time out and

retransmit a frame, given this timeout value?
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Suppose you are designing a sliding window protocol for a 1-Mbps point-to-
point link to the moon, which has a one-way latency of 1.25 seconds. Assuming
that each frame carries 1 KB of data, what is the minimum number of bits you
need for the sequence number?

Suppose you are designing a sliding window protocol for a 1-Mbps point-
to-point link to the stationary satellite evolving around Earth at 3 x 104 km
altitude. Assuming that each frame carries 1 KB of data, what is the minimum
number of bits you need for the sequence number in the following cases? As-
sume the speed of light is 3 x 10® meters per second.

(a) RWS=1.
(b) RWS=SWS.

The text suggests that the sliding window protocol can be used to implement
flow control. We can imagine doing this by having the receiver delay ACKs,
that is, not send the ACK until there is free buffer space to hold the next
frame. In doing so, each ACK would simultaneously acknowledge the receipt
of the last frame and tell the source that there is now free buffer space available
to hold the next frame. Explain why implementing flow control in this way is
not a good idea.

Implicit in the stop-and-wait scenarios of Figure 2.22 is the notion that the
receiver will retransmit its ACK immediately on receipt of the duplicate data
frame. Suppose instead that the receiver keeps its own timer, and retransmits
its ACK only after the next expected frame has not arrived within the timeout
interval. Draw timelines illustrating the scenarios in Figure 2.22(b)—(d); assume
the receiver’s timeout value is twice the sender’s. Also redraw (c) assuming the
receiver’s timeout value is half the sender’s.

In stop-and-wait transmission, suppose that both sender and receiver retrans-
mit their last frame immediately on receipt of a duplicate ACK or data frame;
such a strategy is superficially reasonable because receipt of such a duplicate is
most likely to mean the other side has experienced a timeout.

(a) Draw a timeline showing what will happen if the first data frame is some-
how duplicated, but no frame is lost. How long will the duplications con-
tinue? This situation is known as the Sorcerer’s Apprentice bug.

(b) Suppose that, like data, ACKs are retransmitted if there is no response
within the timeout period. Suppose also that both sides use the same time-
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out interval. Identify a reasonably likely scenario for triggering the Sor-
cerer’s Apprentice bug.

Give some details of how you might augment the sliding window protocol
with flow control by having ACKs carry additional information that reduces
the SWS as the receiver runs out of buffer space. Illustrate your protocol with
a timeline for a transmission; assume the initial SWS and RWS are 4, the
link speed is instantaneous, and the receiver can free buffers at the rate of one
per second (i.e., the receiver is the bottleneck). Show what happens at 77 =0,
T=1,...,T =4 seconds.

Describe a protocol combining the sliding window algorithm with selective
ACK:s. Your protocol should retransmit promptly, but not if a frame simply ar-
rives one or two positions out of order. Your protocol should also make explicit
what happens if several consecutive frames are lost.

Draw a timeline diagram for the sliding window algorithm with SWS =
RWS = 3 frames, for the following two situations. Use a timeout interval of

about 2 x RTT.

(a) Frame 4 is lost.

(b) Frames 4—6 are lost.

Draw a timeline diagram for the sliding window algorithm with SWS =
RWS = 4 frames in the following two situations. Assume the receiver sends
a duplicate acknowledgment if it does not receive the expected frame. For
example, it sends DUPACK][2] when it expects to see Frame[2] but receives
Frame[3] instead. Also, the receiver sends a cumulative acknowledgment after
it receives all the outstanding frames. For example, it sends ACK[5] when it
receives the lost frame Frame[2] after it already received Frame[3], Frame[4],
and Frame[5]. Use a timeout interval of about 2 x RTT.

(a) Framel[2] is lost. Retransmission takes place upon timeout (as usual).

(b) Framel[2] is lost. Retransmission takes place either upon receipt of the first
DUPACK or upon timeout. Does this scheme reduce the transaction time?
(Note that some end-to-end protocol (e.g., variant of TCP) uses a similar
scheme for fast retransmission.)
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Suppose that we attempt to run the sliding window algorithm with SWS =
RWS = 3 and with MaxSeqNum = 5. The Nth packet DATA[N] thus ac-
tually contains NV mod 5 in its sequence number field. Give an example in
which the algorithm becomes confused, that is, a scenario in which the receiver
expects DATA[5] and accepts DATA[O]—which has the same transmitted se-
quence number—in its stead. No packets may arrive out of order. Note this
implies MaxSeqNum > 6 is necessary as well as sufficient.

Consider the sliding window algorithm with SWS = RWS = 3, with no out-

of-order arrivals, and with infinite-precision sequence numbers.

(a) Show that if DATAI6] is in the receive window, then DATA[O] (or in
general any older data) cannot arrive at the receiver (and hence that

MaxSegNum = 6 would have sufficed).
(b) Show that if ACK[6] may be sent (or, more literally, that DATA[5] is in

the sending window), then ACK[2] (or earlier) cannot be received.

These amount to a proof of the formula given in Section 2.5.2, particularized to
the case SWS = 3. Note that part (b) implies that the scenario of the previous
problem cannot be reversed to involve a failure to distinguish ACK[0] and

ACK[5].

Suppose that we run the sliding window algorithm with SWS =5 and
RWS = 3, and no out-of-order arrivals.

(a) Find the smallest value for MaxSeqNum. You may assume that it suffices
to find the smallest MaxSeqNum such that if DATA[MaxSeqNum]

is in the receive window, then DATA[O] can no longer arrive.
(b) Give an example showing that MaxSegqNum — 1 is not sufficient.

(c) State a general rule for the minimum MaxSegNum in terms of SWS
and RWS.

Suppose A is connected to B via an intermediate router R, as shown in Fig-
ure 2.47. The A-R and R-B links each accept and transmit only one packet
per second in each direction (so two packets take 2 seconds), and the two direc-
tions transmit independently. Assume A sends to B using the sliding window

protocol with SWS = 4.
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(a) ForTime=0, 1,2, 3, 4, 5, state what packets arrive at and leave each node,
or label them on a timeline.

(b) What happens if the links have a propagation delay of 1.0 seconds, but
accept immediately as many packets as are offered (i.e., latency = 1 second
but bandwidth is infinite)?

Suppose A is connected to B via an intermediate router R, as in the previous
problem. The A-R link is instantaneous, but the R-B link transmits only one
packet each second, one at a time (so two packets take 2 seconds). Assume A
sends to B using the sliding window protocol with SWS = 4. For Time =
0,1, 2, 3, 4, state what packets arrive at and are sent from A and B. How large
does the queue at R grow?

Consider the situation in the previous exercise, except this time assume that
the router has a queue size of 1, that is, it can hold one packet in addition to
the one it is sending (in each direction). Let A’s timeout be 5 seconds, and let
SWS again be 4. Show what happens at each second from 7" = 0 until all four
packets from the first windowful are successfully delivered.

Why is it important for protocols configured on top of the Ethernet to have a
length field in their header indicating how long the message is?

What kind of problem can arise when two hosts on the same Ethernet share
the same hardware address? Describe what happens and why that behavior is a

problem.

The 1982 Ethernet specification allowed between any two stations up to
1,500 m of coaxial cable, 1,000 m of other point-to-point link cable, and two
repeaters. Each station or repeater connects to the coaxial cable via up to 50 m
of “drop cable.” Typical delays associated with each device are given in Table 2.8
(where ¢ = speed of light in a vacuum = 3 x 108 m/s). What is the worst-case
round-trip propagation delay, measured in bits, due to the sources listed? (This
list is not complete; other sources of delay include sense time and signal rise
time.)
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Item

Delay

Coaxial

cable Propagation speed .77¢

Link/drop cable | Propagation speed .65¢

Repeaters Approximately 0.6 us each

Transceivers Approximately 0.2 us each

Table 2.8 Typical delays associated with various devices (Exercise 41).

* 42
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Coaxial cable Ethernet was limited to a maximum of 500 m between repeaters,
which regenerate the signal to 100% of its original amplitude. Along one
500 m segment, the signal could decay to no less than 14% of its original
value (8.5 dB). Along 1,500 m, then, the decay might be (0.14)% = 0.3%.
Such a signal, even along 2,500 m, is still strong enough to be read; why then
are repeaters required every 500 m?

Suppose the round-trip propagation delay for Ethernet is 46.4 ws. This yields
a minimum packet size of 512 bits (464 bits corresponding to propagation
delay + 48 bits of jam signal).

(a) What happens to the minimum packet size if the delay time is held con-
stant, and the signaling rate rises to 100 Mbps?

(b) What are the drawbacks to so large a minimum packet size?

(c) If compatibility were not an issue, how might the specifications be written
so as to permit a smaller minimum packet size?

Let A and B be two stations attempting to transmit on an Ethernet. Each has a
steady queue of frames ready to send; A’s frames will be numbered Ay, A, and
so on, and B’s similarly. Let 77 = 51.2 us be the exponential backoff base unit.

Suppose A and B simultaneously attempt to send frame 1, collide, and
happen to choose backoff times of 0 x 7" and 1 x T, respectively, meaning A
wins the race and transmits A; while B waits. At the end of this transmission,
B will attempt to retransmit By while A will attempt to transmit A;. These first
attempts will collide, but now A backs off for either 0 X 7" or 1 x 7, while B
backs off for time equal to one of 0 x 7',...,3 x 7.

(a) Give the probability that A wins this second backoff race immediately after
this first collision, that is, A’s first choice of backoff time £ x 51.2 is less
than B’s.
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(b) Suppose A wins this second backoff race. A transmits A3, and when it is
finished, A and B collide again as A tries to transmit A4 and B tries once
more to transmit B;. Give the probability that A wins this third backoff
race immediately after the first collision.

(c) Give a reasonable lower bound for the probability that A wins all the re-
maining backoff races.

(d) What then happens to the frame B;?

This scenario is known as the Ethernet caprure effect.

Suppose the Ethernet transmission algorithm is modified as follows: After each
successful transmission attempt, a host waits one or two slot times before at-
tempting to transmit again, and otherwise backs off the usual way.

(a) Explain why the capture effect of the previous exercise is now much less

likely.

(b) Show how the strategy above can now lead to a pair of hosts capturing the
Ethernet, alternating transmissions, and locking out a third host.

(c) Propose an alternative approach, for example, by modifying the exponen-
tial backoff. What aspects of a station’s history might be used as parameters
to the modified backoff?

Ethernets use Manchester encoding. Assuming that hosts sharing the Ethernet
are not perfectly synchronized, why does this allow collisions to be detected
soon after they occur, without waiting for the CRC at the end of the packet?

Suppose A, B, and C all make their first carrier sense, as part of an attempt
to transmit, while a fourth station D is transmitting. Draw a timeline showing
one possible sequence of transmissions, attempts, collisions, and exponential
backoff choices. Your timeline should also meet the following criteria: (1) ini-
tial transmission attempts should be in the order A, B, C, but successful trans-
missions should be in the order C, B, A, and (2) there should be at least four
collisions.

Repeat the previous exercise, now with the assumption that Ethernet is p-per-
sistent with p = 0.33 (that is, a waiting station transmits immediately with
probability p when the line goes idle, and otherwise defers one 51.2-us slot
time and repeats the process). Your timeline should meet criterion (1) of the
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previous problem, but in lieu of criterion (2), you should show at least one
collision and at least one run of four deferrals on an idle line. Again, note that
many solutions are possible.

Suppose Ethernet physical addresses are chosen at random (using true random

bits).

(a) What is the probability that on a 1,024-host network, two addresses will
be the same?

(b) What is the probability that the above event will occur on some one or
more of 220 networks?

(c) What is the probability that of the 230 hosts in all the networks of (b),

some pair has the same address?

Hint: The calculation for (a) and (c) is a variant of that used in solving the so-
called Birthday Problem: Given IV people, what is the probability that two of
their birthdays (addresses) will be the same? The second person has probability
1— 3—é5 of having a different birthday from the first, the third has probabil-

ity 1 — % of having a different birthday from the first two, and so on. The
probability all birthdays are different is thus

<1—%)x<1—32?5)x~-x(1—]\;T_51>

which for smallish V is about

24V
365

Suppose five stations are waiting for another packet to finish on an Ethernet.
All transmit at once when the packet is finished and collide.

(a) Simulate this situation up until the point when one of the five waiting
stations succeeds. Use coin flips or some other genuine random source to
determine backoff times. Make the following simplifications: ignore inter-
frame spacing, ignore variability in collision times (so that retransmission
is always after an exact integral multiple of the 51.2-us slot time), and
assume that each collision uses up exactly one slot time.

(b) Discuss the effect of the listed simplifications in your simulation versus the
behavior you might encounter on a real Ethernet.
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Write a program to implement the simulation discussed above, this time with
N stations waiting to transmit. Again model time as an integer, T, in units of
slot times, and again treat collisions as taking one slot time (so a collision at
time T followed by a backoff of £ = 0 would result in a retransmission attempt
attime T 4 1). Find the average delay before one station transmits successfully,
for N =20, N =40, and NV = 100. Does your data support the notion that
the delay is linear in /V? Hint: For each station, keep track of that station’s
NextTimeToSend and CollisionCount. You are done when you reach a
time T for which there is only one station with NextTimeToSend ==T. If
there is no such station, increment T. If there are two or more, schedule the
retransmissions and try again.

Suppose that /V Ethernet stations, all trying to send at the same time, require
N /2 slot times to sort out who transmits next. Assuming the average packet
size is 5 slot times, express the available bandwidth as a function of V.

Consider the following Ethernet model. Transmission attempts are at random
times with an average spacing of A slot times; specifically, the interval between
consecutive attempts is an exponential random variable x = —X log %, where #
is chosen randomly in the interval 0 < % < 1. An attempt at time ¢ results in a
collision if there is another attempt in the range from r — 1 to # 4 1, where 7 is
measured in units of the 51.2-us slot time; otherwise the attempt succeeds.

(a) Write a program to simulate, for a given value of A, the average number
of slot times needed before a successful transmission, called the contention
interval. Find the minimum value of the contention interval. Note that
you will have to find one attempt past the one that succeeds, in order to
determine if there was a collision. Ignore retransmissions, which probably
do not fit the random model above.

(b) The Ethernet alternates between contention intervals and successful trans-
missions. Suppose the average successful transmission lasts 8 slot times
(512 bytes). Using your minimum length of the contention interval from
above, what fraction of the theoretical 10-Mbps bandwidth is available for
transmissions?

What conditions would have to hold for a corrupted frame to circulate forever
on a token ring without a monitor? How does the monitor fix this problem?
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An IEEE 802.5 token ring has five stations and a total wire length of 230 m.
How many bits of delay must the monitor insert into the ring? Do this for both
4 and 16 Mbps; use a propagation rate of 2.3 x 108 m/s.

Consider a token ring network like FDDI in which a station is allowed to
hold the token for some period of time (the token holding time, or THT). Let
RinglLatency denote the time it takes the token to make one complete rota-
tion around the network when none of the stations have any data to send.

(a) Interms of THT and RingLatency, express the efficiency of this network
when only a single station is active.

(b) What setting of THT would be optimal for a network that had only one

station active (with data to send) at a time?

(¢) In the case where N stations are active, give an upper bound on the token
rotation time, or TRT, for the network.

Consider a token ring with a ring latency of 200 us. Assuming that the de-
layed token release strategy is used, what is the effective throughput rate that
can be achieved if the ring has a bandwidth of 4 Mbps? What is the effective
throughput rate that can be achieved if the ring has a bandwidth of 100 Mbps?
Answer for both a single active host and for “many” hosts; for the latter, assume
there are sufficiently many hosts transmitting that the time spent advancing the
token can be ignored. Assume a packet size of 1 KB.

For a 100-Mbps token ring network with a token rotation time of 200 s and
that allows each station to transmit one 1-KB packet each time it possesses the
token, calculate the maximum effective throughput rate that any one host can
achieve. Do this assuming (a) immediate release and (b) delayed release.

Suppose a 100-Mbps delayed-release token ring has 10 stations, a ring latency
of 30 ps, and an agreed-on token rotation time (TRT) of 350 us.

(a) How many synchronous frame bytes could each station send, assuming all
are allocated the same amount?

(b) Assume stations A, B, C are in increasing order on the ring. Due to uniform
synchronous traffic, the TRT without asynchronous data is 300 ws. B sends
a 200-us (2.5-Kb) asynchronous frame. What TRT will A, B, and C then

see on their next measurement? Who may transmit such a frame next?
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How can an RPR network operate without using a token?

How can a wireless node interfere with the communications of another node
when the two nodes are separated by a distance greater than the transmission
range of either node?

Why might a mesh topology be superior to a base station topology for com-
munications in a natural disaster?

Suppose a single computer is capable of generating output data at a rate higher
than Bluetooth’s bandwidth. If the computer were equipped with two or more
Bluetooth masters, each with its own slaves, would that work?

Why does it make sense that 802.16 (WiMAX) physical layer protocols use
only TDD (and not FDD) in license-exempt bands?

Which wireless protocol would you expect to provide a better foundation for a
packet-based telephony service: 802.11 (Wi-Fi) or 802.16 (WiMAX)? Why?

When a cell phone moves from an area served exclusively by a single base
station to an area where the cells of several base stations overlap, how is it
determined which base station will control the phone?

Why does a second generation (2G) cell phone connection provide much lower
bandwidth than a typical dial-up Internet connection?

Why is it important that nodes in sensor nets consume very little power?

Why isn't it practical for each node in a sensor net to learn its location by using
GPS? Describe a practical alternative.
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Nature seems . . . to reach many of her ends by long circuitous routes.

—Rudolph Lotze

he directly connected networks described in the previous chapter suffer from
two limitations. First, there is a limit to how many hosts can be attached. For
example, only two hosts can be attached to a point-to-point link, and the Eth-
ernet specification allows no more than 1,024 hosts. Second, there is a limit to how large
of a geographic area a single network can serve. For example, an Ethernet can span only
2,500 m, wireless networks are limited by the ranges of their radios, and even though
point-to-point links can be quite

PROBLEM long, they do not really serve the area

between the two ends. Since our goal
N?t All Networks Are is to build networks that can be global
Directly Connected in scale, the next problem is therefore

to enable communication between

hosts that are not directly connected.

This problem is similar to one addressed in the telephone network: Your phone
is not directly connected to every person you might want to call, but instead is con-
nected to an exchange that contains a switch. It is the switches that create the impression
that you have a connection to the person at the other end of the call. Similarly, com-
puter networks use packet switches to enable packets to travel from one host to another,
even when no direct connection exists between those hosts. This chapter introduces the
major concepts of packet switching, which lies at the heart of computer networking.

A packet switch is a device with several inputs and outputs leading to and from the
hosts that the switch interconnects. The core job of a switch is to take packets that arrive
on an input and forward (or switch) them to the right output so that they will reach
their appropriate destination. There are a variety of ways that the switch can determine
the “right” output for a packet, which can be broadly categorized as connectionless and
connection-oriented approaches.
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A key problem that a switch must deal with is the finite
bandwidth of its outputs. If packets destined for a certain out-
put arrive at a switch and their arrival rate exceeds the capac-
ity of that output, then we have a problem of contention. The
switch queues (buffers) packets until the contention subsides, but
if it lasts too long, the switch will run out of buffer space and
be forced to discard packets. When packets are discarded too
frequently, the switch is said to be congested. The ability of a
switch to handle contention is a key aspect of its performance.

This chapter introduces the issues of forwarding and con-
tention in packet switches. We begin by considering the vari-
ous approaches to switching, including the connectionless and
connection-oriented models. We then examine two particular
technologies in detail. The first is LAN switching, which has
evolved from Ethernet bridging to become one of the domi-
nant technologies in today’s LAN environments. The second
noteworthy switching technology is asynchronous transfer mode
(ATM), which was initially developed to meet the needs of
telecommunications service providers in wide area networks. Fi-
nally, we consider some of the aspects of switch design that
must be taken into account when building large-scale networks.
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3.1 Switching and Forwarding

In the simplest terms, a switch is a mechanism that allows us to interconnect links to
form a larger network. A switch is a multi-input, multioutput device, which transfers
packets from an input to one or more outputs. Thus, a switch adds the star topology
(see Figure 3.1) to the point-to-point link, bus (Ethernet), and ring (802.5, 802.17, and
FDDI) topologies established in the last chapter. A star topology has several attractive
properties:

B Even though a switch has a fixed number of inputs and outputs, which limits
the number of hosts that can be connected to a single switch, large networks can
be built by interconnecting a number of switches;

B We can connect switches to each other and to hosts using point-to-point links,
which typically means that we can build networks of large geographic scope;

B Adding a new host to the network by connecting it to a switch does not neces-
sarily reduce the performance of the network for other hosts already connected.

This last claim cannot be made for the shared-media networks discussed in the last
chapter. For example, it is impossible for two hosts on the same 10-Mbps Ethernet to
transmit continuously at 10 Mbps because they share the same transmission medium.
Every host on a switched network has its own link to the switch, so it may be entirely
possible for many hosts to transmit at the full link speed (bandwidth), provided that the
switch is designed with enough aggregate capacity. Providing high aggregate throughput

Figure 3.1 A switch provides a star topology.
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Figure 3.2 Example protocol graph running on a switch.

T3
T3
STS-1

Output
ports ports

Figure 3.3 Example switch with three input and output ports.

is one of the design goals for a switch; we return to this topic below. In general, switched
networks are considered more scalable (i.e., more capable of growing to large numbers of
nodes) than shared-media networks because of this ability to support many hosts at full
speed.

A switch is connected to a set of links and, for each of these links, runs the ap-
propriate data link protocol to communicate with the node at the other end of the link.
A switch’s primary job is to receive incoming packets on one of its links and to transmit
them on some other link. This function is sometimes referred to as either switching or
forwarding, and in terms of the OSI architecture, it is the main function of the network
layer. Figure 3.2 shows the protocol graph that would run on a switch that is connected
to two T3 links and one STS-1 SONET link. A representation of this same switch is
given in Figure 3.3. In this figure, we have split the input and output halves of each link,
and we refer to each input or output as a porz. (In general, we assume that each link is
bidirectional, and hence supports both input and output.) In other words, this example
switch has three input ports and three output ports.

The question then is, how does the switch decide on which output port to place
each packet? The general answer is that it looks at the header of the packet for an iden-
tifier that it uses to make the decision. The details of how it uses this identifier vary, but
there are two common approaches. The first is the datagram or connectionless approach.
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The second is the virtual circuit or connection-oriented approach. A third approach, source
routing, is less common than these other two, but it is simple to explain and does have
some useful applications.

One thing that is common to all networks is that we need to have a way to identify
the end nodes. Such identifiers are usually called addresses. We have already seen exam-
ples of addresses in the previous chapter, such as the 48-bit address used for Ethernet.
The only requirement for Ethernet addresses is that no two nodes on a network have the
same address. This is accomplished by making sure that all Ethernet cards are assigned
a globally unique identifier. For the following discussions, we assume that each host has
a globally unique address. Later on, we consider other useful properties that an address
might have, but global uniqueness is adequate to get us started.

Another assumption that we need to make is that there is some way to identify the
input and output ports of each switch. There are at least two sensible ways to identify
ports: One is to number each port, and the other is to identify the port by the name of
the node (switch or host) to which it leads. For now, we use numbering of the ports.

3.1.1 Datagrams

The idea behind datagrams is incredibly simple: You just make sure that every packet
contains enough information to enable any switch to decide how to get it to its des-
tination. That is, every packet contains the complete destination address. Consider the
example network illustrated in Figure 3.4, in which the hosts have addresses A, B, C, and
so on. To decide how to forward a packet, a switch consults a forwarding table (some-
times called a routing table), an example of which is depicted in Table 3.1. This particular
table shows the forwarding information that switch 2 needs to forward datagrams in the

Destination | Port
A 3
B 0
C 3
D 3
E 2
F 1
G 0
H 0

Table 3.1 Forwarding table for switch 2.



3.1 Switching and Forwarding 171

Host F

a
Switch 2

1

0 Switch 3  Host B

Figure 3.4 Datagram forwarding: an example network.

example network. It is pretty easy to figure out such a table when you have a complete
map of a simple network like that depicted here; we could imagine a network operator
configuring the tables statically. It is a lot harder to create the forwarding tables in large,
complex networks with dynamically changing topologies and multiple paths between
destinations. That harder problem is known as routing and is the topic of Section 4.2.
We can think of routing as a process that takes place in the background so that when a
data packet turns up, we will have the right information in the forwarding table to be
able to forward, or switch, the packet.
Connectionless (datagram) networks have the following characteristics:

B A host can send a packet anywhere at any time, since any packet that turns
up at a switch can be immediately forwarded (assuming a correctly populated
forwarding table). As we will see, this contrasts with most connection-oriented
networks, in which some “connection state” needs to be established before the
first data packet is sent.

B When a host sends a packet, it has no way of knowing if the network is capable
of delivering it or if the destination host is even up and running.
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B Each packet is forwarded independently of previous packets that might have
been sent to the same destination. Thus, two successive packets from host A to
host B may follow completely different paths (perhaps because of a change in
the forwarding table at some switch in the network).

B A switch or link failure might not have any serious effect on communication
if it is possible to find an alternate route around the failure and to update the
forwarding table accordingly.

This last fact is particularly important to the history of datagram networks. One
of the important design goals of the Internet is robustness to failures, and history has
shown it to be quite effective at meeting this goal.!

3.1.2 Virtual Circuit Switching

A widely used technique for packet switching, which differs significantly from the data-
gram model, uses the concept of a virtual circuir (VC). This approach, which is also
called a connection-oriented model, requires that a virtual connection from the source
host to the destination host is set up before any data is sent. To understand how this
works, consider Figure 3.5, where host A again wants to send packets to host B. We can
think of this as a two-stage process. The first stage is connection setup. The second is data
transfer. We consider each in turn.

Switch 1 Switch 2

Switch 3

D

Host B

Figure 3.5 An example of a virtual circuit network.

IThe oft-repeated claim that the ARPANET was built to withstand nuclear attack does not appear to be substantiated by

those who actually worked on its design.
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In the connection setup phase, it is necessary to establish “connection state” in
each of the switches between the source and destination hosts. The connection state for
a single connection consists of an entry in a VC table in each switch through which the
connection passes. One entry in the VC table on a single switch contains

B A virtual circuit identifier (VCI) that uniquely identifies the connection at this
switch, and which will be carried inside the header of the packets that belong to
this connection;

B An incoming interface on which packets for this VC arrive at the switch;
B An outgoing interface in which packets for this VC leave the switch;

B A potentially different VCI that will be used for outgoing packets.

The semantics of one such entry is as follows: If a packet arrives on the designated
incoming interface and that packet contains the designated VCI value in its header,
then that packet should be sent out the specified outgoing interface with the specified
outgoing VCI value having been first placed in its header.

Note that the combination of the VCI of packets as they are received at the switch
and the interface on which they are received uniquely identifies the virtual connection.
There may of course be many virtual connections established in the switch at one time.
Also, we observe that the incoming and outgoing VCI values are generally not the same.
Thus, the VCI is not a globally significant identifier for the connection; rather, it has
significance only on a given link (i.e., it has link-local scope).

Whenever a new connection is created, we need to assign a new VCI for that
connection on each link that the connection will traverse. We also need to ensure that
the chosen VCI on a given link is not currently in use on that link by some existing
connection.

There are two broad classes of approach to establishing connection state. One is to
have a network administrator configure the state, in which case the virtual circuit is “per-
manent.” Of course, it can also be deleted by the administrator, so a permanent virtual
circuit (PVC) might best be thought of as a long-lived, or administratively configured
VC. Alternatively, a host can send messages into the network to cause the state to be
established. This is referred to as signalling, and the resulting virtual circuits are said to
be switched. The salient characteristic of a switched virtual circuit (SVC) is that a host
may set up and delete such a VC dynamically without the involvement of a network ad-
ministrator. Note that an SVC should more accurately be called a “signalled” VC, since
it is the use of signalling (not switching) that distinguishes an SVC from a PVC.

Let’s assume that a network administrator wants to manually create a new vir-
tual connection from host A to host B. First, the administrator needs to identify a path
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Incoming Interface | Incoming VCI Outgoing Interface | Outgoing VCI

2 5 1 11

Table 3.2 Virtual circuit table entry for switch 1.

through the network from A to B. In the example network of Figure 3.5, there is only
one such path, but in general this may not be the case. The administrator then picks
a VCI value that is currently unused on each link for the connection. For the purposes
of our example, let’s suppose that the VCI value 5 is chosen for the link from host A
to switch 1, and that 11 is chosen for the link from switch 1 to switch 2. In that case,
switch 1 needs to have an entry in its VC table configured as shown in Table 3.2.

Similarly, suppose that the VCI of 7 is chosen to identify this connection on the
link from switch 2 to switch 3, and that a VCI of 4 is chosen for the link from switch 3
to host B. In that case, switches 2 and 3 need to be configured with VC table entries as
shown in Table 3.3. Note that the “outgoing” VCI value at one switch is the “incoming”
VCI value at the next switch.

Once the VC tables have been set up, the data transfer phase can proceed, as il-
lustrated in Figure 3.6. For any packet that it wants to send to host B, A puts the VCI
value of 5 in the header of the packet and sends it to switch 1. Switch 1 receives any
such packet on interface 2, and it uses the combination of the interface and the VCI
in the packet header to find the appropriate VC table entry. As shown in Table 3.2, the
table entry in this case tells switch 1 to forward the packet out of interface 1 and to put
the VCI value 11 in the header when the packet is sent. Thus, the packet will arrive at
switch 2 on interface 3 bearing VCI 11. Switch 2 looks up interface 3 and VCI 11 in
its VC table (as shown in Table 3.3) and sends the packet on to switch 3 after updating
the VCI value in the packet header appropriately, as shown in Figure 3.7. This process
continues until it arrives at host B with the VCI value of 4 in the packet. To host B, this
identifies the packet as having come from host A.

Incoming Interface Incoming VCI Outgoing Interface | Outgoing VCI

3 11 2 7
VC table entry at switch

\S}

Incoming Interface | Incoming VCI Outgoing Interface | Outgoing VCI

0 7 1 4
VC table entry at switch 3

Table 3.3 Virtual circuit table entries for switches 2 and 3.
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Figure 3.7 A packet makes its way through a virtual circuit network.

In real networks of reasonable size, the burden of configuring VC tables correctly in
a large number of switches would quickly become excessive using the above procedures.
Thus, some sort of signalling is almost always used, even when setting up “permanent”
VCs. In the case of PVCs, signalling is initiated by the network administrator, while
SVCs are usually set up using signalling by one of the hosts. We consider now how the
same VC just described could be set up by signalling from the host.

To start the signalling process, host A sends a setup message into the network, that
is, to switch 1. The setup message contains, among other things, the complete destina-
tion address of host B. The setup message needs to get all the way to B to create the
necessary connection state in every switch along the way. We can see that getting the
setup message to B is a lot like getting a datagram to B, in that the switches have to
know which output to send the setup message to so that it eventually reaches B. For
now, let’s just assume that the switches know enough about the network topology to
figure out how to do that, so that the setup message flows on to switches 2 and 3 before
finally reaching host B.
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When switch 1 receives the connection request, in addition to sending it on to
switch 2, it creates a new entry in its virtual circuit table for this new connection. This
entry is exactly the same as shown previously in Table 3.2. The main difference is that
now the task of assigning an unused VCI value on the interface is performed by the
switch for that port. In this example, the switch picks the value 5. The virtual circuit table
now has the following information: “When packets arrive on port 2 with identifier 5,
send them out on port 1.” Another issue is that, somehow, host A will need to learn that
it should put the VCI value of 5 in packets that it wants to send to B; we will see how
that happens below.

When switch 2 receives the setup message, it performs a similar process; in this
example it picks the value 11 as the incoming VCI value. Similarly switch 3 picks 7 as
the value for its incoming VCI. Each switch can pick any number it likes, as long as that
number is not currently in use for some other connection on that port of that switch. As
noted above, VClIs have link-local scope, that is, they have no global significance.

Finally the setup message arrives as host B. Assuming that B is healthy and willing
to accept a connection from host A, it too allocates an incoming VCI value, in this case 4.
This VCI value can be used by B to identify all packets coming from host A.

Now, to complete the connection, everyone needs to be told what their downstream
neighbor is using as the VCI for this connection. Host B sends an acknowledgment of
the connection setup to switch 3 and includes in that message the VCI that it chose (4).
Now switch 3 can complete the virtual circuit table entry for this connection, since it
knows the outgoing value must be 4. Switch 3 sends the acknowledgment on to switch 2,
specifying a VCI of 7. Switch 2 sends the message on to switch 1, specifyinga VCI of 11.
Finally, switch 1 passes the acknowledgment on to host A, telling it to use the VCI of 5
for this connection.

At this point, everyone knows all that is necessary to allow traffic to flow from
host A to host B. Each switch has a complete virtual circuit table entry for the connec-
tion. Furthermore, host A has a firm acknowledgment that everything is in place all the
way to host B. At this point, the connection table entries are in place in all three switches
just as in the administratively configured example above, but the whole process happened
automatically in response to the signalling message sent from A. The data transfer phase
can now begin and is identical to that used in the PVC case.

When host A no longer wants to send data to host B, it tears down the connection
by sending a teardown message to switch 1. The switch removes the relevant entry from
its table and forwards the message on to the other switches in the path, which similarly
delete the appropriate table entries. At this point, if host A were to send a packet with a
VCI of 5 to switch 1, it would be dropped as if the connection had never existed.
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There are several things to note about virtual circuit switching:

B Since host A has to wait for the connection request to reach the far side of the
network and return before it can send its first data packet, there is at least one

RTT of delay before data is sent.?

B While the connection request contains the full address for host B (which might
be quite large, being a global identifier on the network), each data packet con-
tains only a small identifier, which is only unique on one link. Thus, the per-
packet overhead caused by the header is reduced relative to the datagram model.

B If a switch or a link in a connection fails, the connection is broken and a new
one will need to be established. Also, the old one needs to be torn down to free
up table storage space in the switches.

B The issue of how a switch decides which link to forward the connection request
on has been glossed over. In essence, this is the same problem as building up the
forwarding table for datagram forwarding, which requires some sort of routing
algorithm. Routing is described in Section 4.2, and the algorithms described
there are generally applicable to routing setup requests as well as datagrams.

One of the nice aspects of virtual circuits is that by the time the host gets the go-
ahead to send data, it knows quite a lot about the network—for example, that there
really is a route to the receiver and that the receiver is willing and able to receive data.
It is also possible to allocate resources to the virtual circuit at the time it is established.
For example, an X.25 network—a packet-switched network that uses the connection-
oriented model—employs the following three-part strategy:

1 Buffers are allocated to each virtual circuit when the circuit is initialized;

2 The sliding window protocol is run between each pair of nodes along the virtual
circuit, and this protocol is augmented with flow control to keep the sending
node from overrunning the buffers allocated at the receiving node;

3 The circuit is rejected by a given node if not enough buffers are available at that
node when the connection request message is processed.

2This is not strictly true. Some people have proposed “optimistically” sending a data packet immediately after sending
the connection request. However, most current implementations wait for connection setup to complete before sending

data.
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In doing these three things, each node is ensured of having the buffers it needs to queue
the packets that arrive on that circuit. This basic strategy is usually called hop-by-hop flow
control.

By comparison, a datagram network has no connection establishment phase,
and each switch processes each packet independently, making it less obvious how a
datagram network would allocate resources in a meaningful way. Instead, each arriv-

ing packet competes with all other pack-
ets for buffer space. If there are no free
buffers, the incoming packet must be dis-
carded. We observe, however, that even in
a datagram-based network, a source host
often sends a sequence of packets to the
same destination host. It is possible for
each switch to distinguish among the set of
packets it currently has queued, based on
the source/destination pair, and thus for
the switch to ensure that the packets be-
longing to each source/destination pair are
receiving a fair share of the switch’s buffers.
We discuss this idea in much greater depth
in Chapter 6.

In the virtual circuit model, we could
imagine providing each circuit with a dif-
ferent quality of service (QoS). In this
setting, the term “quality of service” is
usually taken to mean that the network
gives the user some kind of performance-
related guarantee, which in turn implies
that switches set aside the resources they
need to meet this guarantee. For example,
the switches along a given virtual circuit
might allocate a percentage of each out-
going link’s bandwidth to that circuit. As
another example, a sequence of switches
might ensure that packets belonging to a
particular circuit not be delayed (queued)
for more than a certain amount of time.
We return to the topic of quality of service
in Section 6.5.

Introduction to Congestion

Recall the distinction between con-
tention and congestion: Contention
occurs when multiple packets have to
be queued at a switch because they
are competing for the same output
link, while congestion means that the
switch has so many packets queued
that it runs out of buffer space and has
to start dropping packets. We return
to the topic of congestion in Chap-
ter 6, after we have seen the trans-
port protocol component of the net-
work architecture. At this point, how-
ever, we observe that the decision as to
whether your network uses virtual cir-
cuits or datagrams has an impact on
how you deal with congestion.

On the one hand, suppose that
each switch allocates enough buffers
to handle the packets belonging to
each virtual circuit it supports, as is
done in an X.25 network. In this
case, the network has defined away
the problem of congestion—a switch
never encounters a situation in which
it has more packets to queue than it
has buffer space, since it does not al-
low the connection to be established
in the first place unless it can dedicate
enough resources to it to avoid this
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Figure 3.8 Frame Relay packet format.

situation. The problem with this ap-
proach, however, is that it is extremely
conservative—it is unlikely that all the
circuits will need to use all of their
buffers at the same time, and as a
consequence, the switch is potentially
underutilized.

On the other hand, the data-
gram model seemingly invites con-
gestion—you do not know that there
is enough contention at a switch to
cause congestion until you run out of
buffers. At that point, it is too late to
prevent the congestion, and your only
choice is to try to recover from it. The
good news, of course, is that you may
be able to get better utilization out of
your switches since you are not hold-
ing buffers in reserve for a worst-case
scenario that is unlikely to happen.

As is quite often the case, noth-
ing is strictly black and white—there
are design advantages for defining
congestion away (as the X.25 model
does) and for doing nothing about
congestion until after it happens (as
the simple datagram model does).
There are also intermediate points be-
tween these two extremes. We describe
some of these design points in Chap-
ter 6.

The most popular examples of vir-
tual circuit technologies are Frame Relay
and asynchronous transfer mode (ATM).
ATM has a number of interesting proper-
ties that we discuss in Section 3.3. Frame
Relay is a rather straightforward imple-
mentation of virtual circuit technology,
and its simplicity has made it extremely
popular. Many network service providers
offer Frame Relay PVC services. One
of the applications of Frame Relay is
the construction of virtual private net-
works (VPNs), a subject discussed in Sec-
tion 4.1.8.

Frame Relay provides some ba-
sic quality of service and congestion-
avoidance features, but these are rather
lightweight compared to X.25 and ATM.
The Frame Relay packet format (see Fig-
ure 3.8) provides a good example of a
packet used for virtual circuit switching.

3.1.3 Source Routing

A third approach to switching that uses
neither virtual circuits nor conventional
datagrams is known as source routing. The
name derives from the fact that all the in-
formation about network topology that is
required to switch a packet across the net-
work is provided by the source host.
There are various ways to imple-
ment source routing. One would be to
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0 Switch 1

2 Switch 2

Figure 3.9 Source routing in a switched network (where the switch reads the

rightmost number).

assign a number to each output of each
switch and to place that number in the
header of the packet. The switching func-
tion is then very simple: For each packet
that arrives on an input, the switch would
read the port number in the header and
transmit the packet on that output. How-
ever, since there will in general be more
than one switch in the path between the
sending and the receiving host, the header
for the packet needs to contain enough in-
formation to allow every switch in the path
to determine on which output the packet
needs to be placed. One way to do this
would be to put an ordered list of switch
ports in the header and to rotate the list so
that the next switch in the path is always
at the front of the list. Figure 3.9 illustrates
this idea.

In this example, the packet needs to
traverse three switches to get from host A

Optical Switching

To a casual observer of the network-
ing industry around the year 2000, it
might have appeared that the most in-
teresting sort of switching was optical
switching. Indeed, optical switching
did become an important technol-
ogy in the late 1990s, due to a con-
fluence of several factors. One factor
was the commercial availability of
dense wavelength division multiplex-
ing (DWDM) equipment, which
makes it possible to send a great deal
of information down a single fiber by
transmitting on a large number of op-
tical wavelengths (or colors) at once.
Thus, for example, one might send
data on 100 or more different wave-
lengths, and each wavelength might
carry as much as 10 Gbps of data.



A second factor was the com-
mercial availability of optical ampli-
fiers. Optical signals are attenuated as
they pass through fiber, and after some
distance (about 40 km or so) they
need to be made stronger in some way.
Before optical amplifiers, it was neces-
sary to place repeaters in the path to
recover the optical signal, convert it
to a digital electronic signal, and then
convert it back to optical again. Be-
fore you could get the data into a re-
peater, you would have to demultiplex
it using a DWDM terminal. Thus, a
large number of DWDM terminals
would be needed just to drive a single
fiber pair for a long distance. Optical
amplifiers, unlike repeaters, are analog
devices that boost whatever signal is
sent along the fiber, even if it is sent
on a hundred different wavelengths.
Optical amplifiers, therefore, made
DWDM gear much more attractive,
because now a pair of DWDM ter-
minals could talk to each other when
separated by a distance of hundreds
of kilometers. Furthermore, you could
even upgrade the DWDM gear at the
ends without touching the optical am-
plifiers in the middle of the path,
because they will amplify 100 wave-
lengths as easily as 50 wavelengths.

With DWDM and optical am-
plifiers, it became possible to build op-
tical networks of huge capacity. But at
least one more type of device is needed
to make these networks useful—the
optical switch. Most so-called optical
switches today actually perform their
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to host B. At switch 1, it needs to exit
on port 1, at the next switch it needs to
exit at port 0, and at the third switch it
needs to exit at port 3. Thus, the original
header when the packet leaves host A con-
tains the list of ports (3, 0, 1), where we
assume that each switch reads the right-
most element of the list. To make sure
that the next switch gets the appropri-
ate information, each switch rotates the
list after it has read its own entry. Thus,
the packet header as it leaves switch 1
en route to switch 2 is now (1, 3, 0);
switch 2 performs another rotation and
sends out a packet with (0, 1, 3) in the
header. Although not shown, switch 3
performs yet another rotation, restoring
the header to what it was when host A
sent it.

There are several things to note
about this approach. First, it assumes that
host A knows enough about the topology
of the network to form a header that has
all the right directions in it for every switch
in the path. This is somewhat analogous
to the problem of building the forward-
ing tables in a datagram network or fig-
uring out where to send a setup packet in
a virtual circuit network. Second, observe
that we cannot predict how big the header
needs to be, since it must be able to hold
one word of information for every switch
on the path. This implies that headers are
probably of variable length with no up-
per bound, unless we can predict with ab-
solute certainty the maximum number of
switches through which a packet will ever
need to pass. Third, there are some varia-
tions on this approach. For example, rather
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Figure 3.10 Three ways to handle headers for source routing: (a) rotation,
(b) stripping, and (c) pointer. The labels are read right to left.

than rotate the header, each switch could
just strip the first element as it uses it.
Rotation has an advantage over stripping,
however: Host B gets a copy of the com-
plete header, which may help it figure
out how to get back to host A. Yet an-
other alternative is to have the header carry
a pointer to the current “next port” en-
try, so that each switch just updates the
pointer rather than rotating the header;
this may be more efficient to implement.
We show these three approaches in Fig-
ure 3.10. In each case, the entry that this
switch needs to read is A, and the en-
try that the next switch needs to read
is B.

Source routing can be used in both
datagram networks and virtual circuit net-
works. For example, the Internet Proto-
col, which is a datagram protocol, includes
a source route option that allows selected
packets to be source routed, while the ma-
jority are switched as conventional data-
grams. Source routing is also used in some
virtual circuit networks as the means to
get the initial setup request along the path
from source to destination.

switching function electronically, and
from an architectural point of view
they have more in common with the
circuit switches of the telephone net-
work than the packet switches de-
scribed in this chapter. A typical op-
tical switch has a large number of
interfaces that understand SONET
framing, and is able to cross-connect
a SONET channel from an incom-
ing interface to an outgoing interface.
Thus, with an optical switch, it be-
comes possible to provide SONET
channels from point A to point B via
point C even if there is no direct fiber
path from A to B—there just needs
to be a path from A to C, a switch at
C, and a path from C to B. In this
respect, an optical switch bears some
relationship to the switches in Fig-
ure 3.5, in that it creates the illusion
of a connection between two points
even when there is no direct physi-
cal connection between them. How-
ever, optical switches do not provide
virtual circuits, they provide “real” cir-
cuits (e.g., a SONET channel). There
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Source routes are sometimes categorized as “strict” or “loose.” In a strict source
route, every node along the path must be specified, whereas a loose source route only
specifies a set of nodes to be traversed, without saying exactly how to get from one node
to the next. A loose source route can be thought of as a set of waypoints rather than
a completely specified route. The loose option can be helpful to limit the amount of
information that a source must obtain to create a source route. In any reasonably large
network, it is likely to be hard for a host to get the complete path information it needs
to correctly construct a strict source route to any destination. But both types of source
routes do find application in certain scenarios, one of which is described in Section 4.5.

3.2 Bridges and LAN Switches

Having discussed some of the basic ideas behind switching, we now focus more closely
on some specific switching technologies. We begin by considering a class of switch that
is used to forward packets between shared-
media LANs such as Ethernets. Such
switches are sometimes known by the ob-

are even some newer types of optical
switch that use microscopic, electron-

ically controlled mirrors to deflect all

lich omionei o R oo vious name of LAN switches; historically

. hey h. | n referr 11 .
other, so that there could be an unin- they have also been referred to as bridges

terrupted optical channel from point Suppose you have a pair of Eth-
A to point B. The technology behind
these devices is called MEMS (Micro-

electromechanical Systems).

ernets that you want to interconnect.
One approach you might try is to put
a repeater between them, as described in
Chapter 2. This would not be a workable
solution, however, if doing so exceeded
the physical limitations of the Ethernet.
(Recall that no more than four repeaters

We don’t cover optical network-
ing extensively in this book, in part
because of space considerations. For
many practical purposes, you can think
of optical networks as a piece of the
infrastructure that enables telephone

between any pair of hosts and no more
than a total of 2,500 m in length are al-
lowed.) An alternative would be to put a

companies to provide SONET links
or other types of circuits where and
when you need them. However, it is
worth noting that many of the tech-
nologies that are discussed later in this
book, such as routing protocols and
multiprotocol label switching, do have
application to the world of optical
networking.

node between the two Ethernets and have
the node forward frames from one Ether-
net to the other. This node would be in
promiscuous mode, accepting all frames
transmitted on either of the Ethernets,
so it could forward them to the other.

The node we have just described
is typically called a éridge, and a collec-
tion of LANs connected by one or more
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bridges is usually said to form an extended LAN. In their simplest variants, bridges simply
accept LAN frames on their inputs and forward them out on all other outputs. This
simple strategy was used by early bridges, but has since been refined to make bridges a
more effective mechanism for interconnecting a set of LANs. The rest of this section fills
in the more interesting details.

Note that a bridge meets our definition of a switch from the previous section: a
multi-input, multioutput device, which transfers packets from an input to one or more
outputs. And recall that this provides a way to increase the total bandwidth of a network.
For example, while a single Ethernet segment can carry only 10 Mbps of total traffic, an
Ethernet bridge can carry as much as 107z Mbps, where 7 is the number of ports (inputs
and outputs) on the bridge.

3.2.1 Learning Bridges

The first optimization we can make to a bridge is to observe that it need not forward
all frames that it receives. Consider the bridge in Figure 3.11. Whenever a frame from
host A that is addressed to host B arrives on port 1, there is no need for the bridge to
forward the frame out over port 2. The question, then, is, how does a bridge come to
learn on which port the various hosts reside?

One option would be to have a human download a table into the bridge similar
to the one given in Table 3.4. Then, whenever the bridge receives a frame on port 1
that is addressed to host A, it would not forward the frame out on port 2; there would
be no need because host A would have already directly received the frame on the LAN
connected to port 1. Anytime a frame addressed to host A was received on port 2, the
bridge would forward the frame out on port 1.

ooQo
| | |
-— Port 1

Bridge

Figure 3.11 lllustration of a learning bridge.
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Host | Port
A 1
B 1
C 1
X 2
Y 2
Z 2

Table 3.4 Forwarding table maintained by a bridge.

Note that a bridge using such a table would be using the datagram (or connection-
less) model of forwarding described in Section 3.1.1. Each packet carries a global address,
and the bridge decides on which output to send a packet by looking up that address in a
table.

Having a human maintain this table is quite a burden, especially considering that
there is a simple trick by which a bridge can learn this information for itself. The idea
is for each bridge to inspect the source address in all the frames it receives. Thus, when
host A sends a frame to a host on either side of the bridge, the bridge receives this frame
and records the fact that a frame from host A was just received on port 1. In this way,
the bridge can build a table just like Table 3.4.

When a bridge first boots, this table is empty; entries are added over time. Also,
a timeout is associated with each entry, and the bridge discards the entry after a specified
period of time. This is to protect against the situation in which a host—and as a conse-
quence, its LAN address—is moved from one network to another. Thus, this table is not
necessarily complete. Should the bridge receive a frame that is addressed to a host not
currently in the table, it goes ahead and forwards the frame out on all the other ports.
In other words, this table is simply an optimization that filters out some frames; it is not
required for correctness.

Implementation

The code that implements the learning bridge algorithm is quite simple, and we sketch
it here. Structure BridgeEntry defines a single entry in the bridge’s forwarding table;
these are stored in a Map structure (which supports mapCreate, mapBind, and
MapResolve operations) to enable entries to be efficiently located when packets arrive
from sources already in the table. The constant MAX_TTL specifies how long an entry
is kept in the table before it is discarded.
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#define BRI DGE_TAB_SI ZE 1024 /* max. size of bridging
table */
#define MAX TTL 120 /* tinme (in seconds) before
an entry is flushed */

typedef struct {

MacAddr destination; /* MAC address of a node */
i nt i f nunber ; /[* interface to reach it */
u_short TTL; [* time to live */

Bi ndi ng bi ndi ng; /[* binding in the Map */

} BridgeEntry;

i nt nunentries = 0;
Map bri dgeMap = mapCreat e( BRI DGE_TAB_SI ZE,
si zeof (Bri dgeEntry));

The routine that updates the forwarding table when a new packet arrives is given
by updateTable. The arguments passed are the source MAC address contained in the
packet and the interface number on which it was received. Another routine, not shown
here, is invoked at regular intervals, scans the entries in the forwarding table, and decre-
ments the TTL (time to live) field of each entry, discarding any entries whose TTL has
reached 0. Note that the TTL is reset to MAX_TTL every time a packet arrives to refresh
an existing table entry, and that the interface on which the destination can be reached is
updated to reflect the most recently received packet.

voi d
updat eTabl e (MacAddr src, int inif)
{
Bri dgeEntry *b;
i f (mapResol ve(bridgeMap, &src, (void **)&b)
== FALSE )
{

/* this address is not in the table,
sotry to add it */
if (nunmentries < BRI DGE_TAB_SI ZE)
{
b = NEWBridgeEntry);
b- >bi ndi ng = mapBi nd( bri dgeMap, &src, b);
/* use source address of packet as dest.
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address in table */
b- >destinati on = src;
nunmEntri es++;

}
el se
{
/* can’t fit this address in the table now,
so give up */
return;
}

}

/* reset TTL and use nost recent input interface */
b->TTL = MAX_TTL;
b->i f number = inif;

}

Note that this implementation adopts a simple strategy in the case where the bridge
table has become full to capacity—it simply fails to add the new address. Recall that
completeness of the bridge table is not necessary for correct forwarding, it just optimizes
performance. If there is some entry in the table that is not currently being used, it will
eventually time out and be removed, creating space for a new entry. An alternative ap-
proach would be to invoke some sort of cache replacement algorithm on finding the
table full; for example, we might locate and remove the entry with the smallest TTL to
accommodate the new entry.

3.2.2 Spanning Tree Algorithm

The preceding strategy works just fine until the extended LAN has a loop in it, in which
case it fails in a horrible way—frames potentially loop through the extended LAN forever.
This is easy to see in the example depicted in Figure 3.12, where, for example, bridges
B1, B4, and B6 form a loop. How does an extended LAN come to have a loop in it? One
possibility is that the network is managed by more than one administrator, for example,
because it spans multiple departments in an organization. In such a setting, it is possible
that no single person knows the entire configuration of the network, meaning that a
bridge that closes a loop might be added without anyone knowing. A second, more likely
scenario is that loops are built into the network on purpose—to provide redundancy in
case of failure.

Whatever the cause, bridges must be able to correctly handle loops. This problem
is addressed by having the bridges run a distributed spanning tree algorithm. If you think
of the extended LAN as being represented by a graph that possibly has loops (cycles),
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Figure 3.12 Extended LAN with loops.

@ (b)

Figure 3.13 Example of (a) a cyclic graph; (b) a corresponding spanning tree.

then a spanning tree is a subgraph of this graph that covers (spans) all the vertices, but
contains no cycles. That is, a spanning tree keeps all of the vertices of the original graph,
but throws out some of the edges. For example, Figure 3.13 shows a cyclic graph on the
left and one of possibly many spanning trees on the right.

The spanning tree algorithm, which was developed by Radia Perlman at the Digital
Equipment Corporation, is a protocol used by a set of bridges to agree upon a spanning
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tree for a particular extended LAN. (The IEEE 802.1 specification for LAN bridges is
based on this algorithm.) In practice, this means that each bridge decides the ports over
which it is and is not willing to forward frames. In a sense, it is by removing ports from
the topology that the extended LAN is reduced to an acyclic tree.? It is even possible that
an entire bridge will not participate in forwarding frames, which seems kind of strange
when you consider that the one reason we intentionally have loops in the network in
the first place is to provide redundancy. The algorithm is dynamic, however, meaning
that the bridges are always prepared to reconfigure themselves into a new spanning tree
should some bridge fail.

The main idea of the spanning tree is for the bridges to select the ports over which
they will forward frames. The algorithm selects ports as follows. Each bridge has a unique
identifier; for our purposes, we use the labels B1, B2, B3, and so on. The algorithm first
elects the bridge with the smallest ID as the root of the spanning tree; exactly how this
election takes place is described below. The root bridge always forwards frames out over
all of its ports. Next, each bridge computes the shortest path to the root and notes which
of its ports is on this path. This port is also selected as the bridge’s preferred path to the
root. Finally, all the bridges connected to a given LAN elect a single designated bridge that
will be responsible for forwarding frames toward the root bridge. Each LAN’s designated
bridge is the one that is closest to the root, and if two or more bridges are equally close
to the root, then the bridges” identifiers are used to break ties; the smallest ID wins.
Of course, each bridge is connected to more than one LAN, so it participates in the
election of a designated bridge for each LAN it is connected to. In effect, this means that
each bridge decides if it is the designated bridge relative to each of its ports. The bridge
forwards frames over those ports for which it is the designated bridge.

Figure 3.14 shows the spanning tree that corresponds to the extended LAN shown
in Figure 3.12. In this example, B1 is the root bridge, since it has the smallest ID. Notice
that both B3 and B5 are connected to LAN A, but B5 is the designated bridge since
it is closer to the root. Similarly, both B5 and B7 are connected to LAN B, but in this
case, B5 is the designated bridge since it has the smaller ID; both are an equal distance
from B1.

While it is possible for a human to look at the extended LAN given in Figure 3.12
and to compute the spanning tree given in Figure 3.14 according to the rules given
above, the bridges in an extended LAN do not have the luxury of being able to see
the topology of the entire network, let alone peek inside other bridges to see their IDs.

3 Representing an extended LAN as an abstract graph is a bit awkward. Basically, you let both the bridges and the LANs
correspond to the vertices of the graph, and the ports correspond to the graph’s edges. However, the spanning tree we are
going to compute for this graph needs to span only those nodes that correspond to networks. It is possible that nodes
corresponding to bridges will be disconnected from the rest of the graph. This corresponds to a situation in which all the

ports connecting a bridge to various networks get removed by the algorithm.
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Figure 3.14 Spanning tree with some ports not selected.

Instead, the bridges have to exchange configuration messages with each other and then
decide whether or not they are the root or a designated bridge based on these messages.
Specifically, the configuration messages contain three pieces of information:

1 The ID for the bridge that is sending the message;
2 The ID for what the sending bridge believes to be the root bridge;

3 The distance, measured in hops, from the sending bridge to the root bridge.

Each bridge records the current “best” configuration message it has seen on each of
its ports (“best” is defined below), including both messages it has received from other
bridges and messages that it has itself transmitted.

Initially, each bridge thinks it is the root, and so it sends a configuration message
out on each of its ports identifying itself as the root and giving a distance to the root of 0.
Upon receiving a configuration message over a particular port, the bridge checks to see if
that new message is better than the current best configuration message recorded for that
port. The new configuration message is considered “better” than the currently recorded
information if
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B [t identifies a root with a smaller ID or
B It identifies a root with an equal ID but with a shorter distance or

B The root ID and distance are equal, but the sending bridge has a smaller ID.

If the new message is better than the currently recorded information, the bridge dis-
cards the old information and saves the new information. However, it first adds 1 to the
distance-to-root field since the bridge is one hop farther away from the root than the
bridge that sent the message.

When a bridge receives a configuration message indicating that it is not the root
bridge—that is, a message from a bridge with a smaller ID—the bridge stops generat-
ing configuration messages on its own and instead only forwards configuration messages
from other bridges, after first adding 1 to the distance field. Likewise, when a bridge
receives a configuration message that indicates it is not the designated bridge for that
port—that is, a message from a bridge that is closer to the root or equally far from the
root but with a smaller ID—the bridge stops sending configuration messages over that
port. Thus, when the system stabilizes, only the root bridge is still generating configu-
ration messages, and the other bridges are forwarding these messages only over ports for
which they are the designated bridge.

To make this more concrete, consider what would happen in Figure 3.14 if the
power had just been restored to the building housing this network, so that all the bridges
boot at about the same time. All the bridges would start off by claiming to be the root.
We denote a configuration message from node X in which it claims to be distance &
from root node Y as (Y, d,X). Focusing on the activity at node B3, a sequence of
events would unfold as follows:

1 B3 receives (B2, 0, B2);
2 Since 2 < 3, B3 accepts B2 as root;

3 B3 adds one to the distance advertised by B2 (0) and thus sends (B2, 1, B3)
toward B5;

4 Meanwhile, B2 accepts B1 as root because it has the lower ID, and it sends
(B1, 1, B2) toward B3;

5 B5 accepts B as root and sends (B1, 1, B5) toward B3;

6 B3 accepts Bl as root, and it notes that both B2 and B5 are closer to the root
than it is. Thus, B3 stops forwarding messages on both its interfaces.

This leaves B3 with both ports not selected, as shown in Figure 3.14.
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Even after the system has stabilized, the root bridge continues to send configu-
ration messages periodically, and the other bridges continue to forward these messages
as described in the previous paragraph. Should a particular bridge fail, the downstream
bridges will not receive these configuration messages, and after waiting a specified period
of time, they will once again claim to be the root, and the algorithm just described will
kick in again to elect a new root and new designated bridges.

One important thing to notice is that although the algorithm is able to reconfigure
the spanning tree whenever a bridge fails, it is not able to forward frames over alternative
paths for the sake of routing around a congested bridge.

3.2.3 Broadcast and Multicast

The preceding discussion has focused on how bridges forward unicast frames from one
LAN to another. Since the goal of a bridge is to transparently extend a LAN across
multiple networks, and since most LANs support both broadcast and multicast, then
bridges must also support these two features. Broadcast is simple—each bridge forwards
a frame with a destination broadcast address out on each active (selected) port other than
the one on which the frame was received.

Multicast can be implemented in exactly the same way, with each host deciding
for itself whether or not to accept the message. This is exactly what is done in practice.
Notice, however, that since not all the LANs in an extended LAN necessarily have a host
that is a member of a particular multicast group, it is possible to do better. Specifically,
the spanning tree algorithm can be extended to prune networks over which multicast
frames need not be forwarded. Consider a frame sent to group M by a host on LAN A in
Figure 3.14. If there is no host on LAN ] that belongs to group M, then there is no need
for bridge B4 to forward the frames over that network. On the other hand, not having a
host on LAN H that belongs to group M does not necessarily mean that bridge B1 can
avoid forwarding multicast frames onto LAN H. It all depends on whether or not there
are members of group M on LANs I and J.

How does a given bridge learn whether it should forward a multicast frame over
a given port? It learns exactly the same way that a bridge learns whether it should for-
ward a unicast frame over a particular port—by observing the source addresses that it
receives over that port. Of course, groups are not typically the source of frames, so we
have to cheat a little. In particular, each host that is a member of group M must pe-
riodically send a frame with the address for group M in the source field of the frame
header. This frame would have as its destination address the multicast address for the
bridges.

Note that while the multicast extension just described has been proposed, it is not

widely adopted. Instead, multicast is implemented in exactly the same way as broadcast
on today’s extended LANSs.
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3.2.4 Limitations of Bridges

The bridge-based solution just described is meant to be used in only a fairly limited
setting—to connect a handful of similar LANs. The main limitations of bridges become
apparent when we consider the issues of scale and heterogeneity.

On the issue of scale, it is not realistic to connect more than a few LANs by means
of bridges, where in practice “few” typically means “tens of.” One reason for this is that
the spanning tree algorithm scales linearly, that is, there is no provision for imposing a
hierarchy on the extended LAN. A second reason is that bridges forward all broadcast
frames. While it is reasonable for all hosts within a limited setting (say, a department) to
see each other’s broadcast messages, it is unlikely that all the hosts in a larger environment
(say, a large company or university) would want to have to be bothered by each other’s
broadcast messages. Said another way, broadcast does not scale, and as a consequence,
extended LANs do not scale.

One approach to increasing the scalability of extended LANs is the virtual LAN
(VLAN). VLANS allow a single extended LAN to be partitioned into several seemingly
separate LANs. Each virtual LAN is assigned an identifier (sometimes called a color),
and packets can only travel from one segment to another if both segments have the same
identifier. This has the effect of limiting the number of segments in an extended LAN
that will receive any given broadcast packet.

We can see how VLANs work with an example. Figure 3.15 shows four hosts on
four different LAN segments. In the absence of VLANS, any broadcast packet from
any host will reach all the other hosts. Now let’s suppose that we define the segments
connected to hosts W and X as being in one VLAN, which we'll call VLAN 100. We
also define the segments that connect to hosts Y and Z as being in VLAN 200. To do
this, we need to configure a VLAN ID on each port of bridges B1 and B2. The link
between B1 and B2 is considered to be in both VLANS.

When a packet sent by host X arrives at bridge B2, the bridge observes that it came
in a port that was configured as being in VLAN 100. It inserts a VLAN header between

w X
| |
VLAN 100 VLAN 100
Bl B2
VLAN 200 | | VLAN200
Y z

Figure 3.15 Two virtual LANs share a common backbone.
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the Ethernet header and its payload. The interesting part of the VLAN header is the
VLAN ID; in this case, that ID is set to 100. The bridge now applies its normal rules
for forwarding to the packet, with the extra restriction that the packet may not be sent
out an interface that is not part of VLAN 100. Thus, under no circumstances will the
packet—even a broadcast packet—Dbe sent out the interface to host Z, which is in VLAN
200. The packet is, however, forwarded on to bridge B1, which follows the same rules,
and thus may forward the packet to host W but not to host Y.

An attractive feature of VLANSs is that it is possible to change the logical topology
without moving any wires or changing any addresses. For example, if we wanted to make
the segment that connects to host Z be part of VLAN 100, and thus enable X, W, and Z
to be on the same virtual LAN, we would just need to change one piece of configuration
on bridge B2.

On the issue of heterogeneity, bridges are fairly limited in the kinds of networks
they can interconnect. In particular, bridges make use of the network’s frame header and
so can support only networks that have exactly the same format for addresses. Thus,
bridges can be used to connect Ethernets to Ethernets, 802.5 to 802.5, and Ethernets to
802.5 rings, since both networks support the same 48-bit address format. Bridges do not
readily generalize to other kinds of networks, such as ATM.4

Despite their limitations, bridges are a very important part of the complete net-
working picture. Their main advantage is that they allow multiple LANs to be transpar-
ently connected, that is, the networks can be connected without the end hosts having
to run any additional protocols (or even be aware, for that matter). The one potential
exception is when the hosts are expected to announce their membership in a multicast
group, as described in Section 3.2.3.

Notice, however, that this transparency can be dangerous. If a host, or more pre-
cisely, the application and transport protocol running on that host, is programmed under
the assumption that it is running on a single LAN, then inserting bridges between the
source and destination hosts can have unexpected consequences. For example, if a bridge
becomes congested, it may have to drop frames; in contrast, it is rare that a single Ether-
net ever drops a frame. As another example, the latency between any pair of hosts on an
extended LAN becomes both larger and more highly variable; in contrast, the physical
limitations of a single Ethernet make the latency both small and predictable. As a final
example, it is possible (although unlikely) that frames will be reordered in an extended
LAN; in contrast, frame order is never shuffled on a single Ethernet. The bottom line is
that it is never safe to design network software under the assumption that it will run over
a single Ethernet segment. Bridges happen.

4As we will see in Section 3.3, there are techniques to make ATM networks look more like “conventional” LANSs, such as

Ethernets, and bridges do have a role in this environment.
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3.3 Cell Switching (ATM)

Another switching technology that deserves special attention is asynchronous transfer mode
(ATM). ATM became an important technology in the 1980s and early 1990s for a variety
of reasons, not the least of which is that it was embraced by the telephone industry, which
has historically been less than active in data communications except as a supplier of links
on top of which other people have built networks. ATM also happened to be in the right
place at the right time, as a high-speed switching technology that appeared on the scene
just when shared media like Ethernet and 802.5 were starting to look a bit too slow for
many users of computer networks. In some ways ATM is a competing technology with
Ethernet switching, but the areas of application for these two technologies only partially
overlap.

ATM is a connection-oriented, packet-switched technology, which is to say, it uses
virtual circuits very much in the manner described in Section 3.1.2. In ATM terminol-
ogy, the connection setup phase is called signalling. The main ATM signalling protocol
is known as Q.2931. In addition to discovering a suitable route across an ATM network,
Q.2931 is also responsible for allocating resources at the switches along the circuit. This
is done in an effort to ensure the circuit a particular quality of service. Indeed, the QoS
capabilities of ATM are one of its greatest strengths. We return to this topic in Chapter 6,
where we discuss it in the context of similar efforts to implement QoS.

When any virtual connection is set up, it is necessary to put the address of the
destination in the signalling message. In ATM, this address can be in one of several
formats, the most common ones being E.164 and NSAP (network service access point);
the details are not terribly important here, except to note that they are different from the
MAC addresses used in traditional LANG.

One thing that makes ATM really unusual is that the packets that are switched
in an ATM network are of fixed length. That length happens to be 53 bytes—5 bytes
of header followed by 48 bytes of payload—a rather interesting choice that is discussed
in more detail below. To distinguish these fixed-length packets from the more common
variable-length packets normally used in computer networks, they are given a special
name: cells. ATM may be thought of as the canonical example of cell switching.

3.3.1 Cells

All the packet-switching technologies we have looked at so far have used variable-length
packets. Variable-length packets are normally constrained to fall within some bounds.
The lower bound is usually set by the minimum amount of information that needs to
be contained in the packet, which is typically a header with no optional extensions. The
upper bound may be set by a variety of factors; the maximum FDDI packet size, for
example, determines how long each station is allowed to transmit without passing on the
token, and thus determines how long a station might have to wait for the token to reach
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it. Cells, in contrast, are both fixed in length and small in size. While this seems like a
simple enough design choice, there are actually a lot of factors involved, as explained in

the following paragraphs.

Cell Size

Variable-length packets have some nice characteristics. If you only have 1 byte to send
(e.g., to acknowledge the receipt of a packet), you put it in a minimum-sized packet. If
you have a large file to send, however, you break it up into as many maximum-sized pack-
ets as you need. You do not need to send any extraneous padding in the first case, and in
the second, you drive down the ratio of header to data bytes, thus increasing bandwidth
efficiency. You also minimize the total number of packets sent, thereby minimizing the
total processing incurred by per-packet operations. This can be particularly important in
obtaining high throughput, since many network devices are limited not by how many
bits per second they can process but rather by the number of packess per second.

So, why use fixed-length cells? One of the main reasons was to facilitate the im-
plementation of hardware switches. When ATM was being created in the mid- and late
1980s, 10-Mbps Ethernet was the cutting-edge technology in terms of speed. To go
much faster, most people thought in terms of hardware. Also, in the telephone world,
people think big when they think of switches—telephone switches often serve tens of
thousands of customers. Fixed-length packets turn out to be a very helpful thing if you
want to build fast, highly scalable switches. There are two main reasons for this:

1 It is easier to build hardware to do simple jobs, and the job of processing packets
is simpler when you already know how long each one will be;

2 If all packets are the same length, then you can have lots of switching elements
all doing much the same thing in parallel, each of them taking the same time to

do its job.

This second reason, the enabling of parallelism, greatly improves the scalability of switch
designs. It would be overstating the case to say that fast parallel hardware switches can
only be built using fixed-length cells. However, it is certainly true that cells ease the task
of building such hardware and that there was a lot of knowledge available about how to
build cell switches in hardware at the time the ATM standards were being defined.
Another nice property of cells relates to the behavior of queues. Queues build up in
a switch when traffic from several inputs may be heading for a single output. In general,
once you extract a packet from a queue and start transmitting it, you need to continue
until the whole packet is transmitted; it is not practical to preempt the transmission of
a packet. The longest time that a queue output can be tied up is equal to the time it
takes to transmit a maximum-sized packet. Fixed-length cells mean that a queue output
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is never tied up for more than the time it takes to transmit one cell, which is almost
certainly shorter than the maximum-sized packet on a variable-length packet network.
Thus, if tight control over the latency that is being experienced by cells when they pass
through a queue is important, cells provide some advantage. Of course, long queues can
still build up, and there is no getting around the fact that some cells will have to wait
their turn. What you get from cells is not much-shorter queues but potentially finer
control over the behavior of queues.

An example will help to clarify this idea. Imagine a network with variable-length
packets, where the maximum packet length is 4 KB and the link speed is 100 Mbps. The
time to transmit a maximum-sized packet is 4,096 x 8/100 = 327.68 us. Thus, a high-
priority packet that arrives just after the switch starts to transmit a 4-KB packet will have
to sit in the queue 327.68 s waiting for access to the link. In contrast, if the switch
were forwarding 53-byte cells, the longest wait would be 53 x 8/100 = 4.24 us. This
may not seem like a big deal, but the ability to control delay and especially to control its
variation with time (jitter) can be important for some applications.

Queues of cells also tend to be a little shorter than queues of packets, for the follow-
ing reason. When a packet begins to arrive in an empty queue, it is typical for the switch
to have to wait for the whole packet to arrive before it can start transmitting the packet
on an outgoing link. This means that the link sits idle while the packet arrives. However,
if you imagine a large packet being replaced by a “train” of small cells, then as soon as
the first cell in the train has entered the queue, the switch can transmit it. Imagine in
the example above what would happen if two 4-KB packets arrived in a queue at about
the same time. The link would sit idle for 327.68 s while these two packets arrive, and
at the end of that period we would have 8 KB in the queue. Only then could the queue
start to empty. If those same two packets were sent as trains of cells, then transmission of
the cells could start 4.24 s after the first train started to arrive. At the end of 327.68 us,
the link would have been active for a little over 323 s, and there would be just over
4 KB of data left in the queue, not 8 KB as before. Shorter queues mean less delay for all
the traffic.

Having decided to use small, fixed-length packets, the next question is, what is
the right length to fix them at? If you make them too short, then the amount of header
information that needs to be carried around relative to the amount of data that fits in one
cell gets larger, so the percentage of link bandwidth that is actually used to carry data goes
down. Even more seriously, if you build a device that processes cells at some maximum
number of cells per second, then as cells get shorter, the total data rate drops in direct
proportion to cell size. An example of such a device might be a network adaptor that
reassembles cells into larger units before handing them up to the host. The performance
of such a device depends directly on cell size. On the other hand, if you make the cells too
big, then there is a problem of wasted bandwidth caused by the need to pad transmitted
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data to fill a complete cell. If the cell payload size is 48 bytes and you want to send 1 byte,
you'll need to send 47 bytes of padding. If this happens a lot, then the utilization of the

link will be very low.

Efficient link utilization is not the
only factor that influences cell size. For ex-
ample, cell size has a particular effect on
voice traffic, and since ATM grew out of
the telephony community, one of the ma-
jor concerns was that it be able to carry
voice effectively. The standard digital en-
coding of voice is done at 64 Kbps (8-bit
samples taken at 8 KHz). To maximize ef-
ficiency, you want to collect a full cell’s
worth of voice samples before transmitting
a cell. A sampling rate of 8 KHz means
that 1 byte is sampled every 125 us, so
the time it takes to fill an #-byte cell with
samples is 7 x 125 pus. If cells are, say,
1,000 bytes long, it would take 125 ms
just to collect a full cell of samples be-
fore you even start to transmit it to the re-
ceiver. That amount of latency starts to be
quite noticeable to a human listener. Even
considerably smaller latencies create prob-
lems for voice, particularly in the form
of echoes. Echoes can be eliminated by
a piece of technology called an echo can-
celer, but this adds cost to a telephone net-
work that many network operators would
rather avoid.

All of the above factors caused a great
deal of debate in the international stan-
dards bodies when ATM was being stan-
dardized, and the fact that no length was
perfect in all cases was used by those op-
posed to ATM to argue that fixed-length
cells were a bad idea in the first place.
As is so often the case with standards, the
end result was a compromise that pleased

A Compromise of 48 Bytes

The explanation for why the payload
of an ATM cell is 48 bytes is an in-
teresting one and is an excellent case
study in the process of standardiza-
tion. As the ATM standard was evolv-
ing, the U.S. telephone companies
were pushing for a 64-byte cell size,
while the European companies were
advocating 32-byte cells. The reason
that the Europeans wanted the smaller
size was that since the countries they
served were of a small enough size,
they would not have to install echo
cancelers if they were able to keep the
latency induced by generating a com-
plete cell small enough. Thirty-two-
byte cells were adequate for this pur-
pose. In contrast, the United States is
a large enough country that the phone
companies had to install echo can-
celers anyway, and so the larger cell
size reflected a desire to improve the
header-to-payload ratio.

Averaging is a classic form of
compromise—48 bytes is simply the
average of 64 bytes and 32 bytes. So as
not to leave the false impression that
this use of compromise-by-averaging
is an isolated incident, we note that
the seven-layer OSI model was actu-
ally a compromise between six and
eight layers.
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Figure 3.16 ATM cell format at the UNI.

almost no one: 48 bytes was chosen as the length for the ATM cell payload. Probably the
greatest tragedy of this choice is that it is not a power of two, which means that it is quite
a mismatch to most things that computers handle, like pages and cache lines. Rather less
controversially, the header was fixed at 5 bytes. The format of an ATM cell is shown in
Figure 3.16; note that this figure shows the field lengths in bits.

Cell Format

The ATM cell actually comes in two different formats, depending on where you look in
the network. The one shown in Figure 3.16 is called the UNI (user-network interface)
format; the alternative is the NNI (network-network interface). The UNI format is used,
of course, at the user-to-network interface. This is likely to be the interface between
a telephone company and one of its customers. The network-to-network interface is
likely to be between a pair of phone companies. The only significant difference in cell
formats is that the NNI format replaces the GFC field with 4 extra bits of VPI. Clearly,
understanding all the three-letter acronyms (TLAs) is a key part of understanding ATM.

Starting from the leftmost byte of the cell (which is the first one transmitted), the
UNTI cell has 4 bits for generic flow control (GFC). These bits have not been widely
used, but they were intended to have local significance at a site and could be overwritten
in the network. The basic idea behind the GFC bits was to provide a means to arbitrate
access to the link if the local site used some shared medium to connect to ATM.

The next 24 bits contain an 8-bit virtual path identifier (VPI) and a 16-bit virtual
circuit identifier (VCI). The difference between the two is explained below, but for now
it is adequate to think of them as a single 24-bit identifier that is used to identify a virtual
connection, just as in Section 3.1.2. Following the VPI/VCI is a 3-bit Type field that
has eight possible values. Four of them, when the first bit in the field is set, relate to
management functions. When that bit is clear, it means that the cell contains user data.
In this case, the second bit is the explicit forward congestion indication (EFCI) bit and
the third is the “user signalling” bit. The former can be set by a congested switch to tell an
end node that it is congested—it has its roots in the DECbit described in Section 6.4.1—
in ATM, it is used for congestion control in conjunction with the available bit rate (ABR)
service class described in Section 6.5.3. The third bit is used primarily in conjunction
with ATM Adaptation Layer 5 to delineate frames, as discussed below.
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Next is a bit to indicate cell loss priority (CLP); a user or network element may set
this bit to indicate cells that should be dropped preferentially in the event of overload.
For example, a video coding application could set this bit for cells that, if dropped, would
not dramatically degrade the quality of the video. A network element might set this bit
for cells that have been transmitted by a user in excess of the amount that was negotiated.

The last byte of the header is an 8-bit CRC, known as the header error check
(HEC). It uses the CRC-8 polynomial given in Section 2.4.3 and provides error detec-
tion and single-bit error correction capability on the cell header only. Protecting the cell
header is particularly important because an error in the VCI will cause the cell to be
misdelivered.

3.3.2 Segmentation and Reassembly

Up to this point, we have assumed that a low-level protocol could just accept the packet
handed down to it by a high-level protocol, attach its own header, and pass the packet
on down. This is not possible with ATM, however, since the packets handed down from
above are often larger than 48 bytes, and thus, will not fit in the payload of an ATM
cell. The solution to this problem is to fragment the high-level message into low-level
packets at the source, transmit the individual low-level packets over the network, and
then reassemble the fragments back together at the destination. This general technique
is usually called fragmentation and reassembly. In the case of ATM, however, it is often
called segmentation and reassembly (SAR).

Segmentation is not unique to ATM, but it is much more of a problem than in a
network with a maximum packet size of, say, 1,500 bytes. To address the issue, a protocol
layer was added that sits between ATM and the variable-length packet protocols that
might use ATM, such as IP. This layer is called the ATM Adaptation Layer (AAL), and
to a first approximation, the AAL header simply contains the information needed by
the destination to reassemble the individual cells back into the original message. The
relationship between the AAL and ATM is illustrated in Figure 3.17.

Because ATM was designed to support all sorts of services, including voice, video,
and data, it was felt that different services would have different AAL needs. Thus, four
adaptation layers were originally defined: 1 and 2 were designed to support applications,
like voice, that require guaranteed bit rates, while 3 and 4 were intended to provide
support for packet data running over ATM. The idea was that AAL3 would be used by
connection-oriented packet services (such as X.25) and AAL4 would be used by connec-
tionless services (such as IP). Eventually, the reasons for having different AALs for these
two types of service were found to be insufficient, and the AALs merged into one that is
inconveniently known as AAL3/4. Meanwhile, some perceived shortcomings in AAL3/4
caused a fifth AAL to be proposed, called AAL5. Thus, there are now four AALs: 1, 2,
3/4, and 5. The two that support computer communications are described below.
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Figure 3.177 Segmentation and reassembly in ATM.

ATM Adaptation Layer 3/4

The main function of AAL3/4 is to provide enough information to allow variable-length
packets to be transported across the ATM network as a series of fixed-length cells. That is,
the AAL supports the segmentation and reassembly process. Since we are now working at
a new layer of the network hierarchy, convention requires us to introduce a new name for
a packet—in this case, we call it a prorocol data unit (PDU). The task of segmentation/
reassembly involves two different packet formats. The first of these is the convergence
sublayer protocol data unir (CS-PDU), as depicted in Figure 3.18. The CS-PDU defines
a way of encapsulating variable-length PDUs prior to segmenting them into cells. The
PDU passed down to the AAL layer is encapsulated by adding a header and a trailer, and
the resultant CS-PDU is segmented into ATM cells.

The CS-PDU format begins with an 8-bit common part indicator (CPI), which
indicates which version of the CS-PDU format is in use. Only the value 0 is currently
defined. The next 8 bits contain the beginning tag (Btag), which is supposed to match
the end tag (Etag) for a given PDU. This protects against the situation in which the
loss of the last cell of one PDU and the first cell of another causes two PDUs to be
inadvertently joined into a single PDU and passed up to the next layer in the protocol
stack. The buffer allocation size (BASize) field is not necessarily the length of the PDU
(which appears in the trailer); it is supposed to be a hint to the reassembly process as
to how much buffer space to allocate for the reassembly. The reason for not including

8 8 16 <64 KB 024 8 8 16

CPI Btag BASize User data %7 Pad 0| Etag Len

Figure 3.18 ATM Adaptation Layer 3/4 packet format.
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40 2 4 10 352 (44 bytes) 6 10
ATM header Type| SEQ MID Payload %7 Length | CRC-10

Figure 3.19 ATM cell format for AAL3/4.

the actual length here is that the sending host might not have known how long the CS-
PDU was when it transmitted the header. Before adding the CS-PDU trailer, the user
data is padded to one byte less than a multiple of 4 bytes, by adding up to 3 bytes of
padding. This padding, plus the 0-filled byte, ensures that the trailer is aligned on a 32-
bit boundary, making for more efficient processing. The CS-PDU trailer itself contains
the Etag and the real length of the PDU (Len).

In addition to the CS-PDU header and trailer, AAL3/4 specifies a header and trailer
that are carried in each cell, as depicted in Figure 3.19. Thus, the CS-PDU is actually
segmented into 44-byte chunks; an AAL3/4 header and trailer is attached to each one,
bringing it up to 48 bytes, which is then carried as the payload of an ATM cell.

The first two bits of the AAL3/4 header contain the Type field, which indicates
if this is the first cell of a CS-PDU, the last cell of a CS-PDU, a cell in the middle of a
CS-PDU, or a single-cell PDU (in which case it is both first and last). The official names
for these four conditions are shown in Table 3.5, along with the bit encodings.

Next is a 4-bit sequence number (SEQ), which is intended simply to detect cell
loss or misordering so that reassembly can be aborted. Clearly, a sequence number this
small can miss cell losses if the number of lost cells is large enough. This is followed by
a multiplexing identifier (MID), which can be used to multiplex several PDUs onto a
single connection. The 6-bit Length field shows the number of bytes of PDU that are
contained in the cell; it must equal 44 for BOM and COM cells. Finally, a 10-bit CRC
is used to detect errors anywhere in the 48-byte cell payload.

Figure 3.20 shows the entire encapsulation and segmentation process for AAL3/4.
At the top, the user data is encapsulated with the CS-PDU header and trailer. The CS-

Value | Name | Meaning

10 BOM Beginning of message

00 COM | Continuation of message
01 EOM | End of message

11 SSM Single-segment message

Table 3.5 AAL3/4 Type field.
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Figure 3.20 Encapsulation and segmentation for AAL3/4.

PDU is then segmented into 44-byte payloads, which are encapsulated as ATM cells by
adding the AAL3/4 header and trailer as well as the 5-byte ATM header. Note that the
last cell is only partially filled whenever the CS-PDU is not an exact multiple of 44 bytes.

One thing to note about AAL3/4 is that it exacerbates the fixed per-cell overhead
that we discussed above. With 44 bytes of data to 9 bytes of header, the best possible
bandwidth utilization would be 83%. Note that the efficiency can be considerably less
than that, as illustrated by Figure 3.20, because of the CS-PDU encapsulation and the
partial filling of the last cell.

ATM Adaptation Layer 5

One thing you may have noticed in the discussion of AAL3/4 is that it seems to take a
lot of fields and thus a lot of overhead to perform the conceptually simple function of
segmentation and reassembly. This observation was, in fact, made by several people in
the early days of ATM, and numerous competing proposals arose for an AAL to support
computer communications over ATM. There was a movement, known informally as
“Back the Bit,” that argued that if we could just have 1 bit in the ATM header (as
opposed to the AAL header) to delineate the end of a frame, then segmentation and
reassembly could be accomplished without using any of the 48-byte ATM payload for
segmentation/reassembly information. This movement eventually led to the definition
of the user signalling bit described above and to the standardization of AALS.

What AAL5 does is replace the 2-bit Type field of AAL3/4 with 1 bit of framing
information in the ATM cell header. By setting that 1 bit, we can identify the last cell of
a PDU; the next cell is assumed to be the first cell of the next PDU, and subsequent cells
are assumed to be COM cells until another cell is received with the user signalling bit
set. All the pieces of AAL3/4 that provide protection against lost, corrupt, or misordered
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Figure 3.21 ATM Adaptation Layer 5 packet format.
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Figure 3.22 Encapsulation and segmentation for AALS5.

cells, including the loss of an EOM cell, are provided by the AAL5 CS-PDU packet
format depicted in Figure 3.21.

The AAL5 CS-PDU consists simply of the data portion (the PDU handed down
by the higher-layer protocol) and an 8-byte trailer. To make sure that the trailer always
falls at the tail end of an ATM cell, there may be up to 47 bytes of padding between
the data and the trailer. It is necessary to force the trailer to be at the end of a cell, as
otherwise there would be no way for the entity performing reassembly of the CS-PDU
to find the trailer. The first 2 bytes of the trailer are currently reserved and must be 0.
The length field (Len) is the number of bytes carried in the PDU, not including the
trailer or any padding before the trailer. Finally, there is a 32-bit CRC.

Figure 3.22 shows the encapsulation and segmentation process for AALS. Just like
AAL3/4, the user data is encapsulated to form a CS-PDU (although using only a trailer
in this case). The resulting PDU is then cut up into 48-byte chunks, which are carried
directly inside the payload of ATM cells without any further encapsulation.

Somewhat surprisingly, AAL5 provides almost the same functionality as AAL3/4
without using an extra 4 bytes out of every cell. For example, the CRC-32 detects lost or
misordered cells as well as bit errors in the data. In fact, having a checksum over the entire
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PDU rather than doing it on a per-cell basis as in AAL3/4 provides stronger protection.
For example, it protects against the loss of 16 consecutive cells, an event that would not
be picked up by the sequence number checking of AAL3/4. Also, a 32-bit CRC protects
against longer burst errors than a 10-bit CRC.

The main feature missing from AALS is the ability to provide an additional layer
of multiplexing onto one virtual circuit using the MID. It is not clear whether this is
a significant loss. It is still possible to multiplex traffic from many applications and
higher-layer protocols onto a single VC using AAL5 by carrying a demux key of the
sort described in Section 1.3.1. It just becomes necessary to do the multiplexing on a
packet-by-packet, rather than a cell-by-cell, basis.

There are positive and negative aspects to multiplexing traffic from a lot of differ-
ent applications onto a single VC. For example, if you are being charged for every virtual
circuit you set up across a network, then multiplexing traffic from lots of different appli-
cations onto one connection might be a plus. However, this approach has the drawback
that all applications will have to live with whatever quality of service (e.g., delay and
bandwidth guarantees) has been chosen for that one connection, which may mean that
some applications are not receiving appropriate service.

In general, AALS5 has been wholeheartedly embraced by the computer communi-
cations community (at least by that part of the community that has embraced ATM at
all). For example, it is the preferred AAL in the IETF for transmitting IP datagrams over
ATM. Its more efficient use of bandwidth and simple design are the main features that
make it more appealing than AAL3/4.

3.3.3 Virtual Paths

As mentioned above, ATM uses a 24-bit identifier for virtual circuits, and these circuits
operate almost exactly like the ones described in Section 3.1.2. The one twist is that the
24-bit identifier is split into two parts: an 8-bit virtual path identifier (VPI) and a 16-bit
virtual circuit identifier (VCI). This effectively creates a two-level hierarchy of virtual
connections. To understand how such a hierarchy might work, consider the following
example. (We ignore the fact that in some places there might be a network-network
interface with a different-sized VPI; just assume that 8-bit VPIs are used everywhere.)
Suppose that a corporation has two sites that connect to a public ATM network,
and that at each site the corporation has a network of ATM switches. We could imagine
establishing a virtual path between two sites using only the VPI field. Thus, the switches
in the public network would use the VPI as the only field on which to make forwarding
decisions. From their point of view, this is a virtual circuit network with 8-bit circuit
identifiers. The 16-bit VCI is of no interest to these public switches, and they neither
use the field for switching nor remap it. Within the corporate sites, however, the full
24-bit space is used for switching. Any traffic that needs to flow between the two sites is
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Figure 3.23 Example of a virtual path.

routed to a switch that has a connection to the public network, and its top 8 bits (the
VPI) are mapped onto the appropriate value to get the data to the other site. This idea
is illustrated in Figure 3.23. Note that the virtual path acts like a fat pipe that contains a
bundle of virtual circuits, all of which have the same 8 bits in their most significant byte.

The advantage of this approach is clear: Although there may be thousands or mil-
lions of virtual connections across the public network, the switches in the public network
behave as if there is only one connection. This means that there needs to be much less
connection-state information stored in the switches, avoiding the need for big, expensive
tables of per-VCI information.

Where Are They Now w

3.3.4 Physical Layers for ATM in the LAN
ATM

ATM grew out of the telephony com-
While the layered approach to protocol

munity, who envisioned it as a way to
build large public networks that could
transport voice, video, and data traf-

design might lead you to think that we
do not need to worry about what type of
point-to-point link ATM runs on top of,
this turns out not to be the case. From a
simple pragmatic point of view, when you
buy an ATM switch it comes with some
physical medium over which ATM cells
will be sent. Of course, this is also true for
other networking protocols such as 802.5
and Ethernet. Like these protocols, ATM

can also run over several different physi-

fic. However, it was subsequently em-
braced by segments of the computer
and data communications industries
as a technology to be used in LANs—
a replacement for Ethernet and 802.5.
Its popularity in this realm at a partic-
ular point in time can be attributed to
two main factors:

B ATM is a switched technol-
ogy, whereas Ethernet and
802.5 were originally envi-
sioned as shared-media tech-
nologies.

cal media and physical-layer protocols.
From early in the process of stan-
dardizing ATM, it was assumed that
ATM would run on top of a SONET
physical layer (see Section 2.3.3). While
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B ATM was designed to op-
erate on links with speeds
of 155 Mbps and above,
compared to the original
10 Mbps of Ethernet and 4
or 16 Mbps of token rings.

When ATM switches first be-
came available, these were significant
advantages over the existing solutions.
However, it should be apparent that
the distinction between shared-media
and switched networks is no longer
clear-cut. A bridge that connects a
number of shared-media networks to-
gether is also a switch, and it is pos-
sible (and now common) to connect
only one host to each segment, giv-
ing it dedicated access to that band-
width. At the same time as ATM
switches were appearing on the scene,
high-performance Ethernet switches
became available. These devices have
large numbers of ports and high total
throughput. The 100-Mbps Ethernet
standard was defined, and so the link
speed of Ethernet—which could be
achieved over copper—began to ap-
proach that of ATM (and ultimately
surpassed it).

Initially this was not enough to
kill off ATM in the LAN. In fact,
significant effort went into develop-
ing a technology called ATM LAN
emulation, or LANE. The key chal-
lenge faced in LANE was the fact
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it is true that standard ways of carrying
ATM cells inside a SONET frame have
been defined, and that you can buy ATM-
over-SONET products, the two are en-
tirely separable. For example, you can lease
a SONET link from a phone company and
send whatever you want over it, including
variable-length packets, and this is widely
done today.

Also, you can send ATM cells over
many other physical layers instead of
SONET, and standards have been de-
fined for these encapsulations. A notable
early physical layer for ATM was TAXI,
the physical layer used in FDDI (see Sec-
tion 2.7). ATM today is widely used over
Digital Subscriber Line (DSL) links of var-
ious types, and wireless physical layers for
ATM are also defined.

When you send ATM cells over some
physical medium, the main issue is how to
find the boundaries of the ATM cells; this
is exactly the framing problem described
in Chapter 2. With SONET, there are two
easy ways to find the boundaries. One of
the overhead bytes in the SONET frame
can be used as a pointer into the SONET
payload to the start of an ATM cell. Hav-
ing found the start of one cell, it is known
that the next cell starts 53 bytes further
on in the SONET payload, and so on. In
theory, you only need to read this pointer
once, but in practice, it makes sense to read
it every time the SONET overhead goes by
so that you can detect errors or resynchro-
nize if needed.

The other way to find the bound-
aries of ATM cells takes advantage of the
fact that every cell has a CRC in the fifth
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byte of the cell. Thus, if you run a CRC
calculation over the last 5 bytes received
and the answer comes out to indicate no
errors, then it is probably true that you
have just read an ATM header. If this
happens several times in a row at 53-byte
intervals, you can be pretty sure you have
found the cell boundary.

3.4 Implementation
and Performance

So far, we have talked about what a switch
must do without discussing how to do
it. There is a very simple way to build
a switch: Buy a general-purpose worksta-
tion and equip it with a number of net-
work interfaces. Such a device, running
suitable software, can receive packets on
one of its interfaces, perform any of the
switching functions described above, and
send packets out another of its interfaces.
This is, in fact, a popular way to build
experimental switches when you want to
be able to do things like develop new
routing protocols because it offers ex-
treme flexibility and a familiar program-
ming environment. It is also not too far
removed from the architecture of many
low-end routers (which, as we will see in
the next chapter, have much in common
with switches).

Figure 3.24 shows a workstation
with three network interfaces used as a
switch. The figure shows a path that a
packet might take from the time it arrives
on interface 1 undil it is output on inter-
face 2. We have assumed here that the
workstation has a mechanism to move

here Are They Now l_”_
that ATM doesn’t behave like a “tradi-
tional” shared media LAN like Eth-
ernet or token ring. On traditional
LANSs it is easy to implement broad-
cast (sending to everybody) and multi-
cast (sending to a group). Thus, many
of the protocols that people depend
on in their LANs—for example, the
Address Resolution Protocol (ARP)
described in Section 4.1.5—depend
in turn on the ability of the LAN
to support multicast and broadcast.
However, because of its connection-
oriented and switched nature, ATM
lacks a simple broadcast mechanism.
For example, how can you broadcast
to all nodes on an ATM LAN if you
don’t know all their addresses and set
up VCs to all of them?

LANE (which might be more
correctly called “shared-media emu-
lation”) adds functionality to ATM
LANSs so that anything that runs over
a shared-media LAN can operate over
an ATM LAN. While LANE might
now be considered something of a his-
torical curiosity, it is an interesting ex-
ample of how protocol layering can
work. By making the “ATM layer”
look more like an Ethernet, higher-
layer protocols that worked well over
Ethernet continued to work without
modification.

To emulate the shared media be-
havior of traditional LANs, LANE

introduced a number of servers into
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each LAN, called the LAN emula-
tion configuration server (LECS), the
LAN emulation server (LES), and
the broadcast and unknown server
(BUS). The first two servers play roles
in bootstrapping and configuring the
network, while the BUS has the crit-
ical job of emulating the broadcast
functionality of a traditional LAN.
The BUS is normally the root of a
point-to-multipoint VC, with all the
other nodes on the LAN as the leaves.
Thus, to send a packet to all nodes on
an ATM LAN, you need only send it
to the BUS, which then forwards it on
to the multipoint VC.

It should be clear that ATM
LAN emulation is fairly complex, and
the BUS in particular presents a scal-
ability bottleneck. Perhaps as a re-
sult of these factors, plus the fact that
ATM ultimately offered few real ad-
vantages over Ethernet, LANE is no
longer widely used.
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data directly from an interface to its main
memory without having to be directly
copied by the CPU, that is, direct mem-
ory access (DMA) as described in Sec-
tion 2.1.1. Once the packet is in memory,
the CPU examines its header to determine
on which interface the packet should be
sent out. It then uses DMA to move the
packet out to the appropriate interface.
Note that Figure 3.24 does not show the
packet going to the CPU because the CPU
inspects only the header of the packet; it
does not have to read every byte of data in
the packet.

The main problem with using a
workstation as a switch is that its perfor-
mance is limited by the fact that all pack-
ets must pass through a single point of
contention: In the example shown, each
packet crosses the 1/O bus twice and is
written to and read from main mem-
ory once. The upper bound on aggregate
throughput of such a device (the total
sustainable data rate summed over all in-
puts) is, thus, either half the main memory
bandwidth or half the I/O bus bandwidth,
whichever is less. (Usually, it’s the I/O bus
bandwidth.) For example, a workstation

with a 133-MHz, 64-bit wide I/O bus can transmit data at a peak rate of a little over
8 Gbps. Since forwarding a packet involves crossing the bus twice, the actual limit is
4 Gbps—enough to build a switch with a fair number of 100 Mbps Ethernet ports,
for example, but hardly enough for a high-end router in the core of the Internet. (We'll
return to the subject of router implementation in Section 4.2.6.)

Moreover, this upper bound also assumes that moving data is the only problem—a
fair approximation for long packets but a bad one when packets are short. In the latter
case, the cost of processing each packet—parsing its header and deciding which output
link to transmit it on—is likely to dominate. Suppose, for example, that a workstation
can perform all the necessary processing to switch 1 million packets each second. This
is sometimes called the packet per second (pps) rate. (This number is representative of
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Figure 3.24 A workstation used as a packet switch.

what is achievable on today’s high-end PCs.) If the average packet is short, say, 64 bytes,
this would imply

Throughput = pps x (BitsPerPacket)
=1x10°x 64 x 8
=512 x 10°

that is, a throughput of 512 Mbps—substantially below the range that users are demand-
ing from their networks today. Bear in mind that this 512 Mbps would be shared by all
users connected to the switch, just as the 10 Mbps of an Ethernet is shared among all
users connected to the shared medium. Thus, for example, a 10-port switch with this
aggregate throughput would only be able to cope with an average data rate of 51.2 Mbps
on each port.

To address this problem, hardware designers have come up with a large array
of switch designs that reduce the amount of contention and provide high aggregate
throughput. Note that some contention is unavoidable: If every input has data to send
to a single output, then they cannot all send it at once. However, if data destined for
different outputs is arriving at different inputs, a well-designed switch will be able to
move data from inputs to outputs in parallel, thus increasing the aggregate throughput.

3.4.1 Ports

Most switches look conceptually similar to the one shown in Figure 3.25. They consist
of a number of input ports and outpur porss, and a fabric. There is usually at least one
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Figure 3.25 A 4 x 4 switch.

control processor in charge of the whole switch that communicates with the ports either

directly or, as shown here, via the switch fabric. The ports communicate with the outside

world. They may contain fiber-optic receivers and lasers, buffers to hold packets that are

waiting to be switched or transmitted, and often a significant amount of other circuitry

that enables the switch to function. The fabric has a very simple and well-defined job:

When presented with a packet, deliver it to the right output port.
One of the jobs of the ports, then, is to deal with the complexity of the real world
in such a way that the fabric can do its relatively simple job. For example, suppose that

this switch is supporting a virtual circuit model of communication. In general, the virtual

Defining Throughput

It turns out to be difficult to de-
fine precisely the throughput of a
switch. Intuitively, we might think
that if a switch has » inputs that
each support a link speed of s;, then
the throughput would just be the
sum of all the 5;. This is actually the
best possible throughput that such a
switch could provide, but in prac-
tice almost no real switch can guar-
antee that level of performance. One
reason for this is simple to under-
stand. Suppose that, for some period

circuit mapping tables described in Sec-
tion 3.1.2 are located in the ports. The
ports maintain lists of virtual circuit iden-
tifiers that are currently in use, with in-
formation about what output a packet
should be sent out on for each VCI and
how the VCI needs to be remapped to
ensure uniqueness on the outgoing link.
Similarly, the ports of an Ethernet switch
store tables that map between Ether-
net addresses and output ports (bridge
forwarding tables as described in Sec-
tion 3.2). In general, when a packet is
handed from an input port to the fabric,
the port has figured out where the packet
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needs to go, and either the port sets up
the fabric accordingly by communicating
some control information to it, or it at-
taches enough information to the packet
itself (e.g., an output port number) to al-
low the fabric to do its job automatically.
Fabrics that switch packets by looking only
at the information in the packet are re-
ferred to as “self-routing,” since they re-
quire no external control to route packets.
An example of a self-routing fabric is dis-
cussed below.

The input port is the first place to
look for performance bottlenecks. The in-
put port has to receive a steady stream of
packets, analyze information in the header
of each one to determine which output
port (or ports) the packet must be sent to,
and pass the packet on to the fabric. The
type of header analysis that it performs
can range from a simple table lookup on
a VCI to complex matching algorithms
that examine many fields in the header.
This is the type of operation that some-
times becomes a problem when the average
packet size is very small. Consider, for ex-
ample, 64-byte packets arriving on a port
connected to an OC-48 (2.48-Gbps) link.
Such a port needs to process packets at a
rate of

2.48 x 10° = (64 x 8) = 4.83 x 10° pps

In other words, when small packets are
arriving as fast as possible on this link
(the worst-case scenario that most ports
are engineered to handle), the input port
has approximately 200 ns to process each
packet.

of time, all the traffic arriving at the
switch needed to be sent to the same
output. As long as the bandwidth of
that output is less than the sum of the
input bandwidths, then some of the
traffic will need to be either buffered
or dropped. With this particular traf-
fic pattern, the switch could not pro-
vide a sustained throughput higher
than the link speed of that one out-
put. However, a switch might be able
to handle traffic arriving at the full
link speed on all inputs if it is distrib-
uted across all the outputs evenly; this
would be considered optimal.
Another factor that affects the
performance of switches is the size of
packets arriving on the inputs. For
an ATM switch, this is normally not
an issue because all “packets” (cells)
are the same length. But for Ether-
net switches or IP routers, packets
of widely varying sizes are possible.
Some of the operations that a switch
must perform have a constant over-
head per packet, so a switch is likely
to perform differently depending on
whether all arriving packets are very
short, very long, or mixed. For this
reason, routers or switches that for-
ward variable-length packets are of-
ten characterized by a packet per second
(pps) rate as well as a throughput in
bits per second. The pps rate is usually
measured with minimum-sized pack-
ets. The first thing to notice about this
discussion is that the throughput of
the switch is a function of the traffic
to which it is subjected. One of the
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things that switch designers spend a
lot of their time doing is trying to
come up with traffic models that ap-
proximate the behavior of real data
traffic. It turns out that it is extremely
difficult to achieve accurate models.
There are several elements to a traffic
model. The main ones are (1) when
do packets arrive, (2) what outputs are
they destined for, and (3) how big are
they.

Traffic modeling is a well-estab-
lished science that has been extremely
successful in the world of telephony,
enabling telephone companies to en-
gineer their networks to carry ex-
pected loads quite efficiently. This is
partly because the way people use the
phone network does not change that
much over time: The frequency with
which calls are placed, the amount of
time taken for a call, and the tendency
of everyone to make calls on Mother’s
Day have stayed fairly constant for
many years.” By contrast, the rapid
evolution of computer communica-
tions, where a new application like
Napster can change the traffic patterns
almost overnight, has made effective
modeling of computer networks much
more difficult. Nevertheless, there are
some excellent books and articles on
the subject that we list at the end of
the chapter.
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Another key function of ports is
buffering. Observe that buffering can hap-
pen in either the input or the output port;
it can also happen within the fabric (some-
times called internal buffering). Simple in-
put buffering has some serious limitations.
Consider an input buffer implemented as
a FIFO. As packets arrive at the switch,
they are placed in the input buffer. The
switch then tries to forward the packets at
the front of each FIFO to their appropri-
ate output port. However, if the packets
at the front of several different input ports
are destined for the same output port at
the same time, then only one of them can
be forwarded;® the rest must stay in their
input buffers. The drawback of this feature
is that those packets left at the front of the
input buffer prevent other packets further
back in the buffer from getting a chance
to go to their chosen outputs, even though
there may be no contention for those out-
puts. This phenomenon is called head-of-
line blocking. A simple example of head-
of-line blocking is given in Figure 3.26,
where we see a packet destined for port 1
blocked behind a packet contending for
port 2. It can be shown that when traffic
is uniformly distributed among outputs,
head-of-line blocking limits the through-
put of an input-buffered switch to 59%
of the theoretical maximum (which is
the sum of the link bandwidths for the
switch). Thus, the majority of switches
use either pure output buffering or a mix-

5The advent of dial-up connections to the Internet did however cause a significant change in the average length of calls.

GFor a simple input-buffered switch, exactly one packet at a time can be sent to a given output port. It is possible to

design switches that can forward more than one packet to the same output at once, at a cost of higher switch complexity,

but there is always some upper limit on the number.
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Figure 3.26 Simple illustration of head-of-line blocking.

ture of internal and output buffering. To i ‘i
Those that do rely on input buffers use o glve you a sense of the
. range of throughputs that designers
sophisticated buffer management schemes )
o avoid head-of-line blocking, need to be concerned about, a high-
Buffers actually perform a more com- end router used in the Internet at

plex task than just holding onto packets
that are waiting to be transmitted. Buffers

the time of writing might support
10 OC-768 links for a throughput
of approximately 400 Gbps. A 400-
Gbps switch, if called upon to han-
dle a steady stream of 64-byte packets,

are the main source of delay in a switch,
and also the place where packets are most
likely to get dropped due to lack of space

would need a packet per second rate
to store them. The buffers therefore are p p

of

the main place where the quality of service

characteristics'of a swit.ch are determined. 400 x 10° = (64 x 8) = 781 X 106 pps
For example, if a certain packet has been

sent along a VC that has a guaranteed de-

lay, it cannot afford to sit in a buffer for very long. This means that the buffers, in
general, must be managed using packet scheduling and discard algorithms that meet a
wide range of QoS requirements. We talk more about these issues in Chapter 6.

3.4.2 Fabrics

While there has been an abundance of impressive research conducted on the design of
efficient and scalable fabrics, it is sufficient for our purposes here to understand only the
high-level properties of a switch fabric. A switch fabric should be able to move pack-
ets from input ports to output ports with minimal delay and in a way that meets the
throughput goals of the switch. That usually means that fabrics display some degree of
parallelism. A high-performance fabric with 7 ports can often move one packet from
each of its 7 ports to one of the output ports at the same time. A sample of fabric types
includes the following:

B Shared Bus. This is the type of “fabric” found in a conventional workstation
used as a switch, as described above. Because the bus bandwidth determines
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the throughput of the switch, high-performance switches usually have specially
designed busses rather than the standard busses found in PCs.

B Shared Memory. In a shared memory switch, packets are written into a memory
location by an input port and then read from memory by the output ports.
Here it is the memory bandwidth that determines switch throughput, so wide
and fast memory is typically used in this sort of design. A shared memory switch
is similar in principle to the shared bus switch, except it usually uses a specially
designed, high-speed memory bus rather than an I/O bus.

B Crossbar. A crossbar switch is a matrix of pathways that can be configured to
connect any input port to any output port. Figure 3.27 shows a 4 x 4 crossbar
switch. The main problem with crossbars is that, in their simplest form, they
require each output port to be able to accept packets from all inputs at once,
implying that each port would have a memory bandwidth equal to the total
switch throughput. In reality, more complex designs are typically used to address
this issue (see, for example, the Knockout switch and McKeown’s virtual output-
buffered approach in the Further Reading section).

B Self-routing. As noted above, self-routing fabrics rely on some information in
the packet header to direct each packet to its correct output. Usually a special
“self-routing header” is appended to the packet by the input port after it has de-
termined which output the packet needs to go to, as illustrated in Figure 3.28;
this extra header is removed before the packet leaves the switch. Self-routing fab-

—
—
-
—
—_—
-
—
—
-
—
—_—
-

Figure 3.27 A 4 x 4 crossbar switch.
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Figure 3.28 A self-routing header is applied to a packet at input to enable the fabric to
send the packet to the correct output, where it is removed. (a) Packet arrives at input
port; (b) input port attaches self-routing header to direct packet to correct output;

(c) self-routing header is removed at output port before packet leaves switch.

rics are often built from large numbers of very simple 2 x 2 switching elements
interconnected in regular patterns, such as the banyan switching fabric shown
in Figure 3.29. For some examples of self-routing fabric designs see the Further
Reading section at the end of this chapter.

Self-routing fabrics are among the most scalable approaches to fabric design, and
there has been a wealth of research on the topic, some of which is listed in the Further
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Figure 3.29 Routing packets through a banyan network. The 3-bit numbers represent
values in the self-routing headers of four arriving packets.

Reading section. Many self-routing fabrics resemble the one shown in Figure 3.29, con-
sisting of regularly interconnected 2 x 2 switching elements. For example, the 2 x 2
switches in the banyan network perform a simple task: They look at 1 bit in each self-
routing header and route packets toward the upper output if it is zero or toward the
lower output if it is one. Obviously, if two packets arrive at a banyan element at the same
time and both have the bit set to the same value, then they want to be routed to the same
output and a collision will occur. Either preventing or dealing with these collisions is a
main challenge for self-routing switch design. The banyan network is a clever arrange-
ment of 2 X 2 switching elements that routes all packets to the correct output without
collisions if the packets are presented in ascending order.

We can see how this works in an example, as shown in Figure 3.29, where the self-
routing header contains the output port number encoded in binary. The switch elements
in the first column look at the most significant bit of the output port number and route
packets to the top if that bitis a 0 or the bottom if it is a 1. Switch elements in the second
column look at the second bit in the header, and those in the last column look at the least
significant bit. You can see from this example that the packets are routed to the correct
destination port without collisions. Notice how the top outputs from the first column of
switches all lead to the top half of the network, thus getting packets with port numbers
0-3 into the right half of the network. The next column gets packets to the right quarter
of the network, and the final column gets them to the right output port. The clever part
is the way switches are arranged to avoid collisions. Part of the arrangement includes the
“perfect shuffle” wiring pattern at the start of the network. To build a complete switch
fabric around a banyan network would require additional components to sort packets
before they are presented to the banyan. The Batcher-banyan switch design is a notable
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example of such an approach. The Batcher network, which is also built from a regular
interconnection of 2 x 2 switching elements, sorts packets into descending order. On
leaving the Batcher network, the packets are then ready to be directed to the correct
output, with no risk of collisions, by the banyan network.

One of the interesting things about switch design is the wide range of different
types of switches that can be built using the same basic technology. For example, both
the Ethernet switches and ATM switches discussed in this chapter, as well as Internet
routers discussed in the next chapter, are all built using designs such as those outlined in
this section.

3.5 Summary

This chapter has started to look at some of the issues involved in building large scalable
networks by using switches, rather than just links, to interconnect hosts. There are several
different ways to decide how to switch packets; the two main ones are the datagram
(connectionless) model and the virtual circuit (connection-oriented) model.

An important application of switching is the interconnection of shared-media
LANs. LAN switches, or bridges, use techniques such as source address learning to
improve forwarding efficiency, and spanning tree algorithms to avoid looping. These
switches are extensively used in data centers, campuses, and corporate networks.

The most widespread uses of virtual circuit switching are in Frame Relay and ATM
switches. ATM introduces some particular challenges through the use of cells—short,
fixed-length packets. The availability of relatively high-throughput ATM switches has
contributed to the acceptance of the technology, although it has certainly not swept all
other technologies aside as some predicted. One of the main uses of ATM today is as a
multiplexing technology in DSL access networks.

Independent of the specifics of the switching technology, switches need to for-
ward packets from inputs to outputs at a high rate, and in some circumstances, switches
need to grow to a large size to accommodate hundreds or thousands of ports. Building
switches that both scale and offer high performance at acceptable cost is complicated by
the problem of contention, and as a consequence, switches often employ special-purpose
hardware rather than being built from general-purpose workstations.

In addition to the issues of contention discussed here, we observe that the related
problem of congestion has come up throughout this chapter. We will postpone our dis-
cussion of congestion control until Chapter 6, after we have seen more of the network
architecture. We do this because it is impossible to fully appreciate congestion (both the
problem and how to address it) without understanding both what happens inside the
network (the topic of this and the next chapter) and what happens at the edges of the
network (the topic of Chapter 5).
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ATM was originally envisioned
by many of its proponents as the [ e NN =2 - | 1S S UE
foundation for the “Broadband Inte-
grated Services Digital Network,” and

The Future of Switching

it was predicted in some quarters that
ATM would displace all other net-
working technologies. Hosts would
acquire ATM adaptors instead of Ethernet ports, enabling “ATM to the desktop.” Phone

companies everywhere would deploy ATM, and as the technology that supports all media
types—voice, video, and data—it would remove the need for any other type of network.

It is now apparent that this scenario is unlikely to play out. The success of Eth-
ernet switches in particular has killed off the ATM-to-the-desktop movement. Gigabit
Ethernet and 10-gigabit Ethernet technologies have successfully addressed the need for
high-speed LAN connections where ATM might once have been used. Meanwhile, the
Internet Protocol (IP) has become the dominant network layer protocol in wide area
networks. In fact one now hears ATM referred to as a “legacy protocol,” a term once
used by proponents of ATM to refer to protocols that predated it.

The more interesting question at this stage is “How far can Ethernet go?” Once
confined to local area networks, Ethernet has now become quite popular as an access
technology in metropolitan area networks. This application of Ethernet has been en-
abled by the ubiquity (and relatively low cost) of Ethernet switching, and increases in
the distances over which Ethernet frames can be transmitted (e.g., by sending the frames
over fiber).

One place where ATM has had continued success is in DSL access networks, where
it is typically used to connect residential customers to the Internet. However, even this
market is beginning to be addressed by Ethernet switching.

Thus, Ethernet appears likely to be the dominant switching technology of the fu-
ture. As we will see in the next chapter, the chief limitation of Ethernet-based networks
is their scalability to very large numbers of nodes. Even that limitation is something that
is now being tackled by the current generation of researchers, suggesting even broader
applicability of Ethernet in the future.

FURTHER READING

The seminal paper on bridges, in particular the spanning tree algorithm, is the arti-
cle by Perlman listed below. There is a wealth of survey papers on ATM; the article
by Turner, an ATM pioneer, is one of the earliest to propose the use of a cell-based
network for integrated services. The third paper describes the Sunshine switch and
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is especially interesting because it provides insights into the important role of traffic
analysis in switch design. In particular, the Sunshine designers were among the first
to realize that cells were unlikely to arrive at a switch in a totally uncorrelated way
and thus were able to factor these correlations into their design. Finally, McKeown’s
paper describes an approach to switch design that uses cells internally but has been
used commercially as the basis for high-performance routers forwarding variable-length
packets.

B Perlman, R. “An Algorithm for Distributed Computation of Spanning Trees in
an Extended LAN.” Proceedings of the Ninth Data Communications Symposium,
pp. 44-53, September 1985.

B Turner, J. S. “Design of an Integrated Services Packet Network.” Proceedings of
the Ninth Data Communications Symposium, pp. 124—133, September 1985.

B Giacopelli, J. N., et al. “Sunshine: A High-Performance Self-Routing Broad-
band Packet-Switched Architecture.” IEEE Journal of Selected Areas in Commu-
nications (JSAC) 9(8):1289-1298, October 1991.

B McKeown, N. “The iSLIP Scheduling Algorithm for Input-Queued Switches.”
IEEE Transactions on Networking 7(2):188-201, April 1999.

A good general overview of bridges can be found in another work by Perlman
[Per00]. For a detailed description of many aspects of ATM, with a focus on building
real networks, we recommend the book by Ginsburg [Gin99], even though the world
has moved on somewhat since its publication. Also, as one of the key ATM standards-
setting bodies, the ATM Forum, now part of the MFA Forum, produced many of the
specifications for ATM; the User Network Interface (UNI) specification, version 4.1, is
the most recent at the time of this writing. (See the live reference below.)

There have been literally thousands of papers published on switch architectures.
One early paper that explains Batcher networks well is, not surprisingly, one by Batcher
himself [Bat68]. Sorting networks are explained by Drysdale and Young [DY75], and
an interesting form of crossbar switch is described by Yeh et al. [YHA87]. A survey of
ATM switch architectures appears in Partridge [Par94], and a good overview of the per-
formance of different switching fabrics can be found in Robertazzi [Rob93]. An example
of the design of a switch based on variable-length packets can be found in Gopal and
Guerin [GGY4].

Optical networking is a rich field in its own right, with its own journals, confer-
ences, and so on. We recommend Ramaswami and Sivarajan [RS01] as a good introduc-
tory text in that field.



Exercises 221

An excellent text to read if you want to learn about the mathematical analysis of
network performance is by Kleinrock [Kle75], one of the pioneers of the ARPANET.
Many papers have been published on the applications of queuing theory to packet
switching. We recommend the article by Paxson and Floyd [PF94] as a significant con-
tribution focused on the Internet, and one by Leland et al. [LT'WW94], a paper that in-
troduces the important concept of “long-range dependence” and shows the inadequacy
of many traditional approaches to traffic modeling.

Finally, we recommend the following live references:

m http://www.metroethernetforum.com: The home page of the Metro
Ethernet Forum, which promotes the use of Ethernet as a Metropolitan Area
Network technology.

m http://www.mfaforum.org: The organization that promotes Frame Relay,
ATM, and MPLS; the site contains tutorials and specifications on all these
switching technologies.

EXERCISES

1 Using the example network given in Figure 3.30, give the virtual circuit ta-
bles for all the switches after each of the following connections is established.
Assume that the sequence of connections is cumulative, that is, the first con-
nection is still up when the second connection is established, and so on. Also
assume that the VCI assignment always picks the lowest unused VCI on each
link, starting with 0.

(a) Host A connects to host B.
(b) Host C connects to host G.
(¢) Host E connects to host .
(d) Host D connects to host B.
(e) Host F connects to host J.

(f) Host H connects to host A.

2 Using the example network given in Figure 3.30, give the virtual circuit ta-
bles for all the switches after each of the following connections is established.
Assume that the sequence of connections is cumulative, that is, the first con-
nection is still up when the second connection is established, and so on. Also
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Switch 1 Host E
1

Switch 2
1

Host A

0 Switch 3

Figure 3.30 Example network for Exercises 1 and 2.

assume that the VCI assignment always picks the lowest unused VCI on each
link, starting with 0.

(a) Host D connects to host H.
(b) Host B connects to host G.
(c) Host F connects to host A.
(d) Host H connects to host C.
(e) Host I connects to host E.

(f) Host H connects to host J.

3 For the network given in Figure 3.31, give the datagram forwarding table for
each node. The links are labeled with relative costs; your tables should forward
each packet via the lowest-cost path to its destination.

4 Give forwarding tables for switches S1-S4 in Figure 3.32. Each switch should
have a “default” routing entry, chosen to forward packets with unrecognized
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Figure 3.31 Network for Exercise 3.
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Figure 3.33 Diagram for Exercise 5.

destination addresses toward OUT. Any specific-destination table entries du-
plicated by the default entry should then be eliminated.

5 Consider the virtual circuit switches in Figure 3.33. Table 3.6 lists, for each
switch, what (port, VCI) (or (VCI, interface)) pairs are connected to other.
Connections are bidirectional. List all endpoint-to-endpoint connections.

6 In the source routing example of Section 3.1.3, the address received by B is
not reversible and doesn’t help B know how to reach A. Propose a modification



224 3 Packet Switching
Switch S1 Switch S2 Switch S3
Port VCI| Port VCI Port VCI| Port VCI Port VCI| Port VCI
1 2 3 1 1 1 3 3 1 3 2 1
1 1 2 3 1 2 3 2 1 2 3 1
2 1 3 2

Table 3.6 VCI tables for switches in Figure 3.33 (Exercise 5).

10

1

12

to the delivery mechanism that does allow for reversibility. Your mechanism
should 7oz require giving all switches globally unique names.

Propose a mechanism that virtual circuit switches might use so that if one
switch loses all its state regarding connections, then a sender of packets along a
path through that switch is informed of the failure.

Propose a mechanism that might be used by datagram switches so that if one
switch loses all or part of its forwarding table, affected senders are informed of
the failure.

The virtual circuit mechanism described in Section 3.1.2 assumes that each
link is point-to-point. Extend the forwarding algorithm to work in the case
that links are shared-media connections, for example, Ethernet.

Suppose, in Figure 3.4, that a new link has been added, connecting switch 3
port 1 (where G is now) and switch 1 port 0 (where D is now); neither switch
is “informed” of this link. Furthermore, switch 3 mistakenly thinks that host B
is reached via port 1.

(a) What happens if host A attempts to send to host B, using datagram for-
warding?

(b) What happens if host A attempts to connect to host B, using the virtual
circuit setup mechanism discussed in the text?

Give an example of a working virtual circuit whose path traverses some link
twice. Packets sent along this path should 7oz, however, circulate indefinitely.

In Section 3.1.2, each switch chose the VCI value for the incoming link. Show
that it is also possible for each switch to choose the VCI value for the outbound
link, and that the same VCI values will be chosen by each approach. If each
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Figure 3.34 Network for Exercises 13 and 14.

switch chooses the outbound VCI, is it still necessary to wait one RT'T before
data is sent?

13 Given the extended LAN shown in Figure 3.34, indicate which ports are not
selected by the spanning tree algorithm.

v/ 14 Given the extended LAN shown in Figure 3.34, assume that bridge B1 suffers
catastrophic failure. Indicate which ports are not selected by the spanning tree
algorithm after the recovery process and a new tree has been formed.

15 Consider the arrangement of learning bridges shown in Figure 3.35. Assuming
all are initially empty, give the forwarding tables for each of the bridges B1-B4
after the following transmissions:

B A sends to C.
B Csends to A.

B D sends to C.

Identify ports with the unique neighbor reached directly from that port, that
is, the ports for B1 are to be labeled “A” and “B2.”
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Figure 3.35 Network for Exercises 15 and 16.
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Figure 3.36 Diagram for Exercise 17.

v/ 16 As in the previous problem, consider the arrangement of learning bridges
shown in Figure 3.35. Assuming all are initially empty, give the forwarding
tables for each of the bridges B1-B4 after the following transmissions:

B D sends to C.
B Csends to D.

B A sends to C.

17 Consider hosts X, Y, Z, W and learning bridges B1, B2, B3, with initially

empty forwarding tables, as in Figure 3.36.

(a) Suppose X sends to Z. Which bridges learn where X is? Does Y’s network

interface see this packet?

(b) Suppose Z now sends to X. Which bridges learn where Z is? Does Y’s

network interface see this packet?
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Figure 3.38 Loop for Exercises 19 and 20.

(c) Suppose Y now sends to X. Which bridges learn where Y is? Does Z’s net-

work interface see this packet?

(d) Finally, suppose Z sends to Y. Which bridges learn where Z is? Does W’s

network interface see this packet?

18 Give the spanning tree generated for the extended LAN shown in Figure 3.37,
and discuss how any ties are resolved.

19 Suppose two learning bridges B1 and B2 form a loop as shown in Figure 3.38,
and do not implement the spanning tree algorithm. Each bridge maintains a
single table of (address, interface) pairs.

(a) What will happen if M sends to L?

(b) Suppose a short while later L replies to M. Give a sequence of events that
leads to one packet from M and one packet from L circling the loop in
opposite directions.

20 Suppose that M in Figure 3.38 sends to itself (this normally would never hap-
pen). State what would happen, assuming
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21

22

23

24

25

26

27

(a) The bridges’ learning algorithm is to install (or update) the new (sourcead-
dress, interface) entry before searching the table for the destination address.

(b) The new source address was installed affer destination address lookup.

Consider the extended LAN of Figure 3.12. What happens in the spanning
tree algorithm if bridge B1 does not participate and

(a) Simply forwards all spanning tree algorithm messages?

(b) Drops all spanning tree messages?
Suppose some repeaters (hubs), rather than bridges, are connected into a loop.

(a) What will happen when somebody transmits?

(b) Why would the spanning tree mechanism be difficult or impossible to
implement for repeaters?

(c) Propose a mechanism by which repeaters might detect loops and shut down
some ports to break the loop. Your solution is not required to work 100%
of the time.

Suppose a bridge has two of its ports on the same network. How might the
bridge detect and correct this?

What percentage of an ATM link’s total bandwidth is consumed by the ATM
cell headers? What percentage of the total bandwidth is consumed by all non-
payload bits in AAL3/4 and AALS, when the user data is 512 bytes long?

Explain why AAL3/4 will not detect the loss of 16 consecutive cells of a single
PDU.

The IP datagram for a TCP ACK message is 40 bytes long: it contains 20 bytes
of TCP header and 20 bytes of IP header. Assume that this ACK is traversing
an ATM network that uses AAL5 to encapsulate IP packets. How many ATM
packets will it take to carry the ACK? What if AAL3/4 is used instead?

The CS-PDU for AALS5 contains up to 47 bytes of padding, while the AAL3/4
CS-PDU only contains up to 3 bytes of padding. Explain why the effective
bandwidth of AAL5 is always the same as, or higher than, that of AAL3/4,
given a PDU of a particular size.
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How reliable does an ATM connection have to be in order to maintain a loss

rate of less than one per million for a higher-level PDU of size 20 cells? Assume
AALS.

Assuming the 20-cell AAL5 packet from the previous problem, suppose a final
cell is tacked on the end of the PDU, and that this cell is the XOR of all the
previous cells in the PDU. This allows recovery from any one lost cell. What
cell loss rate now would yield a net one-per-million loss rate for 20 data-cell

PDUs?

Recall that AAL3/4 has a CRC-10 checksum at the end of each cell, while
AALS5 has a single CRC-32 checksum at the end of the PDU. If a PDU is
carried in 12 AAL3/4 cells, then AAL3/4 devotes nearly four times as many
bits to error detection as AALS.

(a) Suppose errors are known to come in bursts, where each burst is small
enough to be confined to a single cell. Find the probability that AAL3/4
fails to detect an error, given that it is known that exactly two cells are
affected. Do the same for three cells. Under these conditions is AAL3/4
more or less reliable than AAL5? Assume that an NV-bit CRC fails to detect
an error with probability 1/2" (which is strictly true only when all errors
are equally likely).

(b) Can you think of any error distribution in which the AAL3/4 would be
more likely than AALS5 to detect an error? Do you think such circumstances
are likely?

Cell switching methods essentially always use virtual circuit routing rather than
datagram routing. Give a specific argument why this is so.

Suppose a workstation has an I/O bus speed of 800 Mbps and memory band-
width of 2 Gbps. Assuming DMA in and out of main memory, how many
interfaces to 45-Mbps T3 links could a switch based on this workstation
handle?

Suppose a workstation has an I/O bus speed of 1 Gbps and memory bandwidth
of 2 Gbps. Assuming DMA in and out of main memory, how many interfaces

to 45 Mbps T3 links could a switch based on this workstation handle?

Suppose a switch can forward packets at a rate of 100,000 per second, regard-
less (within limits) of size. Assuming the workstation parameters described in
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the previous problem, at what packet size would the bus bandwidth become
the limiting factor?

Suppose that a switch is designed to have both input and output FIFO buffer-
ing. As packets arrive on an input port they are inserted at the tail of the FIFO.
The switch then tries to forward the packets at the head of each FIFO to the
tail of the appropriate output FIFO.

(a) Explain under what circumstances such a switch can lose a packet destined
for an output port whose FIFO is empty.

(b) What is this behavior called?

(c) Assume that the FIFO buffering memory can be redistributed freely. Sug-
gest a reshuffling of the buffers that avoids the above problem, and explain
why it does so.

A stage of an 7z X 7 banyan network consists of (/2) 2 x 2 switching elements.
The first stage directs packets to the correct half of the network, the next stage
to the correct quarter, and so on, until the packet is routed to the correct out-
put. Derive an expression for the number of 2 x 2 switching elements needed
to make an 7 X 7 banyan network. Verify your answer for n» = 8.

Describe how a Batcher network works. (See the Further Reading section.)
Explain how a Batcher network can be used in combination with a banyan
network to build a switching fabric.

An Ethernet switch is simply a bridge that has the ability to forward some
number of packets in parallel, assuming the input and output ports are all dis-
tinct. Supposes two such /NV-port switches, for a large value of /V, are each able
to forward individually up to three packets in parallel. They are then connected
to one another in series by joining a pair of ports, one from each switch; the
joining link is the bottleneck as it can, of course, carry only one packet at a
time.

(a) Suppose we choose two connections through this combined switch at ran-
dom. What is the probability that both connections can be forwarded in
parallel? (Hint: This is the probability that at most one of the connections
crosses the link.)

(b) What if three connections are chosen at random?
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39 Suppose a 10-Mbps Ethernet hub (repeater) is replaced by a 10-Mbps switch,
in an environment where all traffic is between a single server and /V “clients.”
Because all traffic must still traverse the server-switch link, nominally there is
no improvement in bandwidth.

(a) Would you expect any improvement in bandwidth? If so, why? Hint: See
Exercises 43 and 44 in Chapter 2.

(b) What would your answer be if the original hub were token ring rather than
Ethernet?

(c) What other advantages and drawbacks might a switch offer versus a hub?
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Every seeming equality conceals a hierarchy.

—Mason Cooley

‘ J : J ¢ have now seen how to build a single network using point-to-point links,
shared media, and switches. The problem is that lots of people have built
networks with these various technologies and they all want to be able to

communicate with each other, not just with the other users of a single network. This

chapter is about the problem of interconnecting different networks.
There are two important prob-
PROBLEM lems that must be addressed when

connecting networks: heterogeneity and

There Is More Than One

scale. Simply stated, the problem of

Network b o
eterogenelty 1S that users on once type

of network want to be able to com-

municate with users on other types of
networks. To further complicate matters, establishing connectivity between hosts on two
different networks may require traversing several other networks in between, each of
which may be of yet another type. These different networks may be Ethernets, token
rings, point-to-point links, or switched networks of various kinds, and each of them is
likely to have its own addressing scheme, media access protocols, service model, and so
on. The challenge of heterogeneity is to provide a useful and fairly predictable host-to-
host service over this hodgepodge of different networks. To understand the problem of
scaling, it is worth considering the growth of the Internet, which has roughly doubled in
size each year for 20 years. This sort of growth forces us to face a number of challenges.
One of these is routing: How can you find an efficient path through a network with mil-
lions, or perhaps billions, of nodes? Closely related to this is the problem of addressing,
the task of providing suitable identifiers for all those nodes.

This chapter looks at a series of approaches to interconnecting networks, and the
problems that must be solved. In doing so, we trace the evolution of the TCP/IP Internet
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in an effort to understand the problems of heterogeneity and scale
in detail, along with the general techniques that can be applied to
them.

The first section introduces the Internet Protocol (IP) and
shows how it can be used to build a scalable, heterogeneous inter-
network. This section includes a discussion of the Internet’s ser-
vice model, which is the key to its ability to handle heterogeneity.
It also describes how the Internet’s hierarchical addressing scheme
has helped the Internet to scale to a relatively large size.

A central aspect of building large heterogeneous internet-
works is the problem of finding efficient, loop-free paths through
the constituent networks. The second section introduces the prin-
ciples of routing and explores the scaling issues of routing proto-
cols, using some of the Internet’s routing protocols as examples.

The third section discusses several of the problems (growing
pains) that the Internet has experienced over the past several years
and introduces a variety of techniques that have been employed to
address these problems. The experience gained from using these
techniques has led to the design of a new version of IP, which is
IP version 6 (IPv6). Throughout all these discussions, we see the
importance of hierarchy in building scalable networks.

The chapter concludes by considering a pair of significant
enhancements to the Internet’s capabilities. The first, multicast,
is an enhancement of the basic service model. We show how
multicast—the ability to deliver the same packets to a group of
receivers efficiently—can be incorporated into an internet, and
we describe several of the routing protocols that have been devel-
oped to support multicast. The second enhancement, multiproto-
col label switching (MPLS), modifies the forwarding mechanism
of IP networks. This modification has enabled some changes in
the way IP routing is performed and in the services offered by IP
networks.
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4.1 Simple Internetworking (IP)

In the previous chapter, we saw that it was possible to build reasonably large LANs us-
ing bridges and LAN switches, but that such approaches were limited in their ability to
scale and to handle heterogeneity. In this chapter, we explore some ways to go beyond
the limitations of bridged networks, enabling us to build large, highly heterogeneous
networks with reasonably efficient routing. We refer to such networks as internetworks.
In the following sections, we make a steady progression toward larger and larger inter-
networks. We start with the basic functionality of the currently deployed version of the
Internet Protocol (IP), and then we examine various techniques that have been developed
to extend the scalability of the Internet in Section 4.3. This discussion culminates with a
description of IP version 6 (IPv6), also known as the next generation IP. Before delving
into the details of an internetworking protocol, however, let’s consider more carefully
what the word “internetwork” means.

4.1.1 What Is an Internetwork?

We use the term “internetwork,” or sometimes just “internet” with a lowercase 7, to refer
to an arbitrary collection of networks interconnected to provide some sort of host-to-
host packet delivery service. For example, a corporation with many sites might construct
a private internetwork by interconnecting the LANs at their different sites with point-
to-point links leased from the phone company. When we are talking about the widely
used, global internetwork to which a large percentage of networks are now connected, we
call it the “Internet” with a capital /. In keeping with the first-principles approach of this
book, we mainly want you to learn about the principles of “lowercase 7” internetworking,
but we illustrate these ideas with real-world examples from the “big /” Internet.

Another piece of terminology that can be confusing is the difference between net-
works, subnetworks, and internetworks. We are going to avoid subnetworks (or subnets)
altogether until Section 4.3. For now, we use nerwork to mean either a directly con-
nected or a switched network of the kind that was discussed in the last two chapters.
Such a network uses one technology, such as 802.5, Ethernet, or ATM. An internetwork
is an interconnected collection of such networks. Sometimes, to avoid ambiguity, we
refer to the underlying networks that we are interconnecting as physical networks. An in-
ternet is a Jogical network built out of a collection of physical networks. In this context, a
collection of Ethernets connected by bridges or switches would still be viewed as a single
network.

Figure 4.1 shows an example internetwork. An internetwork is often referred to as
a network of networks because it is made up of lots of smaller networks. In this figure,
we see Ethernets, an FDDI ring, and a point-to-point link. Each of these is a single-
technology network. The nodes that interconnect the networks are called rouzers. They
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Figure 4.1 A simple internetwork. H» = host; R» = router.

are also sometimes called gazeways, but since this term has several other connotations, we
restrict our usage to router.

The Internet Protocol is the key tool used today to build scalable, heterogeneous
internetworks. It was originally known as the Kahn-Cerf protocol after its inventors.!
One way to think of IP is that it runs on all the nodes (both hosts and routers) in a
collection of networks and defines the infrastructure that allows these nodes and net-
works to function as a single logical internetwork. For example, Figure 4.2 shows how
hosts H1 and H8 are logically connected by the internet in Figure 4.1, including the
protocol graph running on each node. Note that higher-level protocols, such as TCP
and UDP, typically run on top of IP on the hosts.

Most of the rest of this chapter is about various aspects of IP. While it is certainly
possible to build an internetwork that does not use IP—for example, Novell created
an internetworking protocol called IPX, which was in turn based on the XNS internet
designed by Xerox—IP is the most interesting case to study simply because of the size of
the Internet. Said another way, it is only the IP Internet that has really faced the issue of
scale, thus, it provides the best case study of a scalable internetworking protocol.

IRobert Kahn and Vint Cerf received the A.M. Turing award, often referred to as the Nobel Prize of computer science,
in 2005 for their efforts.
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Figure 4.2 A simple internetwork, showing the protocol layers used to connect H1 to
H8 in Figure 4.1. ETH is the protocol that runs over Ethernet.

4.1.2 Service Model

A good place to start when you build an internetwork is to define its service model, that
is, the host-to-host services you want to provide. The main concern in defining a service
model for an internetwork is that we can provide a host-to-host service only if this service
can somehow be provided over each of the underlying physical networks. For example,
it would be no good deciding that our internetwork service model was going to provide
guaranteed delivery of every packet in 1 ms or less if there were underlying network
technologies that could arbitrarily delay packets. The philosophy used in defining the
IP service model, therefore, was to make it undemanding enough that just about any
network technology that might turn up in an internetwork would be able to provide the
necessary service.

The IP service model can be thought of as having two parts: an addressing scheme,
which provides a way to identify all hosts in the internetwork, and a datagram (con-
nectionless) model of data delivery. This service model is sometimes called best effort
because, although IP makes every effort to deliver datagrams, it makes no guarantees.
We postpone a discussion of the addressing scheme for now and look first at the data
delivery model.

Datagram Delivery

The IP datagram is fundamental to the Internet Protocol. Recall from Section 3.1.1 that
a datagram is a type of packet that happens to be sent in a connectionless manner over
a network. Every datagram carries enough information to let the network forward the
packet to its correct destination; there is no need for any advance setup mechanism to
tell the network what to do when the packet arrives. You just send it, and the network
makes its best effort to get it to the desired destination. The “best-effort” part means that
if something goes wrong and the packet gets lost, corrupted, misdelivered, or in any way
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fails to reach its intended destination, the network does nothing—it made its best effort,
and that is all it has to do. It does not make any attempt to recover from the failure. This
is sometimes called an unreliable service.

Best-effort, connectionless service is about the simplest service you could ask for
from an internetwork, and this is a great strength. For example, if you provide best-effort
service over a network that provides a reliable service, then that’s fine—you end up with
a best-effort service that just happens to always deliver the packets. If, on the other hand,
you had a reliable service model over an unreliable network, you would have to put lots
of extra functionality into the routers to make up for the deficiencies of the underlying
network. Keeping the routers as simple as possible was one of the original design goals
of IP.

The ability of IP to “run over anything” is frequently cited as one of its most
important characteristics. It is noteworthy that many of the technologies over which IP
runs today did not exist when IP was invented. So far, no networking technology has
been invented that has proven too bizarre for IP; it has even been claimed that IP can
run over a network that transports messages using carrier pigeons.

Best-effort delivery does not just mean that packets can get lost. Sometimes they
can get delivered out of order, and sometimes the same packet can get delivered more
than once. The higher-level protocols or applications that run above IP need to be aware
of all these possible failure modes.

Packet Format

Clearly, a key part of the IP service model is the type of packets that can be carried. The
IP datagram, like most packets, consists of a header followed by a number of bytes of
data. The format of the header is shown in Figure 4.3. Note that we have adopted a
different style of representing packets than the one we used in previous chapters. This is
because packet formats at the internetworking layer and above, where we will be focusing
our attention for the next few chapters, are almost invariably designed to align on 32-bit
boundaries to simplify the task of processing them in software. Thus, the common way
of representing them (used in Internet Requests for Comments, for example) is to draw
them as a succession of 32-bit words. The top word is the one transmitted first, and the
leftmost byte of each word is the one transmitted first. In this representation, you can
easily recognize fields that are a multiple of 8 bits long. On the odd occasion when fields
are not an even multiple of 8 bits, you can determine the field lengths by looking at the
bit positions marked at the top of the packet.

Looking at each field in the IP header, we see that the “simple” model of best-effort
datagram delivery still has some subtle features. The Version field specifies the version
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Figure 4.3 IPv4 packet header.

of IP. The current version of IP is 4, and it is sometimes called IPv4.2 Observe that
putting this field right at the start of the datagram makes it easy for everything else in
the packet format to be redefined in subsequent versions; the header processing software
starts off by looking at the version and then branches off to process the rest of the packet
according to the appropriate format. The next field, HLen, specifies the length of the
header in 32-bit words. When there are no options, which is most of the time, the header
is 5 words (20 bytes) long. The 8-bit type of service (TOS) field has had a number of
different definitions over the years, but its basic function is to allow packets to be treated
differently based on application needs. For example, the TOS value might determine
whether or not a packet should be placed in a special queue that receives low delay. We
discuss the use of this field (and a new name for it) in more detail in Section 6.5.3.

The next 16 bits of the header contain the Length of the datagram, including the
header. Unlike the HLen field, the Length field counts bytes rather than words. Thus,
the maximum size of an IP datagram is 65,535 bytes. The physical network over which
IP is running, however, may not support such long packets. For this reason, IP supports a
fragmentation and reassembly process. The second word of the header contains informa-
tion about fragmentation, and the details of its use are presented under “Fragmentation
and Reassembly” below.

Moving on to the third word of the header, the next byte is the time to live (TTL)
field. Its name reflects its historical meaning rather than the way it is commonly used

2The next major version of IB, which is discussed later in this chapter, has a new version number 6 and is known as IPv6.

The version number 5 was used for an experimental protocol called ST-II that was not widely used.
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today. The intent of the field is to catch packets that have been going around in routing
loops and discard them, rather than let them consume resources indefinitely. Originally,
TTL was set to a specific number of seconds that the packet would be allowed to live,
and routers along the path would decrement this field until it reached 0. However, since
it was rare for a packet to sit for as long as 1 second in a router, and routers did not
all have access to a common clock, most routers just decremented the TTL by 1 as they
forwarded the packet. Thus, it became more of a hop count than a timer, which is still
a perfectly good way to catch packets that are stuck in routing loops. One subtlety is
in the initial setting of this field by the sending host: Set it too high and packets could
circulate rather a lot before getting dropped; set it too low and they may not reach their
destination. The value 64 is the current default.

The Protocol field is simply a demultiplexing key that identifies the higher-level
protocol to which this IP packet should be passed. There are values defined for TCP (6),
UDP (17), and many other protocols that may sit above IP in the protocol graph.

The Checksum is calculated by considering the entire IP header as a sequence of
16-bit words, adding them up using ones complement arithmetic, and taking the ones
complement of the result. This is the IP checksum algorithm described in Section 2.4.
Thus, if any bit in the header is corrupted in transit, the checksum will not contain
the correct value upon receipt of the packet. Since a corrupted header may contain an
error in the destination address—and, as a result, may have been misdelivered—it makes
sense to discard any packet that fails the checksum. It should be noted that this type of
checksum does not have the same strong error detection properties as a CRC, but it is
much easier to calculate in software.

The last two required fields in the header are the SourceAddr and the Desti-
nationAddr for the packet. The latter is the key to datagram delivery: Every packet
contains a full address for its intended destination so that forwarding decisions can be
made at each router. The source address is required to allow recipients to decide if they
want to accept the packet and to enable them to reply. IP addresses are discussed in
Section 4.1.3—for now, the important thing to know is that IP defines its own global
address space, independent of whatever physical networks it runs over. As we will see,
this is one of the keys to supporting heterogeneity.

Finally, there may be a number of options at the end of the header. The pres-
ence or absence of options may be determined by examining the header length (HLen)
field. While options are used fairly rarely, a complete IP implementation must handle
them all.

Fragmentation and Reassembly

One of the problems of providing a uniform host-to-host service model over a hetero-
geneous collection of networks is that each network technology tends to have its own
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idea of how large a packet can be. For example, an Ethernet can accept packets up to
1,500 bytes long, while FDDI packets may be 4,500 bytes long. This leaves two choices
for the IP service model: make sure that all IP datagrams are small enough to fit inside
one packet on any network technology, or provide a means by which packets can be frag-
mented and reassembled when they are too big to go over a given network technology.
The latter turns out to be a good choice, especially when you consider the fact that new
network technologies are always turning up, and IP needs to run over all of them; this
would make it hard to pick a suitably small bound on datagram size. This also means
that a host will not send needlessly small packets, which wastes bandwidth and consumes
processing resources by requiring more headers per byte of data sent. For example, two
hosts connected to FDDI networks that are interconnected by a point-to-point link
would not need to send packets small enough to fit on an Ethernet.

The central idea here is that every network type has a maximum transmission unit
(MTU), which is the largest IP datagram that it can carry in a frame. Note that this value
is smaller than the largest packet size on that network because the IP datagram needs to
fit in the payload of the link-layer frame.?

When a host sends an IP datagram, therefore, it can choose any size that it wants.
A reasonable choice is the MTU of the network to which the host is directly attached.
Then, fragmentation will only be necessary if the path to the destination includes a
network with a smaller MTU. Should the transport protocol that sits on top of IP give
IP a packet larger than the local MTU, however, then the source host must fragment it.

Fragmentation typically occurs in a router when it receives a datagram that it wants
to forward over a network that has an MTU that is smaller than the received datagram.
To enable these fragments to be reassembled at the receiving host, they all carry the same
identifier in the ldent field. This identifier is chosen by the sending host and is intended
to be unique among all the datagrams that might arrive at the destination from this
source over some reasonable time period. Since all fragments of the original datagram
contain this identifier, the reassembling host will be able to recognize those fragments
that go together. Should all the fragments not arrive at the receiving host, the host gives
up on the reassembly process and discards the fragments that did arrive. IP does not
attempt to recover from missing fragments.

To see what this all means, consider what happens when host H1 sends a datagram
to host H8 in the example internet shown in Figure 4.1. Assuming that the MTU is
1,500 bytes for the two Ethernets, 4,500 bytes for the FDDI network, and 532 bytes
for the point-to-point network, then a 1,420-byte datagram (20-byte IP header plus
1,400 bytes of data) sent from H1 makes it across the first Ethernet and the FDDI
network without fragmentation but must be fragmented into three datagrams at router

3Note that in ATM networks, the “frame” is the CS-PDU, not the ATM cell; the fact that CS-PDUs get segmented into

cells is (fortunately) not visible to IP.
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Figure 4.4 IP datagrams traversing the sequence of physical networks graphed in
Figure 4.1.

R2. These three fragments are then forwarded by router R3 across the second Ethernet
to the destination host. This situation is illustrated in Figure 4.4. This figure also serves
to reinforce two important points:

1 Each fragment is itself a self-contained IP datagram that is transmitted over a
sequence of physical networks, independent of the other fragments;

2 Each IP datagram is reencapsulated for each physical network over which it
travels.

The fragmentation process can be understood in detail by looking at the header
fields of each datagram, as is done in Figure 4.5. The unfragmented packet, shown at the
top, has 1,400 bytes of data and a 20-byte IP header. When the packet arrives at router
R2, which has an MTU of 532 bytes, it has to be fragmented. A 532-byte MTU leaves
512 bytes for data after the 20-byte IP header, so the first fragment contains 512 bytes of
data. The router sets the M bit in the Flags field (see Figure 4.3), meaning that there are
more fragments to follow, and it sets the Offset to 0, since this fragment contains the
first part of the original datagram. The data carried in the second fragment starts with
the 513th byte of the original data, so the Offset field in this header is set to 64, which is
512 -+ 8. Why the division by 8? Because the designers of IP decided that fragmentation
should always happen on 8-byte boundaries, which means that the Offset field counts
8-byte chunks, not bytes. (We leave it as an exercise for you to figure out why this design
decision was made.) The third fragment contains the last 376 bytes of data, and the offset
is now 2 x 512 + 8 = 128. Since this is the last fragment, the M bit is not set.

Observe that the fragmentation process is done in such a way that it could
be repeated if a fragment arrived at another network with an even smaller MTU.
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Figure 4.5 Header fields used in IP fragmentation: (a) unfragmented packet;
(b) fragmented packets.

Fragmentation produces smaller, valid IP datagrams that can be readily reassembled into
the original datagram upon receipt, independent of the order of their arrival. Reassembly
is done at the receiving host and not at each router.

Implementation

We conclude this discussion of IP fragmentation and reassembly by giving a fragment of
code that performs reassembly. One reason we give this particular piece of code is that it
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is representative of a large proportion of networking software—it does little more than
tedious and unglamorous bookkeeping.

First, we define the key data structure (FragList) that is used to hold the individ-
ual fragments that arrive at the destination. Incoming fragments are saved in this data
structure until all the fragments in the original datagram have arrived, at which time they
are reassembled into a complete datagram and passed up to some higher-level protocol.
Note that each element in FragList contains either a fragment or a hole.

#defi ne FRAGOFFMASK Ox1fff
#defi ne FRAGOFFSET(fragf!| ag) ((fragflag) & FRAGOFFMASK)
#define | NFI Nl TE_OFFSET Oxffff

/* structure to hold the fields that uniquely identify
fragnents of the sane |P datagram */

typedef struct fid {
| pHost  source;
| pHost dest;
u_char prot;
u_char pad;
u_short ident;

} Fragld;

typedef struct hole {
u_int first;
u_int | ast;

} Hol e;

#define HOLE 1
#defi ne FRAG 2

/* structure to hold a fragment or a hole */

typedef struct fragif {

u_char type
uni on {
Hol e hol e;
Msg frag;
by
struct fragif *next, *prev;
} Fragl nfo;

/* structure to hold all the fragments and holes for a



244 4 Internetworking

singl e | P datagram bei ng reassenbl ed */

typedef struct Fraglist {

u_short nhol es;

Fragl nfo head; /* dummy header node */

Bi ndi ng bi ndi ng;

bool gchark; /* garbage collection flag */
} FraglList;

The reassembly routine, ipReassemble, takes an incoming datagram (dg) and
the IP header for that datagram (hdr) as arguments. The third argument, fragMap, is
a Map structure (which supports mapBind, mapRemove, and MapResolve op-
erations) used to efficiently map the incoming datagram into the appropriate FragList.
(Recall that the group of fragments that are being reassembled together are uniquely
identified by several fields in the IP header, as defined by structure Fragld given above.)

The actual work done in ipReassemble is straightforward; as stated above, it
is mostly bookkeeping. First, the routine extracts the fields from the IP header that
uniquely identify the datagram to be reassembled, constructs a key from these fields,
and looks this key up in fragMap to find the appropriate FragList. If this is the first
fragment for the datagram, a new FragList must be created and initialized. Next, the
routine inserts the new fragment into this FragList. This involves comparing the sum
of the offset and length of this fragment with the offset of the next fragment in the list.
Some of this work is done in subroutine hole_create, which is given below. Finally,
ipReassemble checks to see if all the holes are filled. If all the fragments are present, it
calls the routine msgReassemble to actually reassemble the fragments into a whole
datagram and then calls deliver to pass this datagram up the protocol graph to some
high-level protocol identified as HLP.

i pReassenbl e(Msg *dg, |pHdr *hdr, Map fraghMap)
{

Fragld fragid;
FraglLi st *|ist;
Fragl nfo *fi, *prev;
Hol e *hol e;
u_short of fset, len;

/* extract fragmentation info from header
(offset and fragnment |ength) */

of fset = FRAGOFFSET( hdr->frag) *8;

len = hdr->dlen - GET_HLEN(hdr) * 4;

/* Create the unique id for this fragnent */



4.1 Simple Internetworking (IP)

bzero((char *)&fragid, sizeof(Fragld));
fragi d. source = hdr->source

fragid. dest = hdr->dest;

fragi d. prot = hdr->prot;

fragi d.ident = hdr->ident;

/* find reassenbly list for this frag;
create one if none exists */
i f (mapResol ve( fragMap, &fragid, (void **)&ist)
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== FALSE )
{
[* first fragment of datagram -
need new FragList */
list = NEWFraglList);
/[* insert it into the Map structure */
I'ist->binding = napBi nd( fragMap, & ragid, list );
/[* initialize list with a single hole spanning
t he whol e dat agram */
I'ist->nholes = 1;
l'ist->head. next = fi = NEW Fragl nfo);
fi->next = O;
fi->type = HOLE
fi->u.hole.first = 0;
fi->u.hole.last = I NFI NI TE_ OFFSET
}

/* mark the current FragList as ineligible
for garbage collection */
list->gcMark = FALSE;

/* wal k through the FragList to find the right hole

for this frag */
prev = &l i st->head;

for ( fi = prev->next; fi !'=0; prev = fi,
fi = fi->next )
{
if ( fi->type == FRAG)
{
conti nue;
}

hol e = &fi->u. hol e;
if ( (offset < hole->last) & & ((offset + len)
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> hole->first) )

/* check to see if frag overlaps previously
recei ved frags */
if ( offset < hole->first )

{
/* truncate message fromleft */
msgStri pHdr (dg, hole->first - offset);
of fset = hole->first;

}

if ( (offset + len) > hole->last )

/* truncate nmessage fromright */
msgTruncat e(dg, hole->last - offset);
len = hol e->l ast - offset;

/* now check to see if new hol e(s)
need to be nade */

if (((offset + len) < hole->last) &&
(hdr->frag & MOREFRAGMVENTS) )

{
/* creating new hol e above */
hol e_create(prev, fi, (offset+len),
hol e- >l ast) ;
[ist->nhol es++;
}
if ( offset > hole->first )
{
/* creating new hol e bel ow */
hol e create(fi, fi->next, hole->first,
(of fset));
[ i st->nhol es++;
}

/* change this Fraglnfo structure
to be FRAG */

i st->nhol es--;

fi->type = FRAG

msgSaveCopy(&fi->u.frag, dg);

br eak;

} /* if found a hole */

} /* for

| oop */
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/* check to see if we're done, and if so,
pass datagram up */

if ( list->nholes == 0)

{
Msg full Msg;

/* now have a full datagram */

for( fi = list->head.next; fi 1= 0;
fi = fi->next )

{

nsgReassenbl e( & ul | Msg, &fi->u.frag,
& ul | MsQ) ;
}

/* get rid of FragList and its Map entry */
mapRenove(fraghMap, |ist->binding);
i pFreeFragList(list);
deliver (HLP, &full Msg);
nmsgDestroy( &f ul | MsQ) ;
}
return SUCCESS;

}

Subroutine hole_create creates a new hole in the fragment list that begins at
offset first and continues to offset last. It makes use of the utilitcy NEW, which creates
an instance of the given structure.

static int
hol e _create(Fraglnfo *prev, Fraglnfo *next,
uint first, u_int |ast)

{
Fragl nfo *fi;
/* creating new hole fromfirst to |last */
fi = NEWFraglnfo);
fi->type = HOLE;
fi->u.hole.first = first;
fi->u.hole.last = last;
fi->next = next;
prev->next = fi;
}

Finally, note that these routines do not capture the entire picture of reassembly.
What is not shown is a background process that periodically checks to see if there has
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been any recent activity on this datagram (it looks at field gcMark), and if not, it deletes
the corresponding FragList. IP does not attempt to recover from the situation in which
one or more of the fragments does not arrive; it simply gives up and reclaims the memory
that was being used for reassembly.

One thing to notice from this code is that IP reassembly is far from a simple process.
Note, for example, that if a single fragment is lost, the receiver will still attempt to
reassemble the datagram, and it will eventually give up and have to garbage-collect the
resources that were used to perform the failed reassembly.4 For this reason, among others,
IP fragmentation is generally considered to avoid. Hosts are now strongly encouraged to
perform “path MTU discovery,” a process by which fragmentation is avoided by sending
packets that are small enough to traverse the link with the smallest MTU in the path
from sender to receiver.

4.1.3 Global Addresses

In the above discussion of the IP service model, we mentioned that one of the things that
it provides is an addressing scheme. After all, if you want to be able to send data to any
host on any network, there needs to be a way of identifying all the hosts. Thus, we need
a global addressing scheme—one in which no two hosts have the same address. Global
uniqueness is the first property that should be provided in an addressing scheme.

Ethernet addresses are globally unique, but that alone does not suffice for an ad-
dressing scheme in a large internetwork. Ethernet addresses are also flaz, which means
that they have no structure and provide very few clues to routing protocols.’ In contrast,
IP addresses are hierarchical, by which we mean that they are made up of several parts
that correspond to some sort of hierarchy in the internetwork. Specifically, IP addresses
consist of two parts: a network part and a host part. This is a fairly logical structure for
an internetwork, which is made up of many interconnected networks. The network part
of an IP address identifies the network to which the host is attached; all hosts attached
to the same network have the same network part in their IP address. The host part then
identifies each host uniquely on that particular network. Thus, in the simple internet-
work of Figure 4.1, the addresses of the hosts on network 1, for example, would all have
the same network part and different host parts.

Note that the routers in Figure 4.1 are attached to two networks. They need to
have an address on each network, one for each interface. For example, router R1, which
sits between network 2 and network 3, has an IP address on the interface to network 2
that has the same network part as the hosts on network 2, and it has an IP address on the

4 As we will see in Chapter 8, getting a host to tie up resources needlessly can be the basis of a denial-of-service attack.

n fact, as we noted, Ethernet addresses do have a structure for the purposes of assignment—the firs its identify the
S1n fact d, Ethernet add doh t for the p f assig t—the first 24 bits identify th,
manufacturer—but this provides no useful information to routing protocols since this structure has nothing to do with

network topology.
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Figure 4.6 IP addresses: (a) class A; (b) class B; (c) class C.

interface to network 3 that has the same network part as the hosts on network 3. Thus,
bearing in mind that a router might be implemented as a host with two network inter-
faces, it is more precise to think of IP addresses as belonging to interfaces than to hosts.

Now, what do these hierarchical addresses look like? Unlike some other forms of
hierarchical address, the sizes of the two parts are not the same for all addresses. Instead,
IP addresses are divided into three different classes, as shown in Figure 4.6, each of
which defines different-sized network and host parts. (There are also class D addresses
that specify a multicast group, discussed in Section 4.4, and class E addresses that are
currently unused.) In all cases, the address is 32 bits long.

The class of an IP address is identified in the most significant few bits. If the first
bit is 0, it is a class A address. If the first bit is 1 and the second is 0, it is a class B
address. If the first two bits are 1 and the third is 0, it is a class C address. Thus, of
the approximately 4 billion possible IP addresses, one-half are class A, one-quarter are
class B, and one-eighth are class C. Each class allocates a certain number of bits for the
network part of the address and the rest for the host part. Class A networks have 7 bits
for the network part and 24 bits for the host part, meaning that there can be only 126
class A networks (the values 0 and 127 are reserved), but each of them can accommodate
up to 224 _ 2 (about 16 million) hosts (again, there are two reserved values). Class B
addresses allocate 14 bits for the network and 16 bits for the host, meaning that each
class B network has room for 65,534 hosts. Finally, class C addresses have only 8 bits for
the host and 21 for the network part. Therefore, a class C network can have only 256
unique host identifiers, which means only 254 attached hosts (one host identifier, 255,
is reserved for broadcast, and 0 is not a valid host number). However, the addressing
scheme supports 22! class C networks.

On the face of it, this addressing scheme has a lot of flexibility, allowing networks of
vastly different sizes to be accommodated fairly efficiently. The original idea was that the
Internet would consist of a small number of wide area networks (these would be class A
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networks), a modest number of site- (campus-) sized networks (these would be class B
networks), and a large number of LANs (these would be class C networks). However, as
we shall see in Section 4.3, additional flexibility has been needed, and some innovative
ways to provide it are now in use. Because one of these techniques actually removes the
distinction between address classes, the addressing scheme just described is now known
as “classful” addressing to distinguish it from the newer “classless” approach.

Before we look at how IP addresses get used, it is helpful to look at some practical
matters, such as how you write them down. By convention, IP addresses are written
as four decimal integers separated by dots. Each integer represents the decimal value
contained in 1 byte of the address, starting at the most significant. For example, the
address of the computer on which this sentence was typed is 171.69.210.245.

It is important not to confuse IP addresses with Internet domain names, which
are also hierarchical. Domain names tend to be ASCII strings separated by dots, such
as cs.princeton.edu. We will be talking about those in Section 9.1.3. The important
thing about IP addresses is that they are what is carried in the headers of IP packets, and
it is those addresses that are used in IP routers to make forwarding decisions.

4.1.4 Datagram Forwarding in IP

We are now ready to look at the basic mechanism by which IP routers forward data-
grams in an internetwork. Recall from Chapter 3 that forwarding is the process of taking
a packet from an input and sending it out on the appropriate output, while routing is
the process of building up the tables that allow the correct output for a packet to be de-
termined. The discussion here focuses on forwarding; we take up routing in Section 4.2.

The main points to bear in mind as we discuss the forwarding of IP datagrams are
the following:

B Every IP datagram contains the IP address of the destination host;

B The “network part” of an IP address uniquely identifies a single physical network
that is part of the larger Internet;

B All hosts and routers that share the same network part of their address are con-
nected to the same physical network and can thus communicate with each other
by sending frames over that network;

B Every physical network that is part of the Internet has at least one router that, by
definition, is also connected to at least one other physical network; this router
can exchange packets with hosts or routers on either network.

Forwarding IP datagrams can therefore be handled in the following way. A data-
gram is sent from a source host to a destination host, possibly passing through several
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routers along the way. Any node, whether it is a host or a router, first tries to establish
whether it is connected to the same physical network as the destination. To do this, it
compares the network part of the destination address with the network part of the ad-
dress of each of its network interfaces. (Hosts normally have only one interface, while
routers normally have two or more, since they are typically connected to two or more
networks.) If a match occurs, then that means that the destination lies on the same phys-
ical network as the interface, and the packet can be directly delivered over that network.
Section 4.1.5 explains some of the details of this process.

If the node is not connected to the same physical network as the destination node,
then it needs to send the datagram to a router. In general, each node will have a choice of
several routers, and so it needs to pick the best one, or at least one that has a reasonable
chance of getting the datagram closer to its destination. The router that it chooses is
known as the nexz hop router. The router finds the correct next hop by consulting its
forwarding table. The forwarding table is conceptually just a list of (NetworkNum,
NextHop) pairs. (As we will see below, forwarding tables in practice often contain some
additional information related to the next hop.) Normally, there is also a default router
that is used if none of the entries in the table match the destination’s network number.
For a host, it may be quite acceptable to have a default router and nothing else—this
means that all datagrams destined for hosts not on the physical network to which the
sending host is attached will be sent out through the default router.

We can describe the datagram forwarding algorithm in the following way:

if (NetworkNum of destination = NetworkNum of one of my interfaces) then
deliver packet to destination over that interface
else
if (NetworkNum of destination is in my forwarding table) then
deliver packet to NextHop route
else
deliver packet to default router

For a host with only one interface and only a default router in its forwarding table, this
simplifies to

if (NetworkNum of destination = my NetworkNum) then
deliver packet to destination directly

else
deliver packet to default router

Let’s see how this works in the example internetwork of Figure 4.1. First, sup-
pose that H1 wants to send a datagram to H2. Since they are on the same physical
network, H1 and H2 have the same network number in their IP address. Thus, H1
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deduces that it can deliver the datagram
directly to H2 over the Ethernet. The one
issue that needs to be resolved is how H1
finds out the correct Ethernet address for
H2—this is the address resolution mecha-
nism described in Section 4.1.5.

Now suppose H1 wants to send a
datagram to H8. Since these hosts are on
different physical networks, they have dif-
ferent network numbers, so H1 deduces
that it needs to send the datagram to a
router. R1 is the only choice—the default
router—so H1 sends the datagram over
the Ethernet to R1. Similarly, R1 knows
that it cannot deliver a datagram directly
to H8 because neither of R1’s interfaces
is on the same network as H8. Suppose
R1’s default router is R2; R1 then sends
the datagram to R2 over the token ring
network. Assuming R2 has the forward-
ing table shown in Table 4.1, it looks
up H8’s network number (network 1)
and forwards the datagram to R3. Fi-
nally, R3, since it is on the same network
as H8, forwards the datagram directly
to H8.

Note that it is possible to include the
information about directly connected net-
works in the forwarding table. For exam-
ple, we could label the network interfaces
of router R2 as interface 0 for the point-
to-point link (network 4) and interface 1

NetworkNum | NextHop
1 R3
2 R1

Bridges, Switches, and Routers

It is easy to become confused about
the distinction between bridges,
switches, and routers. There is good
reason for such confusion, since at
some level, they all forward messages
from one link to another. One distinc-
tion people make is based on layering:
Bridges are link-level nodes (they for-
ward frames from one link to another
to implement an extended LAN);
switches are network-level nodes (they
forward packets from one link to an-
other to implement a packet-switched
network); and routers are internet-
level nodes (they forward datagrams
from one network to another to im-
plement an internet).

The distinction between bridges
and switches is fast disappearing. For
example, we have already seen that a
multiport bridge is usually called an
Ethernet switch or LAN switch. For
this reason, bridges and switches are
often grouped together as layer 2 de-
vices, where layer 2 in this context
means “above the physical layer, below
the internet layer.”

There remain, however, some
important  distinctions  between
LAN switches (or bridges) and ATM

Table 4.1 Example forwarding table for router R2 in Figure 4.1.



NetworkNum | NextHop
1 R3
2 R1
3 Interface 1
4 Interface 0
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Table 4.2 Complete forwarding table for router R2 in Figure 4.1.

switches to learn the topology of the
whole network. This is an impor-
tant distinction because knowing the
whole network topology allows the
switches to discriminate among dif-
ferent routes, while in contrast, the
spanning tree algorithm locks in a sin-
gle tree over which messages are for-
warded. It is also the case that the
spanning tree approach does not scale
as well.
What

routers? Internally, they look quite

about switches and
similar (as the section on router im-
plementation will illustrate). The key
distinction is the sort of packet they
forward: IP datagrams in the case of
routers, and layer 2 packets (Ethernet
frames or ATM cells) in the case of
switches.

One big difference between a
network built from switches and the
Internet built from routers is that
the Internet is able to accommo-
date heterogeneity, whereas switched
networks typically consists of ho-
mogeneous links. This support for

for the token ring (network 3). Then R2
would have the forwarding table shown in
Table 4.2.

Thus, for any network number that
R2 encounters in a packet, it knows what
to do. Either that network is directly con-
nected to R2, in which case the packet
can be delivered to its destination over that
network, or the network is reachable via
some next hop router that R2 can reach
over a network to which it is connected. In
either case, R2 will use ARP, described be-
low, to find the MAC address of the node
to which the packet is to be sent next.

The forwarding table used by R2 is
simple enough that it could be manually
configured. Usually, however, these tables
are more complex and would be built up
by running a routing protocol such as one
of those described in Section 4.2. Also note
that, in practice, the network numbers are
usually longer (e.g., 128.96).

We can now see how hierarchical
addressing—splitting the address into net-
work and host parts—has improved the
scalability of a large network. Routers now
contain forwarding tables that list only a
set of network numbers, rather than all
the nodes in the network. In our simple
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example, that meant that R2 could store

the information needed to reach all the heterogeneity is one of the key rea-

hosts in the network (of which there were sons why the Internet is so widely de-
ployed. It is also the fact that IP runs

over virtually every other protocol (in-

cluding ATM and Ethernet) that now
causes those protocols to be viewed as

eight) in a four-entry table. Even if there
were 100 hosts on each physical net-
work, R2 would still only need those same
four entries. This is a good first step (al- :
though by no means the last) in achieving layer 2 technologies.
scalability.

This illustrates one of the most important principles of building scalable networks:
To achieve scalability, you need to reduce the amount of information that is stored in
each node and that is exchanged between nodes. The most common way to do that is
hierarchical aggregation. IP introduces a two-level hierarchy, with networks at the top
level and nodes at the bottom level. We have aggregated information by letting routers
deal only with reaching the right network; the information that a router needs to deliver
a datagram to any node on a given network is represented by a single aggregated piece of
information.

4.1.5 Address Translation (ARP)

In the previous section we talked about how to get IP datagrams to the right physical
network, but glossed over the issue of how to get a datagram to a particular host or
router on that network. The main issue is that IP datagrams contain IP addresses, but
the physical interface hardware on the host or router to which you want to send the
datagram only understands the addressing scheme of that particular network. Thus, we
need to translate the IP address to a link-level address that makes sense on this network
(e.g., a 48-bit Ethernet address). We can then encapsulate the IP datagram inside a frame
that contains that link-level address and send it either to the ultimate destination or to a
router that promises to forward the datagram toward the ultimate destination.

One simple way to map an IP address into a physical network address is to encode a
host’s physical address in the host part of its IP address. For example, a host with physical
address 00100001 01001001 (which has the decimal value 33 in the upper byte and
81 in the lower byte) might be given the IP address 128.96.33.81. While this solution
has been used on some networks, it is limited in that the network’s physical addresses can
be no more than 16 bits long in this example; they can be only 8 bits long on a class C
network. This clearly will not work for 48-bit Ethernet addresses.

A more general solution would be for each host to maintain a table of address pairs,
that is, the table would map IP addresses into physical addresses. While this